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Abstract. In tokamaks, Ware pinch is a well known neoclassical effect for trapped
particles in response to a toroidal electric field. It is generally believed that
there exists no similar neoclassical effect for circulating particles without collisions.
However, this belief is erroneous, and misses an important effect. We show both
analytically and numerically that under the influence of a toroidal electric field
parallel to the current, the circulating orbits drift outward toward the outer wall
with a characteristic velocity O

(
ε−1
)
larger than the E×B velocity, where ε is the

inverse aspect-ratio of a tokamak. During a RF overdrive, the toroidal electric field
is anti-parallel to the current. As a consequence, all charged particles, including
backward runaway electrons, will drift inward towards the inner wall.
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2 Neoclassical Drift of Circulating Orbits

In the magnetic field of a tokamak, a charged particle’s trajectory can be either
trapped or circulating. When there exists an electric field in the toroidal direction
parallel to the current, the trapped orbits will be pinched inward radially. This is
the well known Ware pinch [1]. The inward pinch velocity is

vw =
cEξ
Bθ

, (1)

where Eξ is the toroidal electric field in the co-current direction, and Bθ is the
strength of the poloidal magnetic field. The Ware pinch velocity is larger than the
standard E ×B drift velocity

vE×B =
cEξBθ

B2
(2)

by O (ε−2) . Here B is the total magnetic field strength and ε is the inverse aspect
ratio. The Wave pinch is caused by the neoclassical effect associated with the toroidal
geometry of a tokamak. Because of the symmetry with respect to the toroidal
direction, the canonical momentum pξ = −eψ/c + muBξ/B − eEξR0t [Eq. (8)] is
conserved. The momentum input due to the electric field cannot be reflected by
the increase of the parallel velocity u, since the particle is trapped and the average
parallel velocity cannot increase. Therefore, the magnetic flux ψ must decrease to
compensate for the momentum input, which results in the inward pinch.

For a circulating particle, it is commonly believed that there is no such
neoclassical drift [1–4], and the toroidal electric field only produces the standard
E × B drift given by Eq. (2), which is in the negative radial direction. However,
this belief is erroneous, and misses an important effect. We will show both
analytically and numerically that in a large aspect ratio tokamak with nearly circular
flux surfaces, the circulating orbit actually drifts outward toward the wall with a
characteristic drift velocity

vd ≈
cqEξ
B

, (3)

where q is the safety factor of the tokamak magnetic field. This outward drift is
larger than the standard E × B drift by O (ε−1) . It is induced by toroidicity, as in
the case of the Ware pinch for trapped particles. All circulating orbits drift with the
same velocity, and the drift velocity is independent of charge, mass, and energy, as
in the cases of the E × B drift and Ware pinch. Before giving a formal derivation
of Eq. (3) in a general tokamak geometry with non-circular flux surfaces, let’s first
look at two simple physical pictures of this outward drift in a simplified tokamak



Neoclassical Drift of Circulating Orbits 3

geometry. It is well known that in a simplified tokamak geometry with circular
concentric flux surfaces, the displacement d of a circulating orbit relative to the flux
surfaces is proportional to the parallel velocity u,

d ≈ cqu

emB
,

where e is the charge and m is the mass [5]. If u is accelerated or decelerated by Eξ,
i.e. m∆u = eEξ∆t, then we see that the displacement moves as

∆d

∆t
≈ cqEξ

B
,

which is same as Eq. (3). This is of course the neoclassical effect associated with
the toroidal geometry. It may sound trivial that larger u corresponds to larger
orbit displacement relative to the flux surfaces. But it is remarkable that when the
increase of u is induced by a toroidal electric field, the resulting orbit displacement
is O (ε−1) larger than the E × B drift, which contradicts the common wisdom [1–
4]. In this simple physical picture, we need to pay extra attention to the sign of
the displacement, which can be either outward or inward depending on the signs of
charge e and parallel velocity u. Under the influence of Eξ, the absolute value of u
can either decrease or increase. However, the drift of the orbit only depends on Eξ. It
always drifts outward for co-current Eξ, even if the absolute value of u decreases. This
fact shows that drift of the circulating orbit is in the same category of the E × B
drift and Ware pinch. Another physical picture can be given using the argument
of canonical momentum. On average, the momentum input by the electric field is
balanced by the increase of the kinetic angular momentum. However, the kinetic
angular momentum increase inside (R < R0) is smaller than that outside (R > R0).
To conserve the canonical momentum, the circulating orbit drifts outward. These
two physical pictures are constructed using a simplified tokamak geometries with
circular concentric flux surfaces. In Ref. [6], we have demonstrated this effect for
runaway electrons in this simplified geometry. In this paper, we show that this drift
exists for all charged particles in more general geometries with flux surfaces whose
non-circularity is O (ε).

