
Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory

PPPL-

Pamela Hampton
Text Box
PPPL-

Princeton Plasma Physics Laboratory
Report Disclaimers

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or any third party’s use or the results of such use of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer

Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors.

PPPL Report Availability

Princeton Plasma Physics Laboratory:

 http://www.pppl.gov/techreports.cfm

Office of Scientific and Technical Information (OSTI):

http://www.osti.gov/bridge

Related Links:

U.S. Department of Energy

Office of Scientific and Technical Information

Fusion Links

Ensuring High Availability And Recoverability Of
Acquired Data*

C. Pugh, T. Carrol, P. Henderson
Information Technology Division

Princeton Plasma Physics Laboratory
Princeton, NJ 08075

cpugh@pppl.gov

Abstract—Every time one runs a shot, or simulation, exorbitant
amounts of data are collected and sent off to live a life in storage.
This data is important to our livelihood as a scientific research
community, and to the goals of our mission of sustainable energy.
Therefore it will behoove all to ensure the integrity of this data.

Many mechanisms are available to store and ensure the
availability of this data, from Hardware Raid, to Software Raid,
and backups. Is the right amount of data redundancy being
utilized in order to ensure data is safe? What are the scenarios in
which these redundancies could fail? How can one ensure that
each type of failure is accounted for with the least amount of
overhead?

When using Hardware Raid on the storage networks, each
Raid group is allowed a certain number of failures, before the
whole group fails beyond recovery. Software Raid, specifically
ZFS raid-z or mirroring, can check for “soft errors,” and provide
a way to recover, even if a hard disk fails or a device is
prematurely removed. Finally, backups are only as good as the
policy and resources provided to the system.

As with many engineering decisions, it is often not clear what
the best solution is. Alone, each one of these mechanisms provides
a certain level of data redundancy or availability. However, when
one would combine these resources, it will ensure that no matter
what scenario, data will be available and recoverable.

Keywords-data aquisition; raid; zfs; storage; backup; restore

I. INTRODUCTION

Former Executive and president of Hewlett-Packard, Carly
Fiorina pointed out that, “The goal is to transform data into
information, and information into insight.” It is crucial to
science to ensure that the data that is collected and produced is
available to gain this insight. Therefore we need to ensure this
data is properly replicated and stored using the most efficient
methods available. Some things that should be taken into
consideration are how the data is stored, and how it is backed
up. It is important to remember, however, that certain risks,
performance trade offs, and other options should be considered.
This paper will explore different options available in order to

ensure high availability and recoverability of data, specifically
using ZFS/SAN solutions and disk-to-disk staging for backups.

II. DATA STORAGE

The first part of ensuring you have the data to transform, is
to write it somewhere for safekeeping. In this case, let’s
consider using a SAN to provide shared storage, and ZFS pools
on Solaris 10 servers.

A. Combining power of SAN and ZFS

Relying on hardware RAID at the SAN level does not
account for such issues as user or controller error. For
example, what happens with there is an accidental disk
deletion? What happens if, for some reason, a controller loses
the last configuration change?

Imagine this scenario. You create a non-redundant pool on
a server, called TANK in the interest of maximizing your
resources. You configure and present three virtual disks from
your SAN. These virtual disks have a WWN ending in 4e:0a,
4e:0b and 4e:0c. Now that these disks are presented, you put
TANK into production. Now, imagine some time later, you are
informed by someone, that they no longer require their disks on
another server, WAGON. Among the various disks they no
longer need, you have one particular disk that has the WWN
that ends in 4c:0b. Now, you may see that in a list of many
long WWN’s, “4c:0b” and “4e:0b” might look similar. It is
fair to say, that as humans make mistakes, one of these disks
could hastily be mistaken for each other, so imagine now, that
“4e:0b” is deleted instead of “4c:0b”. Now instead of
cleaning up from an old server, you have now degraded your
pool without a chance for recovery. In fact, if this exact
scenario were to happen on TANK, unless a later patch fixed
the bug, the whole server would become inoperable, and
littered with I/O errors, requiring an immediate reboot before
proceeding with restoring from backups.

*This work supported by the US DOE Contract No. DE-AC02-09CH11466

Figure 1. Hardware RAID combined with RAID-Z If a SAN RAID set
experiences data loss, this scheme allows the RAIDZ set to recover simply by

adding another virtual disk from a clean data set.

If either Raid-z or mirroring are employed, and one virtual
disk that was presented to your pool is removed, your data is
still intact. This is because you have a level of redundancy that
protects your data. All you would have to do, once this issue is
discovered, is simply create a new disk on the SAN, present it

to the degraded pool as a replacement, using zpool replace,
for the “failed” disk with the WWN of “4c:0b”. The Figure
below shows an example of using both hardware RAID on the
SAN, and also the added level of protection of using RAID-Z.

B. RAID5 issues

What about non-human errors? Sure, RAID5 devices
recover one failed drive, but there are issues that you may not
be aware of. The problem is that despite the improved
reliability of modern drives and the improved error correction
codes on most drives, and even despite the additional 8 bytes of
error correction that EMC puts on every drive disk block (if
you are lucky enough to use EMC systems), it is more than a
little possible that a drive will become flaky and begin to return
garbage, known as partial media failure. Now SCSI controllers
reserve several hundred disk blocks to be remapped to replace
fading sectors with unused ones, but if the drive is going these
will not last very long and will run out and SCSI does NOT
report correctable errors back to the OS! Therefore you will
not know the drive is becoming unstable until it is too late and
there are no more replacement sectors and the drive begins to
experience partial media failure. [Note that the recently
popular IDE/ATA drives may not include bad sector
remapping in their hardware so partial media failure may be
experienced even sooner.] When a drive experiences partial
media failure, and this corrupted sector is written back, a
corrupt parity will be calculated and then the RAID5 integrity
is lost, as RAID5 does not check parity on read. Similarly if a
drive fails and one of the remaining drives is flaky the
replacement will be rebuilt with corrupted sectors, also,
propagating the problem to two blocks instead of just one.

Furthermore, during recovery, read performance for a
RAID5 array is degraded by as much as 80%. Some advanced
arrays let you configure the preference more toward recovery
or toward performance. However, doing so will increase
recovery time and increase the likelihood of losing a second
drive in the array before recovery completes resulting in
catastrophic data loss. RAID10 on the other hand will only be
recovering one drive out of 4 or more pairs with performance
ONLY of reads from the recovering pair degraded making the
performance hit to the array overall only about 20%! Plus there
is no parity calculation time used during recovery - it's a
straight data copy. [2]

C. Performance

It is important to balance performance tradeoffs with data
integrity. As mentioned above, RAID10 is one way to prevent
data loss. RAID10, in both hardware and zfs, is accomplished
by first creating a RAID1 mirror set and then concatenating
those sets into a RAID0 striped set. Below you will find a
graph from a study that Simon Krenger performed. [1] It
compares the performance of hardware RAID10 and zfs RAID-
Z(10). As you can see, there is very little difference in
performance, when using hardware RAID10 vs ZFS RAID-
Z(10). The added flexibility and security of ZFS might be more
important in your environment than pure performance. Overall,
ZFS is 3-13% slower than a Hardware RAID, depending what
load you apply to the file system, and the Hardware that you
use. The higher than expected performance of RAID-Z could
be attributed to the fact that it never has to do read-modify-
write, like hardware RAID does.

But how does RAID10 compare to RAIDZ(1)? Recall that
RAIDZ only sacrifices the capacity of one drive, whereas
RAID10 is striped across mirrors, and therefore has an
effective capacity of 50% of the assigned drives. In a test
performed by Ben Tiefert, it was found that RAIDZ
experienced a performance loss when performing small random
reads, as compared to a ZFS RAID10 setup. This is because
more devices had to participate in each individual read
operation, reducing the speedup possible through parallel reads,
as is possible with mirrors. In his test, Ben setup 20 drives into
four RAIDZ virtual devices of five drives each. This had
an overall parity-to-data ratio of 1:4, or 25%. This means that
one fifth of our drive capacity is used for parity.

Now, when performing large writes, in this example, a
100GB file, a performance gain was demonstrated. The yield
was a write performance of 669 MB / sec; faster than the
RAID10 result of 458 MB / sec. This can be attributed to
spreading the workload over more devices, as only 6.25 GB
was written to each drive. The stripe of mirrors required that 10
GB be written to each drive. The limiting factor for throughput
was the PCI-X bus, which wrote 836 MB / sec of total
information (data + parity) in order to support the payload of
669 MB / sec of data. (669 x 1.25 due to a 4:1 data to parity
ratio.) In the table below, you can see the results of Ben’s test.
[8]

TABLE I. I/O SUMMARY RESULTS FOR RAIDZ VS RAID10
PERFORMANCE TEST

Figure 2. Comparing Hardware RAID10 with ZFS RAID10

D. Resiliancy

One of the main bonuses to using ZFS is data
checksumming to prevent silent data corruption. Silent data
corruption can be caused by any number of factors, including,
but not limited to current spikes, disk firmware bugs, bit rot,
and/or cosmic radiation. Data Integrity is a high priority in ZFS
because none of the currently widespread file systems nor
Hardware RAID provide sufficient protection against such
problems. This is due to a fatal flaw known as the RAID-5
write hole. Whenever you update the data in a RAID stripe you
must also update the parity, so that all disks XOR to zero -- it's
that equation that allows you to reconstruct data when a disk
fails. The problem is that there's no way to update two or more
disks atomically, so RAID stripes can become damaged during
a crash or power outage. [3]

