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Intuitive Approach to Magnetic Reconnection

Russell M. Kulsrud

Princeton Plasma Physics Laboratory

Abstract

Two reconnection problems are considered. The first problem con-
cerns global physics. The plasma in the global reconnection region is
in magnetostatic equilibrium. It is shown that this equilibrium can be
uniquely characterized by a set of constraints. During reconnection
and independently of the local reconnection physics, these constraints
can be uniquely evolved from any initial state. The second problem
concerns Petschek reconnection. Petschek’s model for fast reconnec-
tion, which is governed by resistive MHD equations with constant re-
sistivity, is not validated by numerical simulations. Malyshkin, Linde,
and Kulsrud (2005), showed that the reason for the discrepancy is that
Petschek did not employ Ohm’s law throughout the local diffusion re-
gion, but only at the X-point. A derivation of Petschek reconnection,
including Ohm’s law throughout the entire diffusion region, removes
the discrepancy. This derivation is based largely on Petschek’s origi-
nal 1964 calculation (Petschek 1964). A useful physical interpretation
of the role which Ohm’s law plays in the diffusion region, is presented.

1 Introduction

There are two interesting problems concerning reconnection that I
address in this paper. The first problem concerns the plasma dynamics
in the region outside of the reconnection layer, the global region. A
proper treatment of the plasma in this region is necessary to derive
proper boundary conditions for the reconnection layer.

For reconnection velocities that are not too fast compared to the
Alfven speed, this region is in magnetostatic equilibrium. As mag-
netic reconnection of field lines transfers flux from one part of the
global region to another, the global equilibria progress in a definite
way that is independent of the physics in the reconnection layer. This
was first shown by Uzdensky, Kulsrud, and Yamada, (1996), making
use of the variational principle of Kruskal and Kulsrud (1958). This
progression puts a stronger constraint on the boundary conditions of

1



the reconnection layer than is generally appreciated. Their proof of
this variational principle is incomplete, and I present a complete proof
in the next section.

The second interesting problem is: why is Petschek’s fast recon-
nection not validated by numerical simulations? The reason has to do
with the build–up of that component of the magnetic field which ex-
tends across the reconnection layer, and which supplies the necessary
tension force for his model. This build–up, is slower than Petschek
supposed, leading to a longer diffusion region, and a slower reconnec-
tion rate than he predicts. Malyshkin et al (2005) mathematically
explained this lack of validation by showing that the problem was
in Petschek’s incorrect application of Ohm’s law in the diffusion re-
gion. In the third section I show how this equation should have been
treated, by repeating Petschek’s original calculation. At the end of
this section, I present a useful physical interpretation of the physics
of the action of Ohm’s law, in building up the transverse field in the
diffusion region.

2 Global Equilibria

The geometry of the global region is indicated in figure 1, which is a
poloidal cross section of the reconnection geometry. In this paper I
assume that the reconnection geometry is toroidal, as it is in the MRX.
(One can also regard two–dimensional reconnection as toroidal if one
identifies two different poloidal cross sections.) The local regions in the
figure consist of the thin reconnection layer D and the separatrix layer
E. The reconnection layer D is thin if the the reconnection velocity
is slow compared to the Alfven speed. Plasma flowing out of the thin
reconnection layer flows into the separatrix layer at Alfvenic speeds,
but its velocity is quickly dissipated by parallel viscosity in such a
short time that only a small amount of flux is reconnected. Thus, the
separatrix region is also thin. Therefore, global–reconnection theory
can be considered to be a boundary–layer theory.

These local layers divide the rest of the geometry into three regions.
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In regions A and B the lines of force have not been reconnected.
The lines in region C are the reconnected lines. Because the global
region has a larger volume than the local region, the velocities in it
are small and the separate regions A, B, and C are each in separate
magnetostatic equilibrium. Moreover, the total pressures, p+B2/8π,
on either side of D and E are equal, so that the three regions are in
magnetostatic force balance with each other. I refer to the equilibrium
of the entire region as the global equilibrium.