During the Ohmic discharge and global disruptions, a significant toroidal field
will be generated in the co-current direction. The neoclassical behavior of circulating
orbits under the influence of a toroidal electric field becomes important. For example,
the outward drift of the circulating orbit provides a mechanism for the runaway
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Figure 1. The magnetic geometry and coordinate systems for a large aspect-ratio
tokamak.

electrons [7–11] to strike the first wall or limiter [6]. During lower hybrid current
drive [12], the wave-particle interaction will selectively generate momentum input for
resonant circulating (super-thermal) electrons, and these current-carrying electrons
will drift outward according to our theory.

We begin our study from the Lagrangian of the guiding center dynamics in a
magnetized plasma [13]

L =
(e
c
A +mub

)
· ẋ−

(
µB +

1

2
mu2

)
, (4)

where A is the vector potential, b is the unit vector in the direction of the magnetic
field, u is the parallel velocity of the guiding center, x is the guiding center position,
µ is the magnetic moment, e is the charge, and m is the mass. In our study, the
magnetic field is that of a large aspect-ratio tokamak with toroidal symmetry. The
magnetic geometry and coordinate systems are illustrated in Fig. 1. The vector
potential in a tokamak with toroidal symmetry is

A = ψT∇θ − ψ∇ξ . (5)

The corresponding magnetic field is

B = ∇ψT ×∇θ −∇ψ ×∇ξ .
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Here θ and ξ are properly chosen poloidal and toroidal angles for the flux coordinates.
Functions ψT and ψ are the toroidal flux and poloidal flux respectively. The covariant
representations for B is

B = Bψ∇ψ +Bθ∇θ +Bξ∇ξ ,

Bψ =
1

J
(∇θ ×∇ξ) ·B ,

Bθ =
1

J
(∇ξ ×∇ψ ·B ,

Bξ =
1

J
(∇ψ ×∇θ) ·B .

To include a ξ-independent toroidal electric field Eξ, we let

A1 = −cEξR0t∇ξ ,

which corresponds to an inductive field due to a loop voltage induced by the the
primary winding. Let

ψ̇ ≡ ẋ · ∇ψ , θ̇ ≡ ẋ · ∇θ , ξ̇ ≡ ẋ · ∇ξ , (6)

representing the contravariant components of ẋ in the flux coordinate (ψ, θ, ξ) . Then
the Lagrangian acquires the form

L =
mu

B
Bψψ̇ +

(e
c
ψT +

mu

B
Bθ

)
θ̇ +

(
−e
c
ψ +

mu

B
Bξ − eEξR0t

)
ξ̇ −

(m
2
u2 + µB

)
.

(7)
Because ∂L/∂ξ = 0, the canonical moment is conserved, i.e.,

pξ =
∂L

∂ξ̇
= −e

c
ψ +

mu

B
Bξ − eEξR0t (8)

= −e
c
ψ +muR− eEξR0t+O

(
ε2
)

= const. ,

where we have made use of the fact that Bξ/B = R + O (ε2) . Since our purpose is
to show that the outward drift of circulating orbit is O (ε) , we will neglect terms
of O (ε2) hereinafter. After the parallel velocity u is known, Eq. (8) determines the
projection of the trajectory on the poloidal plane. The parallel velocity can be solved
from the energy equation

H (t1)−H (t0) = e

ˆ t1

t0

EξRξ̇ dt . (9)
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If there is no toroidal electric field, i.e., Eξ = 0, then Eq. (9) states that the energy
is conserved, and it can be solved for u in terms of µB as u =

√
(2H − µB)/m.