However, ZFS, when used with redundancy such as RAID-
Z or mirroring, has the capability to check for silent data
corruption, AND fix it. Whenever you read a RAID-Z block,
ZFS compares it against its checksum. If the data disks didn't
return the right answer, ZFS reads the parity and then does
combinatorial reconstruction to figure out which disk returned
bad data. It then repairs the damaged disk and returns good data
to the application. ZFS also reports the incident through Solaris

Figure 3. Example of how to create a nested RAID-Z set

FMA so that the system administrator knows that one of the
disks is silently failing. Another thing to consider is that RAID-
Z is a data/parity scheme like RAID-5, but it uses dynamic
stripe width. Every block is its own RAID-Z stripe, regardless
of blocksize. This means that every RAID-Z write is a full-
stripe write. This, when combined with the copy-on-write
transactional semantics of ZFS, completely eliminates the
RAID write hole.

One thing to consider is that, while RAID-Z may show high
performance in writing speed, data integrity, etc. there may be
a read performance issue. If there are many small random reads
from many streams and the dataset is large enough where the
cache hit ratio is really small. Therefore, another solution could
be to make a pool with many nested RAID-Z sets. The figure
below is an example of how to create a nested RAID-Z set. Of
course this would mean less available storage, but better
performance (in terms of IO/s). Therefore, if you want to use
RAID-Z in your environment, first carefully consider your
workload. If many nested RAID-Z sets in one pool is not a
viable solution for you, perhaps one of the other RAID
algorithms offered by ZFS could be.

III. DATA RECOVERY

We have discussed different ways of preventing data loss,
however, it is important to be prepared, in the event of a
loss. Loss can occur accidentally, due to human error, or
due to mechanical error, etc.

A. Disk to Disk Backup Staging

ZFS
RAID
TYPE

Disk
setup

Test I/O Summary

raidz 5x4 rand-
read1

273ops/s 4.3mb/s 14.6ms/op 114us/op-
cpu

raid10 10x2 rand-
read1

412ops/s 6.4mb/s 9.7ms/op 65us/op-
cpu

Any good storage plan needs a good backup plan. Magnetic
tape has been the backup medium of choice for a long time.
The advantage of tape is cost; it’s less expensive than other
storage options. However, the tradeoff is performance. As the
amount of data that organizations have and need to back up has
grown, the amount of time it takes to back up all that data to
tape has become increasingly inconvenient. Likewise, finding
data on tape is a time-consuming process. With massive
amounts of data being stored, it becomes difficult to ensure that
backups go according to schedule.

In order to alleviate the stress of waiting for tapes to
become available for a backup to take place, one could employ
the use of disk to disk backup staging. Disk to disk backup has
the benefit of faster backups and restores, occurring at disk
speed. The backups are done on the disk staging area, where
they are kept short-term. This aids in ensuring data is properly
backed up. The figure below shows a simplification of the
process of disk to disk backup. First the data is staged to fast
SAS disks on a SAN. Once all data is backed up on the Staging
Area, a backup image tar file can be written to tape. Therefore,
time is used more efficiently, as one does not waste time
looking for a tape, only to find out that the system cannot be
backed up for reasons such as: the system is off, or improperly
configured.

Another added benefit to disk to disk staging is the added
benefit of temporary on disk backups. Since image tar files are
kept until space is needed, recent backups are readily available
for restores, making recent accidental deletions easy and quick
to restore. This is achieved by using “High and Low water
marks.” A high water mark dictates when oldest tar files are
purged down to the low water mark.

B. Verified Backups

Having backup policies mean nothing if they are not
enforced. It is sometimes difficult to keep up with numerous
backup policies, especially if there are multiple admins, who
might also be spread thin, on other tasks. Therefore, it is
important to have a procedure of checking, or verifying
backups, in place. One such method is to use a script to
traverse through the backup policies, checking to see first, is a
given filesystem COVERED by a policy, and another to reveal
if that policy is even ACTIVE! There are some built in
binaries that, when used together, can help you perform sanity
checks to ensure that your data is covered. Briefly, here are
some of the commands you should be interested in and where
they are located. These commands can be used together in a
script to ensure everything is covered in a policy.

