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Abstract Nonlinear gyrokinetics is the major formalism used for both the analytical and nu-
merical description of low-frequency microturbulence in magnetized plasmas. Its derivation from
noncanonical Lagrangian methods and field-theoretic variational principles is summarized. Ba-
sic properties of gyrokinetic physics are discussed, including polarization and the concept of the
gyrokinetic vacuum, equilibrium statistical mechanics, and the two fundamental constituents
of gyrokinetic turbulence, namely drift waves and zonal flows. Numerical techniques are de-
scribed briefly, and illustrative simulation results are presented. Advanced topics include the
transition to turbulence, nonlinear saturation of turbulence by coupling to damped gyrokinetic
eigenmodes, phase-space cascades, subcritical turbulence, and momentum conservation.
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1 INTRODUCTION

It has been more than two decades since an article focused on plasma physics
appeared in the Annual Review of Fluid Mechanics; see the review on “Plasma
Turbulence” by Similon & Sudan (1990). Since then, enormous progress has been
made in all facets of the field, particularly in the theoretical, numerical, and ex-
perimental exploration of the consequences of microturbulence for the magnetic
confinement of fusion plasmas, but also more recently in astrophysical contexts.
These accomplishments speak to a sea change in the method of attack. Whereas
early theoretical work on plasma turbulence (beginning in the 1960’s) employed
analytical methods of statistical closure theory (Krommes 2002, see the Sidebar)
applied to simple models, beginning in the mid-1980’s the principle tool used in
the theoretical and numerical studies became the nonlinear gyrokinetic formal-
ism. Gyrokinetics, appropriate for the description of low-frequency fluctuations
in magnetized plasmas, was mentioned only briefly by Similon & Sudan, whose
article appeared eight years after the seminal derivation by Frieman & Chen
(1982) of a nonlinear gyrokinetic equation (GKE). The present review attempts
to provide a modern perspective. It is specifically intended for an audience of non-
plasma physicists, so it does not delve deeply into the morass of fusion-related
phenomenology. However, it does emphasize that gyrokinetics is evolving into
a quantitatively predictive tool that has already enjoyed significant successful
comparisons with experimental data. After decades of development, the field has
become one of the major success stories in plasma-physics research.

The need for gyrokinetics arises from the enormous range of time and space
scales present in many plasma configurations (in both the laboratory and space).
Consider, for example, the ITER research device (ITER 2009), presently under
construction by an international consortium. ITER is a large tokamak, intended
for the study of burning plasmas, with (Green 2003, Table 1) a toroidal magnetic
field B of 5.3 Tesla. The gyrofrequency of deuterium ions in that field is ωci

.=
qiB/mic ≈ 2.5×108 s−1 ( .= is used for definitions, qi and mi are the ion charge and
mass, and c is the speed of light), about 750 times larger than the characteristic
turbulence frequency (see Sec. 3.3) ω∗ ≈ 3.3 × 105 s−1. An even more dramatic
comparison is with the discharge pulse length τpulse ≈ 400 s: τpulse/(2π/ωci) ≈
1010. Gyrokinetics copes with such dramatic scale separations by analytically
removing the details of the gyromotion and other high-frequency dynamics from
consideration. That eliminates many physical processes that are not believed to
be important for the problem of turbulent transport, and it leads to enormous
savings in computational resources. However, although the underlying idea is very
simple, both the modern theoretical formalism and its numerical implementations
are sophisticated. I will touch on both of those facets, but because of the article’s
stringent length constraint I can only hint at the enormous volume of excellent
work that has been done. More details can be found in some longer review
articles. Brizard & Hahm (2007) focus on the analytical underpinnings, while
Garbet et al. (2010) are mostly concerned with numerical simulations and their
comparison with fusion experiments. A forthcoming review by G.L. Hammett (in
preparation) also addresses those latter topics. Cary & Brizard (2009) review the
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modern theory of the closely related problem of guiding-center (zero-gyroradius)
motion. Pedagogical background material on modern issues in plasma turbulence
can be found in some articles by Krommes (2006a,b, 2009b,c).

2 GYROKINETIC FORMALISM

2.1 Fundamental particle kinetic equation

The generalization of Boltzmann’s equation to include long-ranged electromag-
netic interactions is the plasma kinetic equation [for the probability density func-
tion (PDF) f for particles of species s at position x and velocity v]

∂fs(x,v, t)
∂t

+ v · ∇fs +
( q

m

)
s
(E + c−1v × B) · ∂fs

∂v
= −Cs[f ], (1)

where C[f ] denotes a positive-semidefinite collision operator functionally depen-
dent on f (usually the Landau form is used). Maxwell’s equations must be
adjoined to calculate the self-consistent electric field E and magnetic field B.

It is assumed that B comprises a large part B0, arising from external coils
and (for tokamaks) externally driven plasma currents, and an electromagnetic
correction δB. Here I shall mostly consider the electrostatic approximation, in
which δB is neglected; thus E = −∇ϕ, where ϕ is the electrostatic potential ob-
tained from Poisson’s equation −∇2ϕ(x, t) = 4πρ = 4π

∑
s(nq)s

∫
dv fs(x,v, t).

(n is the mean density.) That is inadequate for detailed studies of modern high-
pressure devices and some astrophysical situations, but still contains an ample
amount of important physics.

2.2 Basic gyrokinetic equations

For strong B0, the rapid gyration arising from the Lorentz v × B0 term, the 6D
nature of Eq. (1), and the high-frequency collective oscillations it supports render
it intractable for studies of low-frequency nonlinear physics on turbulence time
scales. Thus one turns to some sort of averaging procedure that removes the fast
gyration time scale and reduces the 6D kinetic equation to a 5D one. Together
with a particular low-frequency closure of Poisson’s equation that eliminates high-
frequency collective dynamics, this defines ‘low-frequency gyrokinetics,’ which I
simply call ‘gyrokinetics’ in this article. More generally, the gyrocenter motion
can merely be segregated (Kolesnikov et al. 2007, Qin et al. 2000, 1999), allowing
one to discuss high-frequency gyrokinetics, useful for studies of plasma heating.
However, lack of space precludes discussion here.

For low-frequency motions, a crucial quantity is the magnetic moment or first
adiabatic invariant μ ≈ μ(0) .= 1

2v2
⊥/ωc(x) associated with the rapid gyration of

a charged particle around a magnetic field line (Cary & Brizard 2009, Northrop
1963). General results from the theory of almost-cyclic systems (Kruskal 1962,
Lichtenberg & Lieberman 1992) show that μ should be asymptotically conserved
even in the presence of weak magnetic inhomogeneities and slowly varying fields.
If ‘weak’ and ‘slow’ are indicated by an ordering parameter ε, then μ can in
principle be determined as an asymptotic expansion through all orders in ε, with
μ(0) being the lowest-order term. In this regard, a seminal calculation was by
Taylor (1967), who found the first-order correction to μ(0) due to the presence of
a slowly varying electrostatic wave of arbitrary wavelength.
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Note that μ is not an exact invariant. Dragt & Finn (1976) discussed μ con-
servation within a Hamiltonian formulation, relating it to the existence of a
Kolmogorov–Arnold–Moser surface. They found stochastic regions in the mo-
tion of a charged particle in a dipolar magnetic field. Dubin & Krommes (1982)
discussed the interaction of rapid gyration with high harmonics of periodic motion
on much longer time scales (such as the bounce motion associated with the sec-
ond or longitudinal invariant J). They found stochastic layers whose widths scale
as exp(−b/ε), where ε is the ratio of the small bounce frequency and large gy-
rofrequency and b is a constant; since exp(−b/ε) is asymptotic to zero, stochastic
wandering in the layers is overlooked by the asymptotic construction of a ‘con-
served’ μ. Lichtenberg & Lieberman (1992) describe in more detail the situation,
which is related to Arnold diffusion (Chirikov 1979). One must always keep in
mind the possibility that the adiabatic invariance of μ can be broken. Related
concerns were recently expressed by Sugiyama (2008); for discussion, see Krom-
mes (2009a) and Sugiyama (2009). In the material to follow, μ conservation will
be assumed; that is an excellent approximation for the situations of interest.

Gyrokinetics amounts to the determination of a change of variables (Catto
1978) from the particle phase space {x,v} ≡ zi to gyrocenter phase space
{X, U , μ, ζ} ≡ zi, together with a closure approximation to be described. (Note
that a mere change of variables cannot alter the physical content of the ki-
netic equation.) Here X is the gyrocenter position, U is the gyrocenter velocity
along B, and ζ is the gyration phase; the overline (subsequently omitted) sig-
nifies development as an asymptotic series whose lowest-order form corresponds
with that for circular motion. In standard gyrokinetics, the ordering parameter is
ε ∼ ω/ωci ∼ k‖/k⊥ ∼ VE/vt, where k is a typical fluctuation wavevector, parallel
and perpendicular are with respect to B, VE is the E × B velocity, and vt is
the thermal velocity. [Other orderings are required in some situations (Brizard
& Hahm 2007, GYP 2010).] The gyrocenter PDF F̃ thus obeys the 6D equation

∂F̃s(X, U, μ, ζ, t)
∂t

+ Ẋ · ∇F̃ + U̇
∂F̃

∂U
+ ζ̇

∂F̃

∂ζ
= −C[F̃ ]. (2)

Here the tilde denotes a ζ-dependent quantity; C[F̃ ] is the transformation of C[f ].
No derivative with respect to μ appears because it is (adiabatically) conserved
by construction. The gyrocenter drifts Ẋ, U̇ , and ζ̇ follow from the theory;
importantly, they are constructed to be independent of ζ (see below). The gy-
rophase average of Eq. (2), denoted by 〈. . . 〉ζ , then eliminates the gyration term

∂(. . . )/∂ζ, leaving one with the conventional GKE for the 5D F
.= F̃ :

∂F

∂t
+ Ẋ · ∇F + U̇

∂F

∂U
= −〈C[F̃ ]〉ζ . (3)

In the form usually implemented in simulations, the drifts are

Ẋ = B−1∗ (B∗U + cq−1b̂ × ∇H
(1)), U̇ = −(mB∗)−1B∗ · ∇H

(1)
. (4)

Here b̂
.= B/B, B∗ .= b̂ · B∗, B∗ .= B + (mc/q)U∇ × b̂, H

(1) .= q〈ϕ〉ζ , and

〈ϕ〉ζ(X, μ) .= (2π)−1

∫ 2π

0
dζ ϕ(X + ρ(ζ)), (5)
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where ρ
.= ω−1

c b̂ × v⊥ is the gyroradius vector. If periodicity is assumed, Fourier
transformation is useful; one finds 〈ϕ〉ζ,k = J0(k⊥v⊥/ωc)ϕk. [Thus gyrokinetics is
able to handle wavelengths comparable to or smaller than the ion gyroradius ρi;
nominally, k⊥ρi = O(1).] Physically, the Bessel function describes the v⊥- or
μ-dependent reduction in effective potential that arises because during one gy-
roperiod a particle samples different phases of a slowly time-varying fluctuation.
For more discussion of the resulting nonlinear phase mixing, see Sec. 5.3. The
drifts include the effective E × B velocity 〈VE〉ζ .= cb̂ × ∇〈ϕ〉ζ/B∗ and the
magnetic ∇B and curvature drifts.

If collisions are neglected, Eq. (3) appears to be closed in terms of F , but that
is illusory because the drifts involve self-consistent electromagnetic fields. The
theory is not complete until the relevant Maxwell equations are solved. Now the
charge ρ and current j are given as momentum integrals over the particle PDF f ;
however, the GKE evolves the gyrocenter PDF F̃ , and the ‘pull-back’ transfor-
mation T̃ from F̃ to f , f = T̃ F̃ , is nontrivial. If one writes F̃ = F + δF̃ , then a
closed system is obtained by neglecting the ζ-dependent δF̃ : f ≈ T̃ F . This can
be justified for collisionless plasmas (Dubin et al. 1983) in terms of a projection
procedure and an assumption of ζ-independent initial conditions; the latter pre-
cludes the possibility of exciting high-frequency fluctuations. However, neglect of
collisions is problematical because they represent the only true dissipative effect
in the problem; see further discussion in Sec. 5.3. When C is retained, Eq. (3) is
not closed in terms of F because the C in Eq. (2) (which describes the physics of
collisions in the particle, not gyrocenter, phase space) drives a δF̃ ; however, that
correction is small and is frequently neglected. Discussion of the formal gyroki-
netic collision operator 〈C〉ζ is given by Brizard (2004). Simplifications such as
the model by Abel et al. (2008) are often used in practice.

In summary, the asymptotic construction of a conserved μ and the closure
f ≈ T̃ F disconnect gyrokinetics from the Vlasov description, leaving one with
a reduced dynamical system, describing the self-consistent collective interactions
of gyrocenters, that is appropriate for the description of the low-frequency fluc-
tuations that are believed to be important for turbulence in magnetized plasmas.

2.3 Noncanonical Lagrangian methods

In principle, the gyrocenter drifts should include corrections through all orders
in ε, as should the pull-back T̃ . How to achieve a consistent practical trunca-
tion has been a source of confusion, and some issues remain controversial (see
Sec. 5.5). One therefore requires a systematic methodology, which has undergone
substantial development. Because Brizard & Hahm (2007) and Cary & Brizard
(2009) treat the formalism in detail, I shall be brief. Early workers on linear gy-
rokinetics, e.g. Catto (1978) and Antonsen & Lane (1980), analyzed the Vlasov
equation perturbatively by treating the magnetic Lorentz force term as large;
gyrokinetic equations then arose as solvability conditions. That method was also
followed by Frieman & Chen (1982), who derived a nonlinear GKE (including
E ×B advection). Their demonstration that a workable gyro-averaged equation
emerges even in the face of nonlinearity was a nontrivial and significant result.
However, the resulting equations were not in characteristic form, making them
unusable for numerical simulation by the particle-in-cell (PIC) method discussed
in Sec. 4.1.1. Lee (1983) derived suitable equations in characteristic form by using
a recursive perturbation procedure, also showing how ion polarization effects ap-
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pear most naturally in the gyrokinetic Poisson equation (see Sec. 3.1) instead of
the kinetic equation; his initial simulations fathered an enormous effort on PIC
gyrokinetics that continues to the present. But years earlier Littlejohn (1979,
1981, 1982) had begun emphasizing the advantages of Hamiltonian techniques
and Lie perturbation methods, and his seminal work laid the foundations for
many of the modern developments. In particular, it inspired Dubin et al. (1983)
to give a Hamiltonian formulation of self-consistent gyrocenter dynamics in an
electrostatic slab (constant B0), clearly spelling out the basic closure procedure
for deriving the low-frequency gyrokinetic Poisson equation.

Further work by Littlejohn (1983) and Cary & Littlejohn (1983) emphasized
the utility of Lagrangian methods, in which the equations of motion are derived
from an action principle expressed in terms of noncanonical variables (the use
of which leads to considerable technical simplifications). Those developments
brought to the attention of the plasma physicists various notions of differential
geometry (Fecko 2006, Misner et al. 1973), including the use of differential forms.
The particle action can be written as S =

∫
γ, where the fundamental one-form is

γ
.= p·dq−H dt, H being the single-particle Hamiltonian. Since S is indifferent to

the particular variables used in its evaluation, γ can be transformed to any conve-
nient set of variables (e.g., gyrocenter coordinates), which need not be canonical
but whose equations of motion nevertheless still follow from the variational prin-
ciple δS = 0. One constructs the change of variables perturbatively (possibly
after a preparatory transformation to lowest-order gyrocenter variables) in such
a way that μ is conserved order by order. This methodology relies on a form of
Noether’s theorem (Noether 1918), which states (Cary & Brizard 2009, Cary &
Littlejohn 1983) that if all of the coefficients of γ are independent of ζ, then the
coefficient of dζ is conserved. That coefficient is precisely μ. Hahm (1988) used
the one-form method to derive a nonlinear electrostatic GKE in the presence of
magnetic inhomogeneities, generalizing the slab results of Dubin et al. Virtually
all subsequent work on modern gyrokinetics, including electromagnetic correc-
tions (Hahm et al. 1988), uses some variant of the one-form method. Technically,
the perturbation expansions are performed with the aid of Lie transformations
(Brizard & Hahm 2007, Cary 1981, Kaufman 1978).

The noncanonical Lagrangian methods focus on the derivation of the (ζ-inde-
pendent) gyrocenter Hamiltonian H. For example, through the first three orders
of expansion (ε−1, ε0, ε1) one finds electrostatically (with B0 = ∇ × A0) that

γ = [c−1qA0(X)︸ ︷︷ ︸
O(ε−1)

+ mU b̂︸ ︷︷ ︸
O(1)

−μK∗︸ ︷︷ ︸
O(ε)

] · dX + μ dζ︸︷︷︸
O(ε)

−(H(0)︸︷︷︸
O(1)

+ H
(1)︸︷︷︸

O(ε)

)dt, (6)

where K∗ .= K + 1
2 b̂(b̂ · ∇ × b̂), K

.= (∇ê1) · ê2, and H
(0) .= μωc(X) + 1

2mU2.
Here K is the so-called gyrogauge vector; ê1 and ê2 are arbitrary unit vectors
perpendicular to B that locate the position of the gyrating particle in space.
Littlejohn (1983, 1984, 1988) has clearly interpreted the appearance of K in
terms of the invariance of the formalism with respect to a redefinition of ζ.

The second-order H
(2) contains ponderomotive terms such as |∇ϕ|2 [the com-

plete expression including the effects of nonzero pressure (Dubin et al. 1983) is
more complicated]. Those terms are related to Reynolds stresses, which are es-
sentially involved in the generation of zonal flows (see Secs. 3.4 and 5.5). Further
complications arise when magnetic inhomogeneities are included. Brizard (1989)
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described the transformation to gyrocenter variables as two successive steps: first,
derive a guiding-center theory that incorporates the effects of magnetic inhomo-
geneities (ordered as εB); second, incorporate small fluctuation effects (ordered
as εϕ) that destroy the invariance of the guiding-center μ but preserve a modified
invariant μ [cf. Taylor (1967)]. When εB and εϕ are ordered with a common
expansion parameter ε, one must take care to not miss either cross terms of the
order of εBεϕ or purely geometrical terms of the order of ε2

B . Explicit expressions

for all terms in a consistent choice of H
(2) were derived only quite recently in a

difficult calculation by Parra & Calvo (2010).
Given (an approximate) H, the gyrocenter drifts follow as żi = {zi,H}, where

{. . . } is a noncanonical Poisson bracket and the gyrokinetic Maxwell equations
are obtained from the pull-back f = T̃ F . In practice, the asymptotic expansions
must be truncated in two places: (i) the drifts must be truncated in the GKE;
(ii) T̃ must be truncated in the Maxwell equations. Doing this consistently is
crucial for the preservation of conservation laws, yet how to do so is possibly
unclear. For example, should one truncate at O(εn) for some n in both places,
can one gain accuracy by working out T̃ to higher order than the drifts, etc.?

2.4 Gyrokinetic field theory

A major advance occurred when it was understood by Sugama (2000) and Brizard
(2000) how to derive gyrokinetic-Maxwell systems from field-theoretic variational
principles. Brizard’s version based on constrained variations is possibly more
technically convenient, although it is very subtle. In these methods, an action
functional S is constructed from F , H, and the electromagnetic fields:

S = SEM + SG[F,H(z, Aμ, ∂νAμ, . . . )], (7)

where SEM is the electromagnetic Lagrangian, Aμ is the four-potential, and the
forms of SEM and the gyrocenter contribution SG are not shown here. Variation
with respect to F then leads to the (collisionless) GKE in the form ∂tF +{F,H} =
0, while variation with respect to ϕ ≡ A0 leads to the gyrokinetic Poisson equa-
tion. (To obtain the usual quasineutrality condition in which Poisson’s ∇2ϕ is
neglected, the electric-field part of SEM is ignored.) The crucial point is that a
single, scalar Hamiltonian generates both the GKE and the gyrokinetic Maxwell
equations. H may be approximate [e.g., correct only through O(εn)], but the vari-
ational procedure instills that approximation consistently into both the kinetic
equation and the Maxwell equations, automatically preserving the conservation
laws that follow from Noether methods — a point emphasized by Scott & Smirnov
(2010) and Scott et al. (2010). In particular, functional derivation of H with re-
spect to ϕ reduces its order by one, equivalent to a truncation of the T̃ in the
gyrokinetic Poisson equation to one order lower than that of the drifts retained
in the GKE. For more discussion, see Sec. 5.5 on momentum conservation.

3 PHYSICAL CONTENT OF GYROKINETICS

The Lagrangian, noncanonical, and field-theoretic derivations of the gyrokinetic-
Maxwell system are elegant and lead to self-consistent equations that capture an
enormous amount of the physics of the magnetized plasma, including turbulent
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fluctuations and transport driven by gradients in the background profiles of den-
sity n, temperature T , and flow u. Most of that physics cannot be described in
this short article; see Krommes (2006a) for some tutorial lectures and Sec. 4.2 for
some illustrations of the contact between simulations and experiments. However,
it is instructive to consider some of the basic content of the gyrokinetic system.

3.1 Polarization and the gyrokinetic vacuum

Although ζ dependence is rigorously removed from the gyrocenter drifts [a process
called ‘dynamical reduction’ by Brizard (2008)], gyration-related effects remain
in the pull-back transformation that defines the gyrokinetic Maxwell equations.
This redistribution of information is closely related to the treatment of dielectric
media in classical electromagnetism. As is well known, it is frequently convenient
to separate total charge into free charge and bound charge, the latter describable
by a polarization vector P such that Poisson’s equation becomes ∇·D = 4πρfree,
where D

.= E + 4πP . In gyrokinetics, that decomposition arises inevitably from
a representation of the dynamics in terms of the gyrocenter F and H, with the
gyrocenter charge ρG playing the role of ρfree. The gyrokinetic quasineutrality
condition can be shown to follow from the variational principle as

∑
s

ns

∫
p

JF
δH

δϕ
= 0. (8)

Here
∫
p denotes integration over momentum variables, J is the Jacobian of the gy-

rokinetic transformation, and δ/δϕ denotes the functional derivative with respect
to ϕ, which is nontrivial in the presence of spatial gradients of ϕ. Upon writing
H = H

(0) +qϕ+ΔH (ϕ, not 〈ϕ〉ζ , is used here), Eq. (8) becomes ρG−∇·P = 0,
where ρG .=

∑
s(nq)s

∫
p JF and P

.= −∑
s ns

∫
JF (∂H/∂E + · · · ), the dots indi-

cating additional terms involving derivatives with respect to second- and higher-
order gradients of ϕ. The most important pedagogical example involves the
zero-gyroradius limit of the H

(2) derived by Dubin et al. (1983): ΔH = H
(2) =

−1
2mV 2

E. One finds P = D⊥E⊥, where D⊥
.= ρ2

s/λ
2
De = ω2

pi/ω
2
ci, ρs

.= cs/ωci

is the so-called sound radius, cs
.= (ZTe/mi)1/2 is the ion sound speed (Z is the

atomic number and Te is the electron temperature), λDe
.= (4πnee

2/Te)−1/2 is the
electron Debye length (e is the electronic charge), and ωpi

.= (4πniq
2
i /mi)1/2 is the

ion plasma frequency. Typically D⊥ 	 1; this inequality defines the gyrokinetic
regime (Krommes et al. 1986). This substantial polarization is a consequence of
the ion polarization drift V pol = ω−1

ci ∂t(cE⊥/B), as can be seen by integrating
the continuity equation for polarization charge ∂tρ

pol + ∇ · (niqiV
pol) = 0 in the

linearized approximation. It is noteworthy that the (effect of the) polarization
drift shows up in the gyrokinetic Poisson equation rather than the GKE.

Polarization leads to a useful interpretation of the gyrokinetic–Maxwell system
as describing motion of gyrocenters in a ‘gyrokinetic vacuum.’ The vacuum state,
devoid of gyrocenters, is defined (for the example above) to possess a large di-
electric permittivity D⊥ analogous to the permittivity ε0 of free space. Into that
vacuum one places gyrocenters, which move with the E ×B and magnetic drifts.
This interpretation was first given by Krommes (1993a) and has been discussed
in various pedagogical papers by Krommes (2006a, 2009b).
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3.2 Equilibrium gyrokinetic statistical mechanics

Although most interest is in nonequilibrium states (see Sec. 3.3), it is instructive
to consider what physics emerges from thermal-equilibrium gyrokinetics. Ther-
mal equilibrium arises from intrinsically nonlinear interactions, so predictions
derived therefrom can be used to test the nonlinear routines in simulation codes,
a rare opportunity. That was already recognized in pre-gyrokinetic simulation
theory (Birdsall & Langdon 1985), but gyrokinetics is richer and more subtle.

A gas of discrete gyrocenters in thermal equilibrium exhibits fluctuations whose
properties can be calculated from a gyrokinetic fluctuation–dissipation theorem
(FDT), which can be formulated in terms of the wave-number- and frequency-
dependent gyrokinetic dielectric function D(k, ω). That was done first by Krom-
mes et al. (1986) for the electrostatic limit, later by Krommes (1993a,b) for weakly
electromagnetic fluctuations. One finds that gyrokinetic fluctuations are strongly
suppressed (by the tendency for ion polarization to neutralize charge imbalances)
relative to those of the full many-body plasma.

Even in the absence of discreteness effects, gyrokinetic systems appropriately
truncated in wave-number and velocity space possess absolute statistical equilib-
ria, as discussed by Zhu & Hammett (2010). Such equilibria are well known in
neutral fluids. For example, in 2D the conservation of both energy and enstrophy
admits two-parameter Gibbsian equilibrium with possible negative temperature
states (Kraichnan 1975). [For a review of 2D turbulence with earlier references,
see Kraichnan & Montgomery (1980). Some aspects of the absolute equilibrium
problem were also reviewed by Krommes (2002), and a Monte Carlo method for
constructing states of N gyrocenters with negative temperature was described by
Krommes & Rath (2003).] In a 2D gyrokinetic system truncated in wave number
and discretized with N velocity points, there are N entropy-related invariants in
addition to an energy invariant, and in a nontrivial calculation Zhu & Hammett
were able to find the form of the corresponding Gibbsian equilibria analytically.
The plethora of invariants leads to modifications of the equilibrium spectrum and
implies nontrivial behavior of forced, dissipative gyrokinetic cascades.

3.3 Drift waves

Confined plasmas cannot be in thermal equilibrium because they possess profile
gradients. From the point of view of basic physics, the most important mode
in a nonequilibrium gyrokinetic plasma is the drift wave (DW), supported by a
gradient in the background density profile. (Modes involving gradients in the
background temperature are considered to be more important in practice.) Al-
though the kinetic effects embodied in the full D(k, ω) are crucial to quantitative
calculations of linear instability, the basic DW can be obtained from a simple fluid
description of gyrocenters. Consider the cold-ion limit Ti → 0 [which eliminates
finite-Larmor-radius (FLR) effects] and ignore magnetic inhomogeneities. The
density of ion gyrocenters then obeys the continuity equation (obtained from the
zeroth velocity moment of the collisionless GKE) ∂tni+VE ·∇ni+∇‖(u‖ini) = 0.
Write n = 〈n〉 + δn, where 〈n〉 denotes the background profile. After lineariza-
tion, the definition ∇ ln〈ni〉 .= −L−1

n x̂, and the neglect of u‖i because ion in-
ertia is large, this becomes ∂t(δni/〈ni〉) + V∗∂yδΦ = 0, where ŷ

.= b̂ × x̂,
V∗ .= cTe/eBLn (assumed to be constant) is called the ‘diamagnetic velocity,’
and δΦ .= eδϕ/Te. Electrons are assumed to travel rapidly along field lines
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and to adjust instantaneously to any ambient potential, so they are assigned
the ‘adiabatic’ or Boltzmann response δne/〈ne〉 = δΦ. Finally, the gyroki-
netic Poisson equation relates the ion polarization to the net gyrocenter charge:
−ρ2

s∇2
⊥δΦ = δni/〈ni〉 − δne/〈ne〉. These equations can be combined to a single

equation for the potential: (1 − ρ2
s∇2

⊥)∂tδΦ + V∗∂yδΦ = 0, which yields the DW
dispersion relation ω = Ωk, where Ωk

.= ω∗/(1 + k2
⊥ρ2

s ) and ω∗(ky)
.= kyV∗. The

physics of the wave involves E ×B advection of the background density gradient
(V∗) in the presence of adiabatic electron response (the 1 in the denominator) and
ion polarization (the k2

⊥ρ2
s term, which leads to wave dispersion; the appearance

of ρs rather than ρi means that polarization is fundamentally not an FLR effect).
When such analysis is repeated without linearization, one is led (Dubin et al.

1983) to the Hasegawa–Mima equation (HME), originally derived more tediously
by Hasegawa & Mima (1978) from moment equations for the actual particles:

(1 − ρ2
s∇2

⊥)∂tΦ + V∗∂yΦ + VE · ∇(−ρ2
s∇2

⊥Φ) = 0. (9)

This equation is conservative; forcing and dissipation can be inserted by hand.
Note that the vorticity in the 2D E × B motion is 

.= b̂ ·∇ × VE = ωciρ
2
s∇2

⊥Φ
[this point is illustrated by Fig. 2 of Krommes (2006b)], so the nonlinearity in
the HME involves the E × B advection of vorticity. That effect is sometimes
called the ‘polarization-drift nonlinearity.’ The HME is more properly called the
Charney–Hasegawa–Mima equation because it has the same form as the equation
for Rossby waves well known to geophysicists. This observation provides an entrée
to a large literature on 2D geostrophic turbulence (Holloway 1986, Rhines 1979),
many basic results from which carry over to some of the plasma paradigms.

When the assumption of adiabatic electron response is relaxed, one finds in
a slab model with constant B a ‘universal’ DW instability, destabilized by in-
verse electron Landau damping. Drift-wave stability is a voluminous and subtle
subject. For example, Antonsen (1978) proved that in slab geometry the DW is
absolutely stable in the presence of arbitrarily small amounts of magnetic shear.
(Turbulence can exist even in the face of linear stability; see Sec. 5.4.) How-
ever, toroidal effects related to the curvature of the magnetic field lines restore
instability (Chen & Cheng 1980). Modern literature refers to toroidal versions of
ion- and electron-temperature-gradient-driven (ITG and ETG) modes, trapped
electron modes (TEM), etc., and elaborate supercomputer codes have been devel-
oped to study their linear physics in realistic confinement geometries (Kotschen-
reuther et al. 1995, Rewoldt et al. 1982). The nonlinear gyrokinetic codes de-
scribed in Sec. 4 extend those results to the turbulent regime and calculate the
‘anomalous’ transport and spectral characteristics of nonlinearly saturated steady
states, quantities that can be directly compared with experiments. A turbulent
transport coefficient D is typically compared to the basic ‘gyro-Bohm’ scaling
D ∼ (ρs/L)ρscs ∝ B−2, where L is a profile scale length. That scaling is a rigor-
ous consequence of dimensional analysis applied to the HME. More generally, it
follows heuristically from random-walk considerations that assume that the gy-
rokinetic turbulence is local, i.e., possesses a correlation length that scales with ρs

and a correlation time that scales with L/cs = [ω∗(ky=ρ−1
s )]−1.

3.4 Zonal flows

Another constituent of magnetized plasma turbulence is the non-wavelike ‘zonal
flow’ (ZF). Zonal flows (frequently called ‘zonal jets’ in the geophysics literature)
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are E × B flows that in toroidal geometry stem from potential fluctuations that
are independent of toroidal angle (and are mostly poloidally symmetric as well);
they are primarily poloidal and have no radial component. Although ZFs do
not directly produce transport in the radial direction, they may regulate DW
turbulence levels via their shearing effect on DW eddies; thus it is generally
believed that a larger level of ZFs (frequently self-generated by the DWs) is
associated with a smaller level of turbulent transport. An extreme example is
afforded by the Dimits-shift regime discussed in Sec. 5.1, in which turbulence
is suppressed completely by the excitation of ZFs. Unfortunately, a thorough
discussion of ZFs is impossible here. For many details, one can refer to the
reviews by Diamond et al. (2005), Itoh et al. (2006), and Fujisawa (2009). More
introductory material can be found in the lectures by Krommes (2006a).

Because k‖ = 0 for ZFs, the electron response cannot be even approximately
adiabatic, as was assumed in the derivation of the HME. [That the proper re-
sponse strongly enhances ZFs was first emphasized by Hammett et al. (1993).]
In the simplest model the electron density fluctuation can be taken to entirely
vanish for zonal wave numbers. That leads to a ‘generalized’ or ‘modified’ HME
(Krommes & Kim 2000) that correctly describes the evolution of zonal vorticity
and the coupling of the zonal modes to the drift waves via Reynolds stresses.

Frequently ZFs are assumed to be of long wavelength relative to the scales re-
sponsible for turbulent transport [see the related work on nonlocal Rossby wave
turbulence by Connaughton et al. (2010)]. When that is done, an detailed connec-
tion to prior work in neutral-fluid turbulence theory can be demonstrated. Krom-
mes & Kim (2000) applied the disparate-scale expansion to a Markovian closure
of an equation that can be simply reduced to either the 2D Navier–Stokes equa-
tion (NSE) or the generalized HME by appropriate choice of a single adiabaticity
parameter. Note that the positive growth rate γnl

q of the mean long-wavelength
fluctuation energy due to nonlocal interaction with the short scales can be inter-
preted in terms of a negative eddy viscosity: γnl

q ≡ −μeddyq
2. For the 2D NSE,

the (generally anistropic) result for μeddy reduces in the isotropic limit exactly to
the calculation of Kraichnan (1976). In the generalized HM limit, the analogous
result can be interpreted in terms of (and actually defines) an algorithm based
on a wave kinetic equation for the DWs. Seminal work on such an algorithm
was by Diamond et al. (1998). The more systematic calculation by Krommes &
Kim (2000) elucidated the proper form and statistical basis of the wave-kinetic
algorithm and corrected some issues related to random Galilean invariance and
the role of linear wave dispersion; it incidently identified some technical problems
with the important work of Carnevale & Martin (1982) on field-theoretical meth-
ods applied to nonlinear wave dynamics in weakly inhomogeneous media. The
difficulties are related to the choice of the ‘plasmon density’ Nk to be used in the
wave kinetic equation. Nk(X) is not the formula familiar from linear wave the-
ory; rather, it must be a quantity that when summed over k and integrated over
space is conserved under the DW–ZF interaction. The correct form was found for
some special cases by Smolyakov & Diamond (1999). More generally, Krommes
& Kolesnikov (2004) proved that Nk is a Casimir invariant in a field-theoretic
Hamiltonian representation (Morrison 1998) of the advective nonlinearity. These
results generalize and provide additional perspective on Kraichnan’s deep insights
about the nature of negative eddy viscosity in 2D flow.

Krommes & Kim assumed that the ZFs had zero ensemble mean. An important
method that does not require that assumption is the Stochastic Structural Sta-
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bility Theory of Farrell & Ioannou (2003). In that technique, a form of stochastic
modeling, one first derives the equation for an individual realization of a ZF by
applying a zonal average to the dynamical equations. Next, the effects of the
short-scale turbulence are modeled by a stochastic forcing. Finally, the zonal
average is replaced by an ensemble average under an ergodic assumption. The
resulting closure can predict nontrivial spatial structure as well as temporal fixed
points, limit cycles, or chaotic regimes for the ZFs. It has been strikingly success-
ful in various comparisons with atmospheric data, for example for the emergence
of eddy-driven baroclinic jets (Farrell & Ioannou 2009b), and was applied by Far-
rell & Ioannou (2009a) to the Hasegawa–Wakatani (HW) system of equations (a
collisional generalization of the HME that is a paradigm for some edge-related
physics). Further remarks on that calculation are made in Sec. 5.4.

4 GYROKINETIC SIMULATIONS

Numerical solution of the GKE is important both for the exploration of physical
processes and for quantitative prediction. I will briefly mention various numerical
implementations, which have become highly developed since their inceptions in
the early 1980’s, then provide a few examples of the physics results and compar-
isons with experiment that been obtained to date. Extensive additional details
and references can be found in the reviews by Garbet et al. (2010) and G.L.
Hammett (in preparation).

4.1 Numerical methodology

The two basic approaches to the numerical solution of the GKE are (i) the ‘con-
tinuum’ or ‘Vlasov’ method, which treats the GKE as a standard Eulerian PDE
that evolves in 5D phase space; and (ii) the Lagrangian PIC method. Hybrid
Lagrangian–Eulerian techniques have also been developed (Grandgirard et al.
2006). These methods can be applied to either a ‘full-F ’ simulation, which solves
Eq. (3), or a ‘δF ’ simulation (Kotschenreuther 1991), which writes F = F0 + δF ,
analytically inserts a known equilibrium F0, and numerically integrates just the
equation for δF . (This ζ-independent δF differs from the δF̃ used previously.)

Because the integration of a PDE that involves 5D plus time is computation-
ally intensive, an alternate ‘gyrofluid’ approach was developed by Hammett and
his coworkers. In that technique, fluid equations are derived from velocity mo-
ments of the GKE. The inevitable closure problem (Chapman–Enskog theory is
inappropriate for nearly collisionless plasmas) is dealt with by a ‘Landau-fluid
closure’ (Hammett & Perkins 1990), in which unknown moments (e.g., the stress
tensor or heat-flow vector) are modeled in such a way that linear response is well
reproduced. The method has been successful and can be numerically efficient.
Key references include Brizard (1992), Dorland & Hammett (1993), Hammett
et al. (1993), and Beer & Hammett (1996), and further authoritative discussion
is given in the review by G.L. Hammett (in preparation). However, because the
modeling is tricky and can fail to capture certain kinds of nonlinear wave–particle
interactions, modern focus has been mostly on simulations of the GKE itself al-
though gyrofluid equations are still actively used in areas such as edge turbulence
(Scott 2007) and reduced transport models (Staebler et al. 2007).
4.1.1 The particle-in-cell approach The PIC approach, pioneered for
gyrokinetics by Lee (1983), was the first to be implemented. It is based on the
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fact that the full-F GKE can be written in characteristic form. The characteristic
trajectories of many gyrocenters are integrated forward one time step, then gath-
ered onto a spatial grid for the purpose of computing the charge and current.
[Bessel functions are evaluated by an n-point averaging technique (Lee 1987);
various important smoothing techniques are not described here.] This method
avoids the need for a velocity-space grid, is straightforward to program, and is
well suited to massively parallel processing. A noncomprehensive list of signifi-
cant PIC codes includes GTC (Lin et al. 1998), GEM (Chen & Parker 2003), GTS
(Wang et al. 2006), ORB5 (Jolliet et al. 2007), and XGC1 (Chang et al. 2009).

In the δF method, the PIC approach is implemented by assigning a weight wi

to the ith gyrocenter (called a ‘marker’ or ‘tracer’); w
.= δF/F , where F is the

tracer PDF. The equation for w is derived analytically, then integrated along
with the tracer characteristics. The procedure is more completely expressed in
terms of a two-weight scheme (Hu & Krommes 1994). In collisionless theory,
it can be shown that the mean-square weight evolves secularly, leading to the
so-called ‘entropy paradox’ in which a statistical observable is changing in time
even though by conventional spectral measures the turbulence appears to be
saturated. Introduction of collisions resolves this paradox (Krommes & Hu 1994),
which is related to the generation of fine scales in velocity space (see Sec. 5.3).
For controlling the collisionless limit, Krommes (1999b) suggested an alternate
approach involving the use of a generalized thermostat (Evans & Morris 1984) or
‘w-stat’; that idea was pursued and extended by McMillan et al. (2008).

The PIC method is essentially a Monte Carlo sampling technique (Aydemir
1994, Hu & Krommes 1994), although it was not originally discussed as such.
Thus one must contend with sampling noise. Following Krommes’s basic work
on gyrokinetic fluctuations (cited in Sec. 3.2) and calculations of δF noise by Hu
& Krommes, further theoretical and numerical analyses of gyrokinetic noise were
made by Nevins et al. (2005), who showed that some PIC simulations may be
noise-dominated. Rigorously, calculation of noise in nonequilibrium situations is
nontrivial; the FDT no longer applies, and discreteness effects may be amplified
by instabilities and mix nonlinearly with collective effects in complicated ways.
Krommes (2007) reviewed the noise issue and discussed the formal problem of
calculating nonequilibrium sampling noise, following a general methodology given
by Rose (1979). Although the complete formalism is complicated, the structure
of the theory supports the general conclusions drawn by Nevins et al. Noise can
be reduced by increasing the number N of markers (but only by

√
N), or by

phase-space smoothing to reduce the weights (Chen & Parker 2007).
4.1.2 The continuum approach Although the PIC approach is very in-

tuitive, it is surprisingly subtle. An alternate approach is to attack the GKE
directly with the aid of advanced numerical techniques for PDEs. Specific meth-
ods are documented in the publications and web pages for the major continuum
codes, a noncomprehensive list of which includes GS2 (GS2 2000) and its daugh-
ter AstroGK (Numata et al. 2010), which removes geometry effects from GS2 and
is used for studies of astrophysical gyrokinetics; GENE (Jenko et al. 2000); GYRO
(Candy & Waltz 2003a,b); and GT5D (Idomura et al. 2008). Continuum codes
have their own algorithmic challenges. However, they have been very effective in
attacking practical problems and have made major progress in the push toward
successful comparisons with experiment.
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4.2 Illustrative simulation results

Figures 1–4 illustrate the kinds of results that can be obtained from the modern
codes. They include global simulations of existing machines (Figure 1), impressive
agreement with experimental data (Figure 2), and studies of turbulence in regions
where magnetic topology changes due to the presence of a divertor (Figure 3).
Although workstation-sized runs have been useful for many qualitative physics
studies, comparisons against experiment that include realistic geometry and other
practical effects require massively parallelized processing on the world’s largest
supercomputers. Such simulations are not restricted to magnetically confined
fusion plasmas. Figure 4 shows an application of a gyrokinetic simulation to the
solar wind, and there are other applications to space physics, e.g., the simulations
by Kobayashi et al. (2010) of dipolar systems such as planetary magnetospheres.

5 SOME ADVANCED TOPICS IN GYROKINETICS

All of the following topics are still the focus of contemporary research. They
demonstrate a nice interplay between numerical simulation and analytical theory,
and they illustrate the richness of gyrokinetic physics.

5.1 Transition to turbulence

As simulation codes proliferated, it became important to verify them [here ‘ver-
ify’ is used in a standardized technical sense — see, for example, Greenwald
(2010) — and should be contrasted with ‘validate’ (against experiment)], and a
standard case (the ‘Cyclone base case’) was proposed for detailed study. Dimits
et al. (2000) published the results of comparisons between various codes. Part of
that work involved the discovery of what is now called the ‘Dimits shift,’ which
provides a window into an important area of gyrokinetic physics.

The Dimits shift arises (at least) in studies of the turbulent ion heat flux Q
driven by a gradient in the background ion temperature gradient, parametrized
here by κ

.= R/LT , R being the major radius of the torus and LT being the
temperature-gradient scale length. Linearized gyrokinetics makes a definite pre-
diction for the threshold κlin of linear instability. Conventional arguments sug-
gested that turbulence and Q should turn on for κ > κlin; however, the (collision-
less) simulations revealed that Q remained essentially zero for a nonzero range
κlin ≤ κ ≤ κ∗ for some κ∗; the difference of κ∗ from κlin defines the Dimits
shift. Dimits et al. gave the correct qualitative interpretation, which is that in
the Dimits-shift regime ITG fluctuations are suppressed by the self-generation of
zonal flows. Rogers et al. (2000) provided a further compelling analysis (including
a discussion of ‘tertiary instability’) and simple model that argued in favor of the
ZF interpretation. That work was important, as the significance of ZFs (already
well known to geophysicists) was just beginning to penetrate the consciousness of
the fusion-physics community (Diamond et al. 1998, Rosenbluth & Hinton 1998).

Kolesnikov & Krommes (2005, KK) attempted to study the Dimits shift in a
simple model by using the systematic machinery of bifurcation analysis (Guck-
enheimer & Holmes 1983, Kuznetsov 1998), including use of the center manifold
theorem to eliminate rapidly damped modes. Zonal flows are only very weakly
damped by collisions; KK assumed that they were strictly undamped. That
greatly complicates the analysis. In the absence of ZFs, ITG modes are destabi-
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lized as κ is increased due to a conventional Hopf bifurcation. In their presence,
however, additional undamped ZFs reside at the origin in complex λ space [vari-
ations like exp(λt) are assumed] while the complex-conjugate pair of ITG eigen-
values crosses the imaginary axis. The bifurcation is no longer simple Hopf and
exhibits peculiar properