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The nonlinear gyrokinetic code GS2 has been extended to treat non-axisymmetric

stellarator geometry. Electromagnetic perturbations and multiple trapped particle

regions are allowed. Here, linear, collisionless, electrostatic simulations of the quasi-

axisymmetric, three-field period National Compact Stellarator Experiment (NCSX)

design QAS3-C82 have been successfully benchmarked against the eigenvalue code

FULL. Quantitatively, the linear stability calculations of GS2 and FULL agree to

within ∼ 10%.
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I. INTRODUCTION

One of the most important issues for magnetic fusion is the confinement of heat and

particles. Turbulent transport (most likely the result of drift wave instabilities) causes a

significant amount of heat loss in tokamaks and spherical tori.1 Neoclassical transport, on

the other hand, can often account for the poor confinement in traditional stellarators.2

However, modern stellarator designs, such as Wendelstein 7-AS (W7-AS),3 Wendelstein 7-X

(W7-X),4,5 the National Compact Stellarator Experiment (NCSX),6 the Large Helical Device

(LHD)7, and the Helically Symmetric Experiment (HSX)8–10 have shown or are designed to

have improved neoclassical confinement and stability properties. Understanding plasma

turbulence and transport could further improve the performance of stellarators. Progress in

design of stellarators for optimal transport has been made by coupling the gyrokinetic code

GENE33 with the configuration optimization code STELLOPT.11,12

Gyrokinetic studies of drift-wave-driven turbulence in stellarator geometry are relatively

recent and comprehensive scans are scarce. Most of these studies were done using upgraded

versions of well-established axisymmetric codes which include comprehensive kinetic dy-

namics (multispecies, collisions, finite beta) to the more general case of non-axisymmetric

stellarator geometry, in the flux tube limit. The first non-axisymmetric linear gyrokinetic

stability studies, for both the ion-temperature-gradient-driven (ITG) mode and the trapped-

electron mode (TEM), were done with the linear eigenvalue FULL code,13–15 including a

comparison of stability in nine stellarator configurations.16 Extensive studies have been done

with the upgraded GENE code, including the first nonlinear gyrokinetic simulations.17 More

recently, the GKV-X code, which uses the adiabatic electron approximation, has been used

to analyze linear ITG modes and zonal flows in LHD and nonlinear studies are in progress.18

For this purpose, the axisymmetric nonlinear microinstability code GS219 has been ex-

tended to treat the more general case of non-axisymmetric stellarator geometry. GS2 con-

tains a full (except that the equilibrium distribution function is taken to be a Maxwellian)

implementation of the 5-D Frieman and Chen nonlinear gyrokinetic equation in the flux tube

limit,19,20 with an efficient parallelization for modern supercomputers.27 It treats electrons

and an arbitrary number of ion species on an equal footing, and includes trapped particles,

electromagnetic perturbations, and a momentum-conserving pitch-angle-scattering collision

operator. The extension of the code to non-axisymmetric geometry not only retains all of
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the above dynamics of the axisymmetric version, but also allows, most importantly, multi-

ple trapped particle regions and multiple totally-trapped pitch angles at a given theta grid

point. (By “totally-trapped,” we mean particles with such a small parallel velocity that they

are limited to one grid point at the bottom of a well.) Tokamaks only have one trapped

particle region, but as stellarators can have many deep, narrow magnetic wells which can

trap particles (though NCSX has only a single deep well, with other shallow wells, and is

a bridge in configuration space between tokamaks and other stellarators). In order to treat

the trapped particles accurately, one needs to resolve these wells sufficiently with high grid

resolution. With the GS2 modifications, we allow for more flexible, decoupled pitch angle

and parallel spatial grids, relative to the original GS2 algorithm which required every grid

point (θj) along the field line to correspond exactly to the turning point of trapped pitch

angle (λi = µ/E) grid points.27

Beyond these extensions, a GS2 stellarator simulation requires different geometry codes to

build its input grids than standard tokamak runs. For these non-axisymmetric simulations,

the geometrical coefficients are based on a VMEC21,22 3D MHD equilibrium, which is trans-

formed into Boozer coordinates23 by the TERPSICHORE code.24 From this equilibrium, the

VVBAL code25 constructs data along a chosen field line necessary for the microinstability

calculations: B = |B|, the ∇B drift, the curvature drift, and the metric coefficients. While

these extensions were used to study HSX plasmas,26 here we verify the non-axisymmetric

extension of GS2 through comparisons with FULL on NCSX plasmas. Good agreement

between the GS2 code and the FULL code in the axisymmetric limit has been extensively

demonstrated previously.27,28 While the non-axisymmetric upgrade of GS2 retains the non-

linear dynamics, in these studies we focus on systematic scans of gyrokinetic linear stability.

