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We study the dynamics of the gyrophase of a charged particle in a magnetic field which is uniform in space
but changes slowly with time. As the magnetic field evolves slowly with time, the changing of the gyrophase is
composed of two parts. The first part is the dynamical phase, which is the time integral of the instantaneous
gyrofrequency. The second part, called geometric gyrophase, is more interesting, and it is an example of
the geometric phase which has found many important applications in different branches of physics. If the
magnetic field returns to the initial value after a loop in the parameter space, then the geometric gyrophase
equals the solid angle spanned by the loop in the parameter space. This classical geometric gyrophase is
compared with the geometric phase (the Berry phase) of the spin wave function of an electron placed in the
same adiabatically changing magnetic field. Even though gyromotion is not the classical counterpart of the
quantum spin, the similarities between the geometric phases of the two cases nevertheless reveal the similar
geometric nature of the different physics laws governing these two physics phenomena.

PACS numbers: 52.30.Gz, 03.65.Vf

I. INTRODUCTION

A moving classical charged particle is exerted the
Lorentz force in a magnetic field, and it follows the so-
called gyromotion with a helical-like orbit. In a strong-
ly magnetized plasma, the fast gyromotion of particles
makes the study of magnetized plasmas cumbersome be-
cause of the mixture of different temporal and spacial
scales. Magnetohydrodynamis and traditional gyrokinet-
ics theories choose to remove the fast gyromotion, by av-
eraging out the gyrophase variable, to simplify the prob-
lem for both analytical and numerical purposes. While
yielding many important results, these ingenious meth-
ods ignore some physics carried by gyrophase, which is
sometimes pivotal. The gyrophase survives in modern
gyrokinetics, which rigorously decouples, instead of elim-
inates, the gyrophase from other slow components of the
particle dynamics1–3. The gyrophase contributes its due
part in many interesting phenomena such as the polar-
ization density, the shear Alfvén waves, and the radio-
frequency wave heating. In the gyrokinetic theory, we
begin to pay attentions to the physics of the gyrophase, e-
specially its responses on high frequency electro-magnetic
field4–6. On the other hand, the gyrophase in slowly
changing magnetic fields contains no little physical mean-
ings. We will reveal an interesting physics of the gy-
rophase in an adiabatically changing magnetic field in
this paper.

We study the dynamics of the gyrophase of a charged
particle in a magnetic field which is uniform in space but
changes slowly with time. If the magnetic field doesn’t
change with time, the particle will rotate with a constant
angular velocity Ω = qB/m in the plane perpendicular to

the magnetic field, where q is the electric charge carried
by the particle, m is the mass of the particle, and B is the
magnitude of the magnetic field. The gyrophase of the
particle at time t can be easily written as θ(t) = qBt/m,
given θ = 0 when t = 0. As the magnetic field evolves
slowly with time, the changing of the gyrophase turns
out to be composed of two parts. The first part is the

dynamical phase θd(t) =
∫ t
0

Ωd(t
′) dt′, which is simply

the time integral of the instantaneous angular velocity
Ωd(t) = qB(t)/m resulting from the Lorentz force. Of
course, this dynamical phase is of no surprise. What
is interesting is that in addition to the dynamics phase,
the gyrophase contains another part θg which is called
the geometric phase. The name comes from its elegant
geometric meaning and its geometric origin, the noncom-
mutativity of the rotation operations7. If the evolution
of the magnetic field B(t) forms a closed loop C in the
parameter space composed of (Bx, By, Bz), the magni-
tude of the geometric phase equals to the solid angle α
spanned by the loop C (see Fig. 1). Its value depends
only on the closed path C instead of other physical in-
gredients such as the particle’s mass, velocity, and the
changing rate of the field, etc. This geometric phase as-
sociated with the gyrophase is an example of the general
geometric phase in physics.