As the reconnection progresses, flux is transferred from A and B
into C, and the global equilibrium changes. However, Uzdensky, Kul-
srud and Yamada showed, from a variational principle, that a set of
constraints exist such that every global equilibrium is uniquely spec-
ified by the values taken by this set of constraints. Further, if the
values of the set of constraints is known at an initial time, they can
be found at any later time solely from the physics in the global re-
gion, and independently of the physics in the local region. This is
really not so surprising, when one considers the problem as a bound-
ary layer problem, since the global dynamic forces are larger than the
transverse forces in the layers.

The example provided by shock conditions in hydrodynamics makes
this plausible. The Rankine–Hugoniot conditions determine the hy-
drodynamics of the fluid outside of the shock region independently of
the physics inside the shock layer.

A complete set of constraints which determine the equilibrium,
exist under the assumption that the magnetic field in each of the three
regions A,B, and C has magnetic surfaces. Let a magnetic surface in
regions A,B or C be labeled by ψA, ψB , or ψC respectively. The ψ′s
are equal to the poloidal fluxes included inside the surfaces. Under
this assumption the constraints defined on each surface are:

• M(ψA),M(ψB), or M(ψC), the mass included inside the surface.

• Φ(ψA),Φ(ψB), or Φ(ψC), the toroidal flux included inside the
surface.

• s(ψA), s(ψB), or s(ψC), the entropy s = p/ργ on the surface.

Now, choose three sets of functions, M(ψ),Φ(ψ) s(ψ), (defined
differently in each of the three regions) to represent the constraints.
Consider a state S0, consisting of B(r), p(r), and ρ(r) defined through-
out the global regions and such that these constraints are satisfied on
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each surface. Assume that the state S0 has an energy

E =

∫
(

B2

8π
+

p

γ − 1

)

d3x, (1)

which is a minimum relative to the energy of any other state with the
same values for the constraints. The integral is to be taken over all the
global regions. This is to say, if one consider any other neighboring
state S1 with the same values for the constraints, its energy will be
greater.

The set of constraints has been constructed so that, equality of
their values for any two neighboring states, means it is possible to
connect these two states by an ideal displacement ξ(r). That is to say,
if one starts with the state S0, and carries out this displacement, then
it will be transformed into state S1. The existence of this displacement
will appear clear after a little thought. It’s existence in each to the
regions A,B, and C is rigorously established in the paper of Kruskal
and Kulsrud.

At a fixed point, ξ changes B by

δB = ∇× (ξ × B), (2)

and p by
δp = −ξ · ∇p− γp∇ · ξ. (3)

Then the change in the energy E , in the A region is

δEA =

∫

A

[

B ·
∇ × (ξ × B)

4π
−

1

γ − 1
ξ · ∇p−

γ

γ − 1
p∇ · ξ

]

d3x

+

∫

SA

ξ · n

(

B2

8π
+

p

γ − 1

)

d2x. (4)

(The surface term takes into account, the fact that the two A regions
of the two states may not be the same.) The sum of the changes in
energies in the three regions A,B, and C must vanish for all choices
of the displacement ξ(r).

One can transform the various terms in the above integral in the
usual way by vector integration by parts. The result, keeping the
integrated terms, is

δEA =

∫

A

[

ξ · (−j × B + ∇p) −∇ · [B × (ξ × B)] −
γ

γ − 1
∇ · (pξ)

]

d3x

+

∫

SA

ξ · n

(

B2

8π
+

p

γ − 1

)

d2x.
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Now, apply Gauss’s theorem to the divergence terms, and use the
fact that B ·n = 0 on the surface SA, to combine them with the other
surface terms. The result is

δEA =

∫

A

ξ · (−j × B + ∇p)d3x

−

∫

SA

ξ · n

(

p+
B2

8π

)

d2x. (5)

The energy of the state S0 is to be a minimum with respect that
of the neighboring states with the same constraints. Therefore, δE =
δEA +δEB +δEC must vanish for all ξ. (Of course, any different choice
of ξ corresponds to a different neighboring state S1, but this is of
no consequence since the different state still has a larger energy and
satisfies the constraints.)