The organization of this paper is as follows. The NCSX equilibrium used for the bench-

mark is described in Section II. Comparisons between the GS2 code and the FULL code

in non-axisymmetric geometry over a range of parameters including η = Ln/LT (where Ln

is the density gradient scale length and LT is the temperature gradient scale length), kyρi,

Ti/Te, and geometrical coordinates are presented in Section III. Further results using the

GS2 code to investigate effects of density and temperature gradients are presented in Section

IV. Conclusions and a discussion of future work are given in Section V. Finally, Appendix

A contains definitions of the normalizations and radial coordinate used by GS2.
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II. THE QAS3-C82 EQUILIBRIUM

All of the benchmark calculations use a VMEC equilibrium based on a 1999 NCSX design

known as QAS3-C82,12 which is shown in Figure 1. This configuration is quasi-axisymmetric

with three field periods. It has an aspect ratio of 3.5 and a major radius of 1.4 m. NCSX

was designed to have good neoclassical transport and MHD stability properties and good

drift trajectories similar to those in tokamaks. Strong axisymmetric components of shaping

provide good ballooning stability properties at lower aspect ratio. Furthermore, the QAS3-

C82 equilibrium has a monotonically increasing rotational transform profile which provides

stability to neoclassical tearing modes across the entire cross section.12,29

For most of these runs, we chose the surface at s = 0.875 (s ∼ ⟨(r/a)2⟩ is the normalized

toroidal flux) and the field line at α = π/3 (α = ζ − qθ; ζ is the Boozer toroidal angle, θ

is the Boozer poloidal angle). The cross-section at this point is the crescent shape, seen in

Figure 17 of Ref. 30. The coordinate along the field line is θ, the poloidal angle. At this

surface, the safety factor q = 2.118 and the average β (the ratio of the plasma pressure to

the magnetic pressure) is ⟨β⟩ = 0.01%. Lastly, the ballooning parameter25 is θ0 = 0, except

in Figure 6.

Figure 2 shows the variation of the magnitude of the magnetic field along a chosen

magnetic field line. Resolution studies for the spatial grid used in the GS2 runs indicate

that 330 theta grid points per poloidal period and about 90 pitch angles (λ = µ/E) showed

convergence in the growth rate to within 2%, however < 10% error is possible with coarser

grids. It was also found that a θ range extending from −3π to 3π was sufficient for a typical

simulation grid, meaning that the eigenfunctions for the modes decayed to insignificant

values before reaching these boundaries. (The endpoints of B(θ) were increased slightly, by

less than 1%, to be global maxima, per normal GS2 operations.)

The equilibrium’s geometry suggests unstable drift waves exist. The variations of (k⊥/n)
2,

where n is the toroidal mode number, and the curvature drift along the same chosen field

line can be seen in Figures 3 and 4. By convention, positive curvature drifts are “bad” or

destabilizing, while negative curvature drifts are “good” or stabilizing. Significant unstable

modes occur where k⊥ is small, which is near θ = 0 for this equilibrium, since instabilities

are generally suppressed at large k⊥ by FLR averaging. Also, because Figure 4 indicates

that the curvature is bad in this region near θ = 0, it is expected that unstable modes will
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appear here.

III. BENCHMARKS WITH FULL

Comparisons between the GS2 code and the FULL code in non-axisymmetric geometry

over a range of parameters using the QAS3-C82 equilibrium show linear agreement for our

standard case, whose local parameters are shown in Table I. The product of the perpendic-

ular wave number and the gyroradius at θ = 0, kyρi, is 0.3983 (where the toroidal mode

number n = 25; see App. A) for all cases unless otherwise specified. The standard case is

relatively close to the edge, which accounts for the low values of ion temperature, Ti, electron

temperature, Te, and relatively large values for the gradients. The parameter, η = Ln/LT

is usually η = 3, placing most of our studies in an ITG regime (see Figure 7). Correspond-

ingly, aN/Lni = aN/Lne = 13.096 and aN/LTi = aN/LTe = 39.288. The major radius is

approximately R ≈ 1.4m. The normalizing scale length is aN = n/k⊥(θ = 0) = 0.352m, not

the minor radius, and is described in detail in App. A. These studies are done with electrons

and deuterium ions.

Previously, FULL scans showed that the largest linear growth rate occurs at flux surface

label s = 0.875 (corresponding to a minor radius of r/a ≈
√
s ≈ 0.94), for α = π/3 and

θ0 = 0. GS2 and FULL scans over α and θ0 (Figures 5 and 6) adopted this s value. The

toroidal mode number, n, was fixed at 25 (thus, kyρi =
n
aN
ρi varied for each data point,

because from App. A, aN = 1/|∇α| and ρi ∝ 1/Ba vary). These figures indicate good

agreement between the GS2 code and the FULL code. The maximum growth rate in Figure

5 occurs for α = π/3, and GS2 and FULL agree well around this value. In Figure 6, GS2

and FULL again agree well around the growth rate peak at θ0 = 0.

In all further calculations presented in this paper, s = 0.875, α = π/3 and θ0 = 0, the

location of the maximum growth rate.

We used GS2 to find the instability growth rate dependence on η = Ln/LT and com-

pared it with FULL. The total pressure gradient was kept fixed to maintain consistency

with the MHD equilibrium. Both codes found large growth rates at low η (high density

gradient) and high η (high temperature gradient) (Figure 7), and agree well, though it can

be seen in the frequencies that GS2 found a mode switch earlier than FULL. This can hap-

pen since GS2 automatically finds the most unstable mode, whereas FULL usually finds
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the mode closest to the initial guess provided to the root finder. In fact, there are three

distinct eigenmodes within these regimes of η: at small η, even-symmetry TEM modes dom-

inate; at medium η, odd-symmetry TEM modes dominate; and at larger values of η, an

even-symmetry ITG-driven mode dominates15 (Figure 8). This is typical of an equivalent

axisymmetric configuration.31

Benchmarks with FULL for scans over Ti/Te, shown in figure 9, were also successful. For

this scan, Te was varied while Ti was kept constant at 1keV . As Ti/Te increases, at this

very large value of R/LTi
≈ 157, the linear growth rate falls slowly due, most likely, to an

enhancement of shielding by adiabatic electrons at large
√
Ti/Te. This is a very well-known

phenomenon in tokamaks.

Comparison scans over kyρi for η = 0 and η = 3 are shown in figure 10. For the

η = 0 curve, the dominating eigenmodes are even in the ranges 0.1 < kyρi < 0.2 and

0.6 < kyρi < 1.1. Overall, the results from the GS2 code and the FULL code agree well;

growth rates differ by at most ∼ 10% except at transitions between modes.

We found high frequency, electron-temperature-gradient-driven (ETG) modes with GS2

at short wavelengths (Figure 11) in the extended kyρi spectrum for the case of η = 3. This

was not checked with FULL.

IV. CRITICAL GRADIENTS FOR LINEAR INSTABILITY

GS2 was also used to search for critical density gradients and temperature gradients; i.e.

to see whether gradients exist at which all drift wave modes are stabilized. Note that for

the next series of figures, the normalizing length for the density and temperature gradient

length scales is defined as aN = (n/k⊥)(θ = 0) ∼ 0.352m (see App. A).

Figure 12 shows a scan over the density gradient at various ion and electron temperature

gradients. The results are inconsistent with the equilibrium pressure gradient, as the density

gradient was increased at constant temperature gradient. However, because the equilibrium

beta is so small (∼ 0.01%), the effect of the variation of the pressure gradient is negligible.

We see that there is no nonzero critical density gradient threshold, even in the absence of

temperature gradients. There are switches in eigenmode symmetry from even to odd as

aN/Ln increases, or all aN/LT values.

However, a critical ion temperature gradient for an ITG-driven mode was found at
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aN/LTi ∼ 2 (or R
LTi

= R
aN

aN
LTi

≈ 4 aN
LTi

= 8) in the absence of all other gradients (Figure

13). Likewise, a critical electron temperature gradient for a TEM-driven mode was found

at aN
LTe

∼ 2 in the absence of all other gradients (Figure 14).

V. CONCLUSIONS

The nonlinear gyrokinetic code GS2 has been extended to treat non-axisymmetric stellara-

tor geometry. Geometric quantities required for the gyrokinetic simulations are calculated

from a VMEC-generated equilibrium using the VVBAL code and are further described in

App. A.

Linear, collisionless, electrostatic simulations of the quasi-axisymmetric, three-field period

NCSX stellarator design QAS3-C82 have been successfully benchmarked with the eigenvalue

code FULL for scans over a range of parameters including η, kyρi, Ti/Te, α, and θ0. Quanti-

tatively, the linear stability calculations of GS2 and FULL agree to within about 10% of the

mean, except at transitions between modes. Further results using only GS2 included short

wavelength modes, odd parity, faster growing modes, and the effect of individual density

and temperature gradients.

Future work will include the exploration of the effects of collisionality and electromag-

netic dynamics, investigation of finite beta equilibria, and, most significantly, the effects of

nonlinear dynamics. A benchmark of stellarator studies is underway between GS2 and the

continuum gyrokinetic code GENE33 for NCSX, as well as stellarators W7-AS and W7-X.

GIST34 is now capable of creating GS2 geometry data files and will be used in the future,

along with the new GS2 grid generator.
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Appendix A: Geometry Details

In order to make the simulation grid for these GS2 stellarator runs, VMEC creates the 3-

D MHD equilibrium, TERPSICHORE transforms it into Boozer coordinates, and VVBAL

calculates necessary geometric coefficients along a specified field line. Then, GS2’s grid

generator, Rungridgen, creates the final grid for use in the microinstability calculations.

(A new grid generator is in production, which will be used for further GS2 stellarator

calculations.) The normalizations of geometric quantities change between these codes, and

knowing them in detail is required for benchmarks between gyrokinetic codes. We define

the normalizing length, aN , in App. A.2.

In GS2, the field-aligned coordinate system is (ρ, α, θ). θ is the poloidal angle and distance

along the field line. The magnetic field takes the form B = ∇α×∇Ψ, where α = ζ − qθ is

the field line label. The radial coordinate, ρ, can differ between codes, and we define it in

App. A.1. More details of general geometry for GS2 are documented in App. A of Ref. 35.

1. Radial coordinate, ρ

VMEC and TERPSICHORE use the normalized toroidal flux surface label s = Φ/Φedge ∼

⟨(r/a)2⟩ as the radial coordinate, ρ. In the customized version of VVBAL used here, the

radial coordinate is transformed to ρ = ΨN = Ψ/(a2NBa), where ΨN is the normalized

poloidal flux.

Because Rungridgen uses VVBAL output without modification, here dρ/dψN ≡ 1. (In

Ref. 35, the definition of the geometry coefficients include the variable dρ/dψN , which can

be used to choose the radial coordinate.)

2. Normalizing Quantities, Ba and aN

The normalizing magnetic field is Ba = ⟨B⟩, where ⟨B⟩ is a theta-average, not weighted

to be a flux-surface average (Ref. 35 chooses Ba differently).

The normalizing length is aN , given for these calculations by VVBAL as

aN =
n√

|k⊥|2(θ = 0, θ0 = 0)
=

1

|∇α|
. (A1)
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GS2 treats perturbed quantities as A = Â(θ)exp(iS), where k⊥ = ∇S = n∇(α + qθ0) =

n∇[ζ − q(θ − θ0)]; n is the toroidal mode number. (In non-axisymmetric devices, n is not

a conserved quantum number, because toroidal variations in the equilibrium give coupling

between n modes. However, in the small-ρ∗, high-n limit, this coupling is weak, and n can

just be considered a coefficient to select a particular value of k⊥.)

In the notation of Eqn. A.11 of App. A in Ref. 35,

|k⊥|2 = |∇S|2 = k2θ
∣∣g1 + 2θ0g2 + θ20g3

∣∣ (A2)

where g1, g2, and g3 are coefficients in the geometry file written by VVBAL and read by

GS2. Also, kθ = ky = n/aN . (The GS2 variable aky is defined as kyρi, with ρi ∝ 1/Ba.)

In the notation of Eqn. 7 of Ref. 34,

|k⊥|2 = n2

√
gB2

Ψ′2(s)
[Cp + Cs(θ − θ0) + Cq(θ − θ0)

2], (A3)

where
√
g is the Jacobian, Cp, Cs, and Cq are defined in section II of Ref. 34.

So, VVBAL writes:

g1 = a2N

√
gB2

Ψ′2(s)
[Cp + Csθ + Cqθ

2] (A4)

g2 = −a2N
√
gB2

Ψ′2(s)

[
Cqθ +

Cs

2

]
(A5)

g3 = a2N

√
gB2

Ψ′2(s)
Cq (A6)
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FIGURES

FIG. 1. Equilibrium of NCSX design QAS3-C82 which is quasi-axisymmetric and has 3 field

periods.
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FIG. 2. Standard B vs. θ grid for QAS3-C82, with s = 0.875, α = π/3, and θ0 = 0.
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FIG. 3. Variation of (k⊥n )2(θ) for QAS3-C82, with s = 0.875, α = π/3, and θ0 = 0.
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FIG. 4. Variation of the curvature drift frequency (ωcv = (k⊥/n) · b× [b · ∇b]) (for n = 1) along

θ for QAS3-C82, with s = 0.875, α = π/3, and θ0 = 0.
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FIG. 5. (color online) Variation of γ and ωr with α at constant s = 0.875 and θ0 = 0 with

ηi = ηe = 3 and kyρi(α = π
3 ) = 0.3983.
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FIG. 6. (color online) Variation of γ and ωr with θ0 at constant s = 0.875 and α = π/3 with

ηi = ηe = 3 and kyρi = 0.3983.
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FIG. 7. (color online) Variation of γ and ωr with ηi = ηe with kyρi = 0.3983.
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FIG. 8. (color online) Variation of the normalized GS2 eigenfunctions of electrostatic, collisionless

toroidal drift modes along the field line at η = 3 (top figure) and at η = 0.5 (bottom figure) with

kyρi = 0.3983.
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FIG. 9. (color online) Variation of γ and ωr with Ti/Te with kyρi = 0.3983 and ηi = ηe = 3.

0 0.5 1
0

10

20

k
y
 ρ

i

γ 
(1

05  s
ec

−
1 )

0 0.5 1
−60

−40

−20

0

20

k
y
 ρ

i

ω
r (

10
5  s

ec
−

1 )

FIG. 10. (color online) Variation of γ and ωr with kyρi. Circles: GS2, η = 0; triangles: FULL,

η = 0; squares: GS2, η = 3; diamonds: FULL, η = 3.
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FIG. 11. (color online) Extended variation from GS2 of γ and ωr with kyρi and ηi = ηe = 3.
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FIG. 12. (color online) Variation of γ and ωr with aN/Ln with kyρi = 0.3983. Circles: aN/LT =

0.0; triangles: aN/LT = 39.3; squares: aN/LT = 44.9.
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FIG. 13. (color online) Variation from GS2 of γ and ωr with aN/LTi with kyρi = 0.3983. Circles:

aN/Ln = 52.4, aN/LTe = 0.0; triangles: aN/Ln = 13.1, aN/LTe = 39.3; squares: aN/Ln =

0.0, aN/LTe = 0.0.
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FIG. 14. (color online) Variation from GS2 of γ and ωr with aN/LTe for the case of Fig. 2 with

kyρi = 0.3983. Circles: aN/Ln = 52.4, aN/LT i = 0.0; triangles: aN/Ln = 13.1, aN/LTi = 39.3;

squares: aN/Ln = 0.0, aN/LTi = 0.0.

TABLES

s ≈ (⟨r/a⟩)2 0.875

α = ζ − qθ π/3

θ0 0

q 2.118

⟨β⟩ 0.01%

kyρi 0.3983(n = 25)

Ti = Te 1keV

ηi = ηe 3

aN/Lni = aN/Lne ≈ 13.096

aN/LTi = aN/LTe ≈ 39.288
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R ≈ 4aN ≈ 1.4m

aN = ( n
k⊥(θ=0,θ0=0)) ≈ 0.352m

Ba = ⟨B⟩ 1.15T

mref 2mp

vt
√
(eTi1000)/mref

GS2 ω units vt/aN ≈ 6.214× 105sec−1

TABLE I. The set of local parameters used in a standard case microinstability simulation based

on the QAS3-C82 equilibrium. Note: aN is not the minor radius; it is discussed in App. A.
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