As early as in 1958, Lyman Spitzer anticipated the
existence of geometric phase through studying rota-
tion transforms and invented the Figure-8 stellarator8.
In 1984, M. V. Berry studied the quantum adiabatic
system9. According to the adiabatic theorem first in-
troduced by M. Born and V. A. Fock10, if the initial
state of a system is an eigenstate of its initial Hamiltoni-
an, it should stay at its corresponding eigenstate of the
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FIG. 1. The time-dependent adiabatic magnetic field vector
B(t) goes back to its initial position after a period τ in the
parameter space composed of (Bx, By, Bz). Its path creates
a closed loop C, and S is a surface enclosed by C. The mag-
nitude of the geometric phase associated with the gyrophase
equals the solid angle α spanned by the loop C. The Berry
phase of the electron spin wave function in the same magnetic
field is half of the solid angle α.

.

instantaneous Hamiltonian during the adiabatic process.
Berry found that an additional phase factor was required,
apart from the dynamical phase, to make the instanta-
neous eigenfunction to satisfy the Schödinger equation.
This additional phase factor is called the Berry phase,
which is a quantum version of geometric phase9,11,12.
Soon Hannay published his classical version of the Berry
phase, known as the Hannay’s angle13. Simon studied the
geometric phase from the perspective of more abstract
mathematics14. In 1988, Littlejohn studied the geometric
phase associated with the gyromotion of a charged par-
ticle in a spatially inhomogeneous magnetic field15. In
1992, A. Bhattacharjee, et al. pointed out the deep con-
nection between geometric phase and the variation of the
longitudinal invariant among various types of guiding-
center orbits16. All these geometric phases have clear
geometric meanings in the space consisting of adiabatic
environmental parameters. From then on the geomet-
ric phase has been intensively studied and began to play
important roles in almost all branches of physics17–19.
Hence it is not surprising for the geometric phase to find
its way in plasma physics, or more specifically in the gy-
rophase.

To compare with the geometric phase associated with
the gyromotion, we also study the geometric phase (the
Berry phase) of the spin wave function of an electron
placed in the same adiabatically changing magnetic field.
We use the Schödinger equation and Pauli representation
to derive the spin wave function of an electron. The phase
factor of the wave function turns out to have a geometric
part, the Berry phase, as expected besides its dynam-
ical part. It is interesting to find out that the Berry
phase in electron spin wave function shares many com-
mon properties with the geometric phase associated with
the gyrophase. Its magnitude equals to half of the solid
angle α spanned by the closed loop C in the parameter

space. This Berry phase depends only on the evolution
path of the magnetic field B(t) in the parameter space, as
in the case of the gyromotion. These similarities as well
as some distinctions reflect the links between the classi-
cal theory and the quantum theory and the profundity
of the geometric phase.

This paper is organized as follows. In section II, we
study the geometric phase associated with the classi-
cal gyromotion. Starting from the Newtonian equation,
the gyrophase is rigorously defined using the gyrocen-
ter transformation. After obtaining the expression of the
geometric phase associated with the gyrophase, its inter-
esting properties are studied. Its geometric properties
in the parameter space, the physical observability, and
the gauge choices are discussed. In section III, we de-
rive the Berry phase of an electron with 1/2 spin in the
same time-dependent adiabatic magnetic field. Though
obeying totally different dynamical rules, the geometric
phases associated with the gyromotion and the electron
spin have many similarities, which are discussed in sec-
tion IV.

II. GEOMETRIC PHASE IN GYROMOTION

We first consider a classical charged particle’s motion
in a time-dependent adiabatic magnetic field. The field
is assumed to be uniform in space but change slowly with
time. This simple model keeps all the crucial physics of
interests here, while making the problem tractable. We
start from the governing equation of the particle’s motion

m
dv

dt
= qv ×B , (1)

where m and v are the particle’s mass and velocity re-
spectively, and B(t) is the time-dependent magnetic field.