Substituting this expression into Eq. (8), we obtain an equation determines the closed
curve for the projection of the trajectory in the poloidal plane. When Eξ is not zero,
u increases with time for circulating particles, and the orbit is no longer closed in
the poloidal plane. However, the increase of u induced by the electric field in one
poloidal transition is a small quantity, because the energy increase due to the loop
voltage eVloop is always much smaller than the parallel kinetic energy. We can thus
consider the small variation of the otherwise closed trajectory in the poloidal plane
due to the inductive field Eξ. In the time interval of one poloidal period centered at
t = t0, the trajectory is given by

pξ = f0 (x, z) = −e
c
ψ +mu(x+R0)− eEξR0t0 . (10)

Around t = t0 + ∆t, where ∆t is a large multiple of one poloidal transit time, the
parallel velocity will increase by ∆u, and the trajectory is given by

pξ = f1 (x, z) = f0 (x, z) +mx∆u+ (m∆u− eEξ∆t)R0 . (11)

From Eq. (11), we see that the orbit is perturbed at t0 + ∆t in two ways. The term
mx∆u will cause the orbit to drift outward in the x-direction, as we will show later.
The term (m∆u−eEξ∆t)R0 will induce radial expansion or contraction for the orbit,
because it does not depend on x and z for ∆t much larger than one poloidal period,
and its effect is equivalent to modifying the conserved pξ. But, we can show that
m∆u − eEξ∆t = O (ε2) , if the non-circularity of the flux surfaces is O (ε) . From
Eq. (9), we obtain

mu∆u+ µ∆B =

ˆ t0+∆t

t0

eRξ̇Eξ dt . (12)

Because the orbit displacement is small, the integration can be calculated along the
unperturbed orbit, and the µ∆B term can be ignored, because it will be clear and
verified later that

µ∆B ∼ µ
∂B

∂x
∆x� mu∆u . (13)

For flux surfaces whose non-circularity is O (ε) , we expect that

R = R0 + c1 (ψ) cos θ + c2 (ψ) sin θ +O
(
ε2
)
,

ξ̇ = ξ̇(0) + c3 (ψ) cos θ + c4 (ψ) sin θ +O
(
ε2
)
,

θ̇ = θ̇(0) + c5 (ψ) cos θ + c6 (ψ) sin θ +O
(
ε2
)
,
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where
ξ̇(0) =

u

R0

, θ̇(0) =
u

qR0

,

and terms proportional to sin θ or cos θ are of O (ε) . Therefore
ˆ t1

t0

Rξ̇ dt =

ˆ t1

t0

Rξ̇

θ̇
dθ =

ˆ t1

t0

R0ξ̇
(0)

θ̇(0)
dθ +O

(
ε2
)

= u∆t+O
(
ε2
)
, (14)

which implies
m∆u = eEξ∆t+O

(
ε2
)
. (15)

Returning to Eq. (11) with the result of Eq. (15), we can see immediately that the
curve determined by Eq. (11) can be written as

pξ = f1 (x, z) = f0 (x−∆x, z) , (16)

∆x ≡ −x∆u

∂f0/∂x
=
cxEξ∆t

∂ψ/∂x
+O

(
ε2
)
. (17)

Obviously, Eq. (16) represents a curve around t0+∆t, shifted by ∆x in the x–direction
relative to the curve around t0 represented by Eq. (10). The drift velocity is

vd =
∆x

∆t
=

cxEξ
∂ψ/∂x

+O
(
ε2
)
∼ cqEξ

B
, (18)

where q is the safety factor of the magnetic field. We emphasize the vd in Eq. (18) is
O (ε−1) larger then the E×B drift velocity. Using Eq. (17), it is easy to verify that the
inequality (13) is indeed satisfied. When the flux surfaces deviate significantly from
circular shapes, the toroidal electric field will also result in expansion or shrinking of
the orbit on the poloidal plane.

We now use the following model tokamak equilibrium field with circular
concentric flux surfaces to demonstrate the drift effect for circulating orbits,

B =
B0r

qR
eθ +

B0R0

R
eξ , (19)

A=
B0r

2

2Rq
eξ − ln

(
R

R0

)
R0B0

2
ez +

B0R0Z

2R
eR . (20)

The poloidal flux function is

ψ =
B0r

2

2q
. (21)
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According to Eq. (18), the outward drift of the circulating orbit is

vd =
cqEξ
B0

+O
(
ε2
)
. (22)

To numerically test this prediction, we now carry out numerical calculations for
a typical set of tokamak parameters with B0 = 2T, R0 = 1.7m, a = 0.45m, and
vloop = 2.5V. We adopted a variational symplectic integration algorithm [14, 15],
which directly discretizes the Lagrangian in Eq. (7) instead of the corresponding
differential equations, to ensure the energy error of the numerical solution is globally
bounded by a small number for all time-steps.

For a H+ ion with 4KeV parallel kinetic energy and 1KeV perpendicular kinetic
energy, the numerical solution plotted in Fig. 2(a) indeed shows that the circulating
orbit is drifting outward toward the wall in the x-direction. In addition, the measured
outward drift is plotted in Fig. 2(b) against the analytical result given by Eq. (22).
It is clear that they agree very well.

Now let’s go back to Eq. (11) to understand why the circulating orbit drifts
outward. According to Eq. (15), the momentum increase imposed by Eξ is balanced
by the increase of ∆u on average, i.e., (m∆u−eEξ∆t)R0 = O (ε2) . However, because
of the toroidicity, the kinetic angular momentum increase inside (x < 0) is smaller
than that outside (x > 0), reflected by the m∆ux term. As a consequence, the
orbit shifts outward to compensate this variation, in order to conserve the total
canonical momentum pξ at every point on the orbit. We can obtain another heuristic
explanation of this effect by studying the poloidal trajectory without Eξ. According
to Eq. (8), when Eξ = 0, the poloidal trajectory is given by

pξ = −e
c
ψ +muR = const. , (23)

which describes a curve shifted by ∆x = −muxc/(e∂ψ/∂x) in the x-direction relative
the flux surface determined by −eψ/c+muR0 = const.. Assuming this orbit estimate
is still correct when u is accelerated slowly by a small Eξ, then the increase of u will
induce an increase in ∆x. If m∆u = eEξ∆t, as predicted by Eq. (15), we then obtain
∆x = −cxEξ∆t/(∂ψ/∂x), which is the same as Eq. (17). From the guiding center
point of view, the drift of flux surfaces is caused by the variation of the curvature
drift induced by the parallel acceleration under the influence of electric field. The
fact that this drift is larger than the E × B drift suggests that when calculating
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Figure 2. Numerical solution shows that the circulating orbit drifts outward
toward the wall in the x-direction (a). The measured outward drift agrees with the
analytical result given by Eq. (22) (b).

the turbulence induced anomalous transport, the curvature drift should be included
in the calculation of the flux, i.e., Γ =

〈
ñ
(
vẼ×B + ṽc

)〉
, where vẼ×B is the E × B

drift and ṽc denotes the curvature drift, which fluctuates with the fluctuating electric
field Ẽ through the parallel acceleration. This effect associated with the fluctuating
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curvature drift ṽc has been neglected so far [16].
Another prediction our theory is that during a RF overdrive [12, 17], the toroidal

electric field is anti-parallel to the current. As a consequence, all charged particles,
including backward runaway electrons, will drift inward towards the inner wall.

In summary, we have shown both analytically and numerically that there is a
nontrivial neoclassical effect of the circulating orbits under the influence of a tokamak
electric field. The circulating orbits drift outward toward the wall in the x-direction
with a characteristic velocity cqEξ/B. Even though this drift is O (ε) smaller than
the well known Ware pinch effect for trapped particles, it is nevertheless O (ε−1)

large than the standard E × B drift. It is therefore an important neoclassical
effect. For example, it provides a mechanism for runaway electrons to strike the first
wall or limiter. In this paper, we have ignored collisions and only investigated the
neoclassical orbit effects associated with the toroidal geometry. This is especially
valid for runaway electrons. Rutherford et al [18] pointed out that that to study
neoclassical transport effect, collisions need to be considered, and the collisional
friction between particles perturbs the orbit in a similar way to the electric field.
The conclusion was that for the banana regime, the inward flux is roughly the
Ware pinch velocity times the density of trapped electrons. The neoclassical orbit
effect associated with the circulating particles discussed in the current study was
not included in the study by Rutherford et al. This will be a topic of our future
investigations.
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