Take any point in A not on a boundary of A. Then one can choose
ξ to be non zero and arbitrary, at and near that point, but vanishing
elsewhere including on the boundary.

Then
j × B = ∇p. (6)

at that point, and at every other point not on the boundary.
With this equation, the change in energy of region A reduces to

δEA =

∫

SA

(ξ · n)

(

p+
B2

8π

)

d2x. (7)

Now, after adding the contributions to δE from regions B and C,
the sums from the various surface terms will cancel, if and only if the
jump in p + B2/8π vanishes over all the gaps between the regions.
That is, across every point on D and E

〈

p+
B2

8π

〉

= 0. (8)

This is because the values of ξ ·n are equal in magnitude and opposite
in sign, at every contact surface. Equation (6) and Equation (8) show
that the minimum energy state S0 is a global equilibrium state.

Conversely, if the state S0 is a magnetostatic state satisfying both
Equation (6) and Equation (8), then one can trace the argument back-
ward to show that δE = 0, and that S0 has a minimum energy relative
to any neighboring state satisfying the constraints.
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At this point in the discussion, it is clear that: for a given set of
values of the constraints, Φ(ψ),M(ψ), and s(ψ), the minimum energy
state is in global magnetostatic equilibrium, and the unique global
magnetostatic equilibrium which has the specific values for the con-
straints. That is to say, given any values of the set of constraints,
there is a unique equilibrium with these values. Therefore, there is
a one–to–one correspondence between all values for our sets of con-
straints and all global magnetostatic equilibria. (Note that this set of
constraints is a complete set, and this completeness is necessary for
the one–to–one correspondence. If one constraint were missing, there
would be an equilibrium state that is not a minimum energy state
since, its energy could be lowered by a non ideal transformation to a
neighboring equilibrium state that would satisfy all of the constraints
except the missing one.)

How can one make use of this theorem, and how should one choose
the values for the constraints? Notice that the constraints are ideal
constants of the motion, and during any ideal evolution of the state,
even a non–dynamic evolution, these constraints are conserved.

Consider the evolution of the global equilibria during a reconnec-
tion. The fluxes in regions A, and B, decrease as the reconnection
proceeds, but the values for the constraints as functions of the ψ′s
in the two regions, remain the same over the range of ψ′s, except at
their limiting values near regions D and E. Similarly, the constraint
functions in region C remain the same functions of its ψ over their
range in region C, except at the limiting value near the separatrix.
As the ranges in ψA and ψB decrease by an element of flux, the range
of ψC increases by the same amount. Further, the value of Φ at the
limit of the range of ψC , is equal to the sum of its values at the limits
of ψA and ψB .

However, the entropy at the maximum value of ψC , s[ψC(max)],
appears to be undetermined, because of the dissipative processes in
the reconnection layers D and E. Does this mean that its value de-
pends on the details of the physics in these layers? The answer is no.
In the case that the external boundary of region C does not change,
the total energy also can not change. After the reconnection of an ele-
ment of poloidal magnetic flux δψ, the total energy must be the same.
However, the regions D, and E are so thin, that they contain a negli-
gible amount of energy. Thus, it is only the total energy in the global
region that must remain constant. But this energy is uniquely deter-
mined by the global magnetostatic equilibrium, which is determined
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by the values of the constraints. Remember that the only value of the
constraints that is undetermined by the ideal evolution of the global
equilibrium, is the entropy s[ψC(max)]. Thus, energy conservation
determines this one unknown value of the constraints.

(Notice that there is an analogous situation in the hydrodynamic
shock case; where the conservation of energy determines the jump in
the entropy across the shock.)

It is remarkable that the sequence of global equilibria, which are
controlled by the known sequence of the values of the constraints, is
uniquely predetermined. The sequence is independent of the physics
of the reconnection processes. This is true whether the reconnection
model is that of Sweet-Parker (Sweet, 1958, Parker 1963), Petschek
(1964), or a model derived from two–fluid physics. This uniqueness
arises because the values of the constraints can be evolved uniquely
for the three regions, when energy conservation use to determine the
one value of the one constraint that does not evolve ideally.

It should be noted that, if the external boundary is moving, the
total energy will change because work is done by the boundary. But
this work is PDV work. Thus, the total global energy can be followed
self–consistently independently of the rate at which the work is done.
The amount of work done is independent of the rate of passage of the
equilibria through the sequence, as long as the reconnection rate is
slow compared to the rate of change of the external boundary. Thus,
the unknown entropy constant s[ψC(max)], can still be determined.
The global energy at the time when a given equilibrium is reached
depends only on amount of external work done during this time. It
is thus the same no matter at what rate the work is done. Therefore,
our conclusion as to the independence of the global equilibria of the
local physics, is still valid.

On the other hand, the time evolution of the ranges of ψA and
ψB , (and correspondingly the evolution of the range of ψC) is entirely
determined by the reconnection process, and does depend on the local
physics.

For each of the magnetostatic equilibria in the sequence, the ge-
ometry and size of regions A,B, and C are determined. Thus, the
positions and lengths of the regions D, and E, are also determined.
Further, B and p are known throughout the global regions, and in
particular their values are known on the surfaces of D and E. Thus,
at any given time the local boundary conditions are determined by
the corresponding global equilibrium in the sequence. This interplay
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between the global and local dynamics is exactly what is expected in
a boundary–layer theory.

It is sometimes an advantage to view phenomena in reconnection
physics from the global point of view. For example, if the reconnection
is being forced by changing the external boundary, any pile-up of flux
can be viewed as due to the changing global equilibrium, just as well
as due the lack of speed of the reconnection. In fact, unless the rate
of change of the global equilibrium is slow enough to be comparable
with the time to reconnect a finite amount of flux, the pile–up should

be regarded as entirely a result of the changing global equilibria. In
nature, the reconnection rate tends to be slow compared to the rate
of evolution of the global equilibrium, but in laboratory experiments,
such as the MRX, it may be comparable.

3 Petschek reconnection

As far as rapid magnetic reconnection in the large systems that occur
in astrophysics and space physics, is concerned, there is no question
that a process such as that proposed by Petschek, is of vital impor-
tance. No other mechanism except Petschek’s comes close to produc-
ing fast reconnection in systems of such large size. Petschek’s key idea
is: that resistive diffusion can be replaced by wave action in convert-
ing magnetic energy into other forms. The magnetic energy can be
released by unfolding the reconnected lines. (See figure 2.)

In more detail, Petschek showed that: if there is a magnetic field
perpendicular to the reconnection layer, the incoming reconnection
velocity can be balanced by a wave propagating along this field. Fur-
ther, the tension force associated with this field accelerates plasma
downstream faster than the flows driven by pressure gradients. This
can allow a more rapid expulsion of the plasma from the reconnection
layer than in the Sweet-Parker model.

Thus, it is disappointing that numerical simulations do not support
the Petschek mechanism. The numerical simulations show: that when
resistive–MHD equations with constant resistivity apply, his mech-
anism does not lead to fast reconnection. (See Biskamp 1986; and
Uzdensky and Kulsrud 2000.) It is very important to intuitively un-
derstand why such a powerful reconnection mechanism fails, in order
that a way can be found to restore it. An important advance was made
towards this by Malyshkin, Linde, and Kulsrud (2005), who showed
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that this failure is related to extra terms in Ohm’s law which Petschek
did not include.

The simplest way to explain the physics that is causing the problem
is, to trace through Petschek’s original 1964 calculation.

In this section I present his calculation in some detail, and follow
it logically up to the point at which the additional terms in Ohm’s law
play a role. I then show that these terms restrict Petschek’s conclusion:
that his mechanism can lead to very fast reconnection. I then present
a physical interpretation that shows why these terms are important.

To make the discussion clear, refer to Petschek’s original diagram,
figure 2. Petschek takes his coordinate system with y in the outflow
direction and x across the layer. The two important quantities in
his theory are: the thickness of the reconnection layer, δ, and the
transverse field, Bx = bxB0. These quantities are both functions of y.

The key point in his theory is: that the incoming flux is balanced
by wave propagation along the x axis as well as by resistive diffusion.
Thus, his first equation is

M0 =
ux0

VA
=

λ

VAδ
+ |bx|, (9)

where M0 = ux0/VA is the Mach number of the reconnecting flow. I
have introduced the notation λ = c2/4πσ, with σ the conductivity.

For small y, say y < y∗, |bx| is small, and the incoming flow is
mainly balanced by resistive diffusion. If y is large, (y > y∗) it is
balanced by wave propagation. When y > y∗, |bx| is large enough to
balance the incoming flow by itself, it becomes constant, and δ can
increase. (In point of fact, Equation (9) is only valid for very large
and very small y. For y comparable to y∗, it is necessary to keep
both terms in this equation. This is the nub of the difficulty with his
model.)

Petschek next introduces the equation of continuity,

ux0y = v(y)δ(y), (10)

where v is the flow in the y direction along the layer. The momentum

10



Figure 2: Petschek’s diagram
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equation is
d

dy
(ρv2δ) = −

B0Bx

4π
. (11)

Notice that Bx is negative in the upper part of his diagram, while ux0

is positive in the left side of his diagram. To keep the signs straight I
write the equations only for the upper left part of his diagram

These equations are valid, both in the small–y diffusive region,
and the large–y wave propagation region. For simplicity, Petschek
combines them into the single equation

M2

0

d

dy

(

y2

δ

)

= −bx. (12)

Now, at large y, the diffusive term in Equation (9) can be neglected,
and

M0 = −bx, y > y∗. (13)

Substitution of this equation into Equation (12) yields the important
result

δ(y) = M0y, y > y∗. (14)

This equation shows that the width of the outflow channel increases
with distance y.

Next, in the diffusive region, y < y∗, the first term of Equation (9)
shows that

δ =
λ

VAM0

, y < y∗, (15)

is a constant.
Equation (10) and Equation (15) show that the velocity v increases

linearly with y to keep up with the incoming flow. Its acceleration is
produced by magnetic tension, so that −bx must also increase linearly
with y. From Equation (12)

bx = −
2M3

0
VA

λ
y y < y∗. (16)

Now, when y reaches y∗, |bx| will have grown to the point at which
wave propagation takes over the balancing of the incoming flow. That
is, at y = y∗, |bx| must equal M0. Thus,

y∗ =
λ

2VAM2

0

. (17)

12



For any given Mach number of the incoming flow M0, the length
of the diffusion region, y∗, is given by this equation. Now, since all of
Petschek’s equations are satisfied, it was reasonable for him to suppose
that any reconnection velocity can be accommodated by the proper
choice of y∗. (There actually is a logarithmic limit on the reconnection
rate which Petschek emphasized, but I here ignore.)

Before proceeding further, note that the above equations reduce
to those of Sweet-Parker in the diffusive region. In fact, the solutions
for δ, v, and bx in the diffusion region, can be written in terms of y∗

as

δ =
λ

ux0

, v =
1

2

y

y∗
VA, (18)

and
bx = −

ux0

VA

y

y∗
. (19)

These equations are exactly those of the Sweet-Parker model with the
global length set to y∗.

Now consider the z component of the full Ohm’s law in the diffusive
region,

cE − vbxB0 =
cjz
σ

= −
λ

δ

(

B0 +B′′

0

y2

2

)

, (20)

where the primes on B0 denote y derivatives. The first terms on the
left and right hand sides cancel. Making use of Equation (18) and
Equation (19) for v and bx, the remaining terms in this equation are:

−vbxB0 =
ux0B0

2

(

y

y∗

)2

= −
λB′′

0

2δ
y2 = −

ux0B
′′

0

2
y2, (21)

or
B0

y∗2
= −B′′

0
. (22)

But B0 is the reconnecting field just outside of the layer, so that
B′′

0
is determined by the global equilibrium. (This, as has been shown

in section 2, is independent of the reconnection process.) Thus, its
scale must be the global length L, and

B′′

0
=
d2B0

dy2
≈ −

B0

L2
. (23)

Therefore, from Equation (22), y∗ ≈ L. This means that Petschek’s
assumption, that y∗ << L, is inconsistent with the complete set of
equations.
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From Equation (17), with y∗ ≈ L,

u2

x0
≈
λvA

2L
, (24)

the Sweet-Parker result. This explains why numerical simulations of
Petschek reconnection find the Sweet-Parker reconnection rate.

A physical interpretation of the role of Ohm’s law is: that the
term vBx represents the rate at which the Bx field lines are swept
downstream, while the cj′′/σ term is the rate at which the incoming
By field lines rotate into Bx field lines. This picture of the motion
of the field lines was suggested in two earlier papers (Kulsrud 1998,
2001).

This interpretation can be seen more quantitatively by rewriting
Ohm’s law as

E +
(v + vslip) × B

c
= 0, (25)

in which I introduce the slip velocity vslip to replace the resistive term,
by defining it to satisfy

ηj = −
vslip × B

c
, (26)

so that vslip = ηcj × B/B2.
In this form of Ohm’s law it is clear that, in the diffuse region

a field line moves with the plasma velocity, v, plus the slip velocity,
vslip. Hence, a field line is transported by the plasma velocity v in
the y direction, and sheared in the x direction by the y gradient of
vslip,x. The scale of the slip velocity is of order the global scale L, and
its magnitude is of order the reconnection velocity ux0.

Thus, the line will be sheared, or rotated, at the rate

dθ

dt
=
dvslip,x

dy
≈
ux0y

L2
, (27)

where θ = bx is the angle the line of force makes with the y axis. At
the same time, it will be transported in the y direction at the velocity

dy

dt
= v =

y

2y∗
vA. (28)

Upon dividing these two equations

dθ

dy
=

2ux0y
∗

L2VA
, (29)
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so that the line of force rotates through an angle ∆θ ≈ bx(y∗/L)2.
∆θ = bx is the change in θ that Petschek needs for his theory. Thus,
under this interpretation, the diffusion region must have a global
length, to be long enough to allow sufficient rotation to generate the
required downstream field Bx.

So far, I have restricted the discussion to a constant spatial resis-
tivity. If the resistivity is non constant and varies on a shorter scale,
Lη, than L, then the shear in vslip,x is increased by L/Lη, and the
Petschek theory applies with the shorter length y∗ ≈ Lη. This result
is in accord with the numerical simulations of (Ugai and Tsuda 1977,
Sato and Hayashi 1979, and Scholer 1989). It is of considerable in-
terest to apply these intuitive ideas, that involve field line motion, to
other reconnection models,

To summarize, Petschek’s error was to apply Ohm’s law only for
y = 0 and y > y∗, ignoring it in the region 0 < y < y∗. It is in
this region that the build–up of the Bx field occurs. Petschek simply
assumed this build–up could be arbitrarily fast because he found no
equation restricting it. By properly including the full Ohm’s law in
this region, the rate of build–up of Bx, and thus y∗, are determined.
As a consequence, the reconnection rate is slower than the ’Petschek’
rate.

4 Conclusion

In the first part of this paper, I have shown that: reconnection physics
in the global regions can be investigated more systematically by mak-
ing use of a variational principle, to uniquely specify the global equilib-
rium in terms of a set of values for a set of constraints. The evolution
of these values then gives the evolution of its equilibrium. I show that
this evolution proceeds independently of the local physics in the recon-
nection and separatrix layers. In the second part, I have shown why
the Petschek mechanism acts differently in numerical simulations than
Petschek might have expected, and I give a physical interpretation to
intuitively explain why this happens. This interpretation should be
explored more fully to determine whether it can lead to other new
physics in reconnection theory.
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