In order to study the geometric phase associated with
the gyrophase, we need to give a rigorous definition of the
gyrophase. This can be achieved through the gyrocenter
transformation, which transforms the particle coordinate
(x,v) to the gyrocenter coordinate (X, v‖, v⊥, θ). The
position of the gyrocenter X, the perpendicular velocity
v⊥, the parallel velocity v‖, and the gyrophase θ are used
to describe the particle’s motion, replacing the position
x and the velocity v of the particle. The coordinate
transformation is given by

v = v‖b + v⊥ cos θe1 + v⊥ sin θe2 , (2)

x = X− mv × b

qB
. (3)

Here, b = B/B is a unit vector parallel to the magnetic
field, e1 and e2 are two unit vectors satisfying e1×e2 = b.
It is easy to see these three unit vectors are perpendicu-
lar to each other and hence form a set of local orthogonal
frames. With Eq. (2) we can rewrite Eq. (1) in the gyro-
center coordinate as
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(v̇‖b + v‖ḃ) +

(
v̇⊥ cos θ − v⊥ sin θ θ̇ − qB

m
v⊥ sin θ

)
e1 +

(
v̇⊥ sin θ + v⊥ cos θ θ̇ +

qB

m
v⊥ cos θ

)
e2

+ v⊥ cos θ ė1 + v⊥ sin θ ė2 = 0 , (4)

where the dots above the variables denote the time
derivatives.

We note that in Eq. (2), there is still a freedom left
to determine e1 and e2. They can rotate within the
plane perpendicular to b freely. Once a direction of e1
in this plane is chosen, e2 is fixed correspondingly. This is
actually a choice of gauge which gives different definitions
of the gyrophase, while all these gauges are equivalent to
each other for describing real physical processes.

We now choose a gauge as follows

e1 =
Bz

B
√
B2
x +B2

y

(
Bxex +Byey −

B2
x +B2

y

Bz
ez

)
, (5)

e2 =
1√

B2
x +B2

y

(−Byex +Bxey) , (6)

where (Bx, By, Bz) are three components of the magnet-
ic field, ex, ey, and ez are unit vectors in x, y and z

directions respectively, and B =
√
B2
x +B2

y +B2
z is the

magnitude of the magnetic field. This gauge keeps e2
within x-y plane and leads to the the following dynamic
equations for the gyrophase,

dθ

dt
= Ωd + ωg + ωa , (7)

Ωd = −qB
m

, (8)

ωg = − Bz
B(B2

x +B2
y)

(BxḂy −ByḂx) , (9)

ωa = −
v‖

v⊥B2
√
B2
x +B2

y

[−Bz(BxḂx +ByḂy

+BzḂz) sin θ + ḂzB
2 sin θ

+B(BxḂy −ByḂx) cos θ] . (10)

Integrating Eq. (7) over time, we obtain the expression
of the gyrophase

∆θ = θ(t)− θ(t = 0) = θd(t) + θg(t) + θa(t) , (11)

where

θd(t) =

∫ t

0

Ωd dt′ , (12)

θg(t) =

∫ t

0

ωg dt′ , (13)

θa(t) =

∫ t

0

ωa dt′ . (14)

The gyrophase consists of three terms. The first ter-

m θd(t) = −
∫ t
0
[qB(t)/m] dt′ is the so-called dynamical

phase, which is simply the time integral of the instanta-
neous gyro-frequency. And the negative sign comes from
the definition that the counterclockwise direction is the
positive direction of rotation. The dynamical phase is
determined directly by the Lorentz force exerted on the
particle and has a clear physical meaning. The assump-
tion of adiabatic time-dependence implies that the time
scale of the system evolution is much larger than the
gyro-period,

1

Ωd

Ḃi
B
∼ ε� 1 (i = x, y, z) . (15)

To avoid small but rapid magnetic field changes, we also
assume

1

Ω2
d

B̈i
B
∼ ε2 (i = x, y, z) . (16)

From Eqs. (15) and (16), we can prove that θa is much
smaller than θd and θg for t� 1/Ωd. The biggest change
of θa within one gyro-period may be the same order as
θg, which means that ∆θa/∆θg ∼ 1 may hold within one
gyro-period. But their averaged changes over one gyro-
period differ greatly, i.e., 〈∆θa〉/〈∆θg〉 ∼ ε. This fact is
proved in Appendix A. That means after one complete
gyro-period, the order of the three parts are ∆θd ∼ O(1),
∆θg ∼ O(ε), and ∆θa ∼ O(ε2) respectively. So θa can be
neglected in Eq. (11).

The term θg in Eq. (11) is the geometric phase, which
is consistent with the results from modern gyrokinetics.
Equation (9) is equivalent to the term −R0 in Eq. (4.43)
of Reference1, where R0 = ∂e1/∂t · e2. According to
Eq. (9), particle’s physical characters, such as the charge
and the mass, have no influences on the geometric phase.
Changing the sign of the electric charge will make the
particle rotate in different directions, but the particle still
have the same geometric phase. To show the properties
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of the geometric phase more clearly, we rewrite θg as

θg(t) = −
∫ t

0

Bz
B(B2

x +B2
y)

(BxḂy −ByḂx) dt′

= −
∫ B(t)

B(0)

Bz(BxdBy −BydBx)

B(B2
x +B2

y)
. (17)

This is an integral in the parameter space consisting of
the three components of the magnetic field (Bx, By, Bz).
Its value depends only on the integral path in the param-
eter space. On the other hand, the changing rate of the
field does not enter the geometric phase as long as the
field changes adiabatically. If the path in the parameter
space is closed, that is B(τ) = B(0), we can apply Stokes
theorem to obtain

θg(τ) = −
∮
C

Bz(BxdBy −BydBx)

B(B2
x +B2

y)

= −
∫∫

S

BxdBydBz +BydBzdBx +BzdBxdBy
B3

= −
∫∫

S

B · dSB
B3

, (18)

where C is the closed curve and S is a surface enclosed by
C in (Bx, By, Bz) space (see Fig. 1). In the configuration
space, a solid angle is defined as

α =

∫∫
r · dS
r3

.

Therefore the geometric phase in Eq. (18) is exactly the
negative of the solid angle spanned by the field’s changing
path in the parameter space. As a real physical quantity,
the geometric phase should provide an observable phys-
ical quantity and does not rely on any gauge choice. In
gyromotion, we can calculate the difference between two
gyrophases in two different perpendicular planes. But
the value is not absolute, and it depends on the choice
of gauge. To examine the changes of gyrophases, we can
restrict them to the same plane. This can be achieve
by letting the magnetic field go back to its initial val-
ue B(τ) = B(0). Alternatively, we can also compare
the gyrophases carried by two particles with two differ-
ent paths in the parameter space, but having the same
starting and ending points. The difference between their
geometric phases can be calculated as follows

θg1 − θg2 =

∫
C1

−
∫
C2

Bz(BxdBy −BydBx)

B(B2
x +B2

y)

=

∫
C1

+

∫
−C2

Bz(BxdBy −BydBx)

B(B2
x +B2

y)

=

∮
C

Bz(BxdBy −BydBx)

B(B2
x +B2

y)
, (19)

where C1 and C2 are two curves in the parameter space
with the same starting and ending point. The curves C1

and −C2 form a closed curve C (see Fig. 2).

Bx

By

Bz

C1
B(0)

B(t)

Bx

By

Bz
C2

B(0)

B(t)

a

Bx

By

Bz

C
B(0)

B(t)

b

FIG. 2. Two charged particles undergo different external
magnetic fields, both of which have the same initial and fi-
nal values. The two fields’ changes follow the paths C1 and
C2 respectively. The solid angle spanned by the closed curve
C = C1 − C2 gives the difference between the two geomet-
ric gyrophases which is measurable. The arrows indicate the
directions of curves.