Figure 4. Disk to Disk Staging [4]

• bperror - Display NetBackup status and
troubleshooting information or entries from the
NetBackup error catalog.
/usr/openv/netbackup/bin/admincmd/bp
error

• bpmedialist - Display NetBackup media status.
/usr/openv/netbackup/bin/admincmd/bp
medialist

• bpps - A script to determine which NetBackup
processes are active on a UNIX system.
/usr/openv/netbackup/bin/bpps

• cleanstats – A script tocheck the status of the cleaning
tape(s) and thenumber of hours drives have been used
since last cleaning.

/usr/openv/netbackup/bin/goodies/cleanstats

Once you are sure that your data is covered by a policy, you
should also ensure your backups are valid! NetBackup can
verify backup images (one at a time), to guarantee that you can
restore it. On a command line one could use the command
bpverify. bpverify verifies the contents of one or more backups
by reading the backup volume and comparing its contents to
the NetBackup catalog. This operation does not compare the
data on the volume with the contents of the client disk.
However, it does read each block in the image, thus verifying
that the volume is readable. NetBackup verifies only one
backup at a time and tries to minimize media mounts and
positioning time.

bpverify -client <CLIENTNAME> -st FULL

If you run bpverify without any option, it will verify all
taken images from all clients. Additionally, you can choose
only the client <client> and only type <FULL>

IV. CLOSING

A. Further Considerations

This is only a few ideas and suggestions to use with
SAN/ZFS configurations. Other implementations, such as
SAMFS could be used in different ways that have not been
explored here.

One of the major milestones for ZFS Storage appliance is
data depuplication. Using data depulication in addition to
normal backup procedures can help in maximizing backup
efficiency. In this way, one would have to back up less,
therefore again using time more efficiently. [5]

In addition to RAIDZ(1), ZFS also offers RAIDZ2, and
RAIDZ3. RAIDZ2 is like RAID6, where you get double parity
and can tolerate up to two disks failing. Performance is similar
to RAIDZ. RAIDZ3 has a third parity point, allowing a
toleration of up to 3 disks failing. Performance is similar to
RAIDZ and RAIDZ2 [6]

B. Conclusion

Many design trade offs should be considered when dealing
with massive amounts of data storage. Space, performance,
and Mean Time To Data Loss (MTTDL) must be considered
and balanced according to use and resources available. As with
many engineering decisions, it is often not clear what the best
solution is. Alone, each one of these mechanisms provides a
certain level of data redundancy or availability. However, when
one would combine these resources, it will ensure that no
matter what scenario, data will be available and recoverable.

However, if the resources are available it seems that the
best combination of performance and resiliency comes from
Striping and mirroring everything. This can be done either on
the SAN side, or the ZFS side. If you are using the SAN for
servers other than ZFS file storing, then perhaps it is prudent to
stripe and mirror at the SAN level. This would also mean less
management required as the disks would only have to be
striped and mirrored as they are added to the storage pool.

It is also important to remember to have regular backups
available. Having regular backups means having verified
working policies in place, with necessary offsite duplicates
available in case disaster recovery is needed. These working
backups need to be completely performed on schedule, in order
to ensure a backup is available when needed. Using methods
such as disk to disk staging, ensures that all backups are
quickly performed, and can be written to tape as they become
available.

REFERENCES

[1] Krenger, S, “ZFS vs. Hardware RAID (RAID 10) “
 http://www.krenger.ch/blog/zfs-vs-hardware-raid-raid-10/

[2] Kagel, A, “RAID5 versus RAID10”
http://www.miracleas.com/BAARF/RAID5_versus_RAID10.txt

[3] Bonwick, J “RAID-Z” http://blogs.oracle.com/bonwick/entry/raid_z ,
Nov 18, 2005

[4] “Disk to Disk Backup (D2D)”
http://www.storage-backup-archive.com/disk-to-disk-backup.html

[5] Bourbonnais, R. , “Dedup Performance Considerations
“http://blogs.oracle.com/roch/

[6] “ZFS RAID levels” http://www.zfsbuild.com/category/raid

[7] “VERITAS NetBackup™ 6.0 Disk-Based Data Protection”
http://eval.symantec.com/mktginfo/products/Datasheets/Data_Protection
/nbu_6_0_dbdp_dsht.pdf

[8] Tiefert, B. “ZFS Performance – RAIDZ vs RAID10” , July 10, 2009

http://www.stringliterals.com/?p=161

The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract
with the U.S. Department of Energy.

Information Services

Princeton Plasma Physics Laboratory
P.O. Box 451

Princeton, NJ 08543

Phone: 609-243-2245
Fax: 609-243-2751

e-mail: pppl_info@pppl.gov
Internet Address: http://www.pppl.gov

	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results

	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template

	report number: 4672
	Title: Ensuring High Availability And Recoverability of Acquired Data
	Date: August, 2011
	authors: C. Pugh, T. Carrol and P. Henderson