We note that the geometric phase is not a gauge invari-
ant. However, we can assume that the frame (e1, e2,b) is
smoothly changing with B(t), i.e., the three unit vectors
are all single-valued smooth functions of B. This restric-
tion can help to resolve the ambiguity when splitting the
phase between the dynamical and geometric parts, which
was discussed by Anandan20, Berry and Hannay21, and
Bhattacharjee22. It puts the effects of rotation transfor-
mation in the gyrophase instead of in the choice of the
local frames. With this restriction, the frames (e1, e2,b)
returns to itself as B(t) returns to itself after a loop,
and then we can show that the differences in the geo-
metric phases for different gauges can only be integer
multiples of 2π. To prove this fact, let’s assume a gauge
(e′1, e

′
2,b) different from Eqs. (5) and (6) is chosen. The

new frame can be specified by a function θf (t), which
measures the rotation of (e′1, e

′
2,b) relative to (e1, e2,b)

at time t. Then the geometric phase changes to

θ′g(t) = θg(t) + θf (t) , (20)

where θ′g is the geometric phase in the new gauge
(e′1, e

′
2,b), and θ′g is the geometric phase in the old gauge

(e1, e2,b) determined by Eq. (17) (see Fig. 3). For
a closed integral path C in the parameter space, i.e.,
B(τ) = B(0), all frames return to their initial positions
at time t = τ . This implies θf (τ) = 2nπ, where n is an
integer, and hence we have the general expression of the
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gyrocenter

particle

         

   

B

FIG. 3. This figure demonstrates the relationship between θ′g,
θg, and θf in the plane perpendicular to B. The direction of
B points out off the paper. The two black dots denote the
position of gyrocenter and the position of the charged particle
respectively, and e1 and e′

1 are two different gauges.

geometric phase in any gauge

θ′g(τ) =θg(τ) + 2nπ = −
∫∫

S

B · dSB
B3

+ 2nπ ,

(n = 0,±1,±2, · · ·) . (21)

This 2nπ difference of the geometric phases carries no
physical importance.

III. GEOMETRIC PHASE IN ELECTRON SPIN

For comparison, we now calculate the Berry phase
(the geometric phase of the wave function) of an elec-
tron with 1/2 spin in the same time-dependent magnetic
field. The two-state spin Hamiltonian problem and re-
lated Berry phase problem have been studied by many
researchers, including Berry himself9, and discussed in
many textbooks18,23,24. Here, we will follow their meth-
ods to give a brief derivation as a reminder, and then
compare the result with the geometric phase associated
with the classical gyromotion. The wave function of the
electron in a magnetic field satisfies the time-dependent
Schrödinger equation

i~
∂

∂t
|φ〉 = Ĥ(B(t)) |φ〉 , (22)

where the Hamiltonian is a function of B(t) which
changes with time adiabatically. Following Berry’s
method and using the adiabatic theorem, the Berry phase
can be expressed as

θg = βn =

∮
An(B) · dB , (23)

where

An(B) = i 〈φn(B)| ∂
∂B
|φn(B)〉 , (24)

and |φn(B)〉 is the nth eigenstate of the system with

Hamiltonian Ĥ(B). It can be proved that An(B) is a re-
al number. The electron spin operators can be expressed
as Pauli Matrices,

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (25)

The corresponding Hamiltonian is

Ĥ = −µσ̂ ·B = −µ(σ̂xBx + σ̂yBy + σ̂zBz)

= µ

(
−Bz −Bx + iBy

−Bx − iBy Bz

)
. (26)

Substituting it into the eigen-equation,

Ĥ |φ〉 = E |φ〉 , (27)

we obtain the eigenvalue of the Hamiltonian

E± = ∓µB , (28)

and corresponding eigen-states

|φ+〉 =
eiθ√

2B(B +Bz)

(
B +Bz
Bx + iBy

)
, (29)

|φ−〉 =
eiθ√

2B(B +Bz)

(
−Bx + iBy
B +Bz

)
. (30)

The two states demonstrate two different spin directions
along or opposite to the direction of the magnetic field.
Applying them to Eq. (23), the Berry phase can be cal-
culated as

β± = ±
∮
C

BydBx −BxdBy
2B(B +Bz)

= ∓1

2

∫∫
S

B · dSB
B3

. (31)

We find that the magnitude of the geometric phase of
the electron spin wave function here is half of the solid
angle α spanned by the closed path C in the parameter
space. The Berry phases have different signs for the two
different eigenstates.

There is a gauge freedom for θ in Eq. (29) and Eq. (30)
as well. The normalization condition of the wave func-
tion only limits the its amplitude while leaving this phase
factor undetermined. We can choose a gauge for it. Sim-
ilar to the gyrophase studied in section II, if θ changes
smoothly with B, then the gauge will have no influences
on the final results.

IV. DISCUSSIONS

It is interesting to compare the geometric phases from
the classical electron gyromotion and the electron spin
wave function under the same adiabatic variation of the
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magnetic field, but different physical rules. The gyromo-
tion is a pure classical motion ruled by classical mechanic-
s, and the electron spin is a thoroughly quantum proper-
ty without any classical counterpart. But the geometric
phases in these two cases show many common charac-
ters. The magnitude of the geometric phase associated
with the gyrophase equals to the solid angle spanned by
the closed path in the parameter space, while the Berry
phase in the spin wave function is half of that value.
In the gyromotion the perpendicular plane are obliged
to change with the time-dependent magnetic field, while
for the electron spin the eigenstates have to adjust corre-
spondingly. On the other hand, there are also some inter-
esting distinctions. The magnitude of the Berry phase for
the electron spin is half the solid angle, and there are 1/2
factors in the commutation relations of the electron spin
operators too. There are two electron spin eigenstates.
The Berry phases of them have opposite signs. However,
the geometric phases associated with the gyrophase have
the same value for both positive and negative charged
particles, and their magnetic moments are in the same
direction though carrying opposite electric charges.

Even though the gyromotion is not the classical coun-
terpart of the quantum spin, the similarities between the
geometric phases for the gyromotion and the spin wave
function nevertheless show the common geometric nature
of the laws governing these two different physics phenom-
ena. Actually, the geometric phases in the both cases
come from the same origin, the noncommutativity of the
rotation operations.While the quantum geometric phases
have found many important applications in optics, atom-
ic and molecular physics, chemistry, laser physics, mate-
rial science, quantum information, cosmology, etc.25–34,
the importance and implications of the geometric phase
in plasma physics are still unexplored. But we do expect
interesting physics associated with the geometric phase
to exist. For example, as a L-wave and a R-wave travel
along the magnetic field line, because the difference in
the phase velocity, the combined linearly polarized wave
will rotate as the wave propagates. This is the Faraday
rotation. However, if the magnetic field is not homoge-
neous, as the wave propagating, we will observe a geo-
metric component in the Faraday rotation, which could
dominate the non-geometric Faraday rotation in a typi-
cal laboratory plasma. This will be one of the topics of
our future investigation.

Appendix A

In this appendix we will prove that the change of θa is
much smaller than the change of θg after one complete
gyro-period, i.e., 〈∆θa〉/〈∆θg〉 ∼ ε, and so θa is much
smaller than θg for t� 1/ |Ωd|.

For a general strong magnetic field, we can choose an
appropriate Cartesian coordinate to keep B ∼ Bi, where
i = x, y, z. According to Eqs. (9) and (10), if v‖ � v⊥,
it is obvious that ωa � ωg always holds, and hence we

have θa � θg. If v‖ ∼ v⊥, ωa ∼ ωg may hold, and we
may have ∆θa ∼ ∆θg within a short time interval. To
examine their longtime behavior, we need to study the
phase changes after a complete gyro-period.

The change of θg after one complete gyro-period is

〈∆θg〉 =

∫ t+T

t

ωg(t
′) dt′ , (A1)

where T is the gyro-period satisfying θ(T+t)−θ(t) = 2π.
After expanding ωg(t

′) we have

〈∆θg〉 =

∫ t+T

t

[ωg(t) + ω̇g(t)(t
′ − t)

+
1

2
ω̈g(t)(t

′ − t)2 + · · ·] dt′

= Tωg(t) +

∫ t+T

t

[ω̇g(t)(t
′ − t)

+
1

2
ω̈g(t)(t

′ − t)2 + · · ·] dt′ . (A2)

According to Eq. (15) we have

Tωg(t) ≈ 2π
ωg(t)

Ωd(t)
∼ ε . (A3)

While ω̇g contains terms such as

BzḂxḂy
B(B2

x +B2
y)

and
BzBxB̈y

B(B2
x +B2

y)
,

according to Eqs. (15) and (16) we have

1

Ω2
d

BzḂxḂy
B(B2

x +B2
y)
∼ 1

Ω2
d

BzBxB̈y
B(B2

x +B2
y)
∼ ε2 ,

and∫ t+T

t

[ω̇g(t)(t
′ − t)] dt′ =

1

2
ω̇g(t)T

2 ≈ 1

2Ω2
d

ω̇g(t) ∼ ε2 .

We can examine the higher-order terms similarly and ob-
tain∫ t+T

t

[ω̇g(t)(t
′ − t) +

1

2
ω̈g(t)(t

′ − t)2 + · · ·] dt′ ∼ O(ε2) ,

(A4)
and then

〈∆θg〉 ∼ ε . (A5)

Next we apply the same technique to θa. Observing
from Eq. (10) that ωa contains terms with sin θ or cos θ,
we rewrite it as

ωa = ωa1 sin θ + ωa2 cos θ , (A6)

where ωa1 and ωa2 have similar forms to terms in ωg, and
then we have

〈∆θg〉 =

∫ t+T

t

ωa1(t′) sin θ dt′ +

∫ t+T

t

ωa2(t′) cos θ dt′ ,

(A7)
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where

∫ t+T

t

ωa1(t′) sin θ dt′

=

∫ t+T

t

[ωa1(t) + ω̇a1(t)(t′ − t) + · · ·] sin θ dt′

= ωa1(t)

∫ t+T

t

sin θ dt′

+

∫ t+T

t

[ω̇a1(t)(t′ − t) + · · ·] sin θ dt′ , (A8)

and

∫ t+T

t

ωa2(t′) cos θ dt′

=

∫ t+T

t

[ωa2(t) + ω̇a2(t)(t′ − t) + · · ·] cos θ dt′

= ωa2(t)

∫ t+T

t

cos θ dt′

+

∫ t+T

t

[ω̇a2(t)(t′ − t) + · · ·] cos θ dt′ . (A9)

The first term in Eq. (A8)

ωa1(t)

∫ t+T

t

sin θ dt′

= ωa1(t)

∫ θ+2π

θ

sin θ

Ωd(θ′) + ωg(θ′) + ωa(θ′)
dθ′

=
ωa1(t)

Ωd(t)

[∫ θ+2π

θ

sin θ dθ′ +O(ε)

]

=
ωa1(t)

Ωd(t)
O(ε) = O(ε2) , (A10)

together with the higher-order terms

∫ t+T

t

[ω̇a1(t)(t′ − t) + · · ·] sin θ dt′ = O(ε2) , (A11)

give the relation

∫ t+T

t

ωa1(t′) sin θ dt′ = O(ε2) . (A12)

Similarly we also have

∫ t+T

t

ωa2(t′) cos θ dt′ = O(ε2) , (A13)

and hence

〈∆θa〉 ∼ ε2 . (A14)

Equation (A14) shows that after a long time t ∼ T/ε,
the change of θa is the same order as ε, which is still
much smaller than 2π. So θa is an adiabatical invariant.
According to Eqs. (A5) and (A14) we finally prove the
relation 〈∆θa〉/〈∆θg〉 ∼ ε� 1, which implies |θa| � |θg|
holds after a long time t� 1/ |Ωd|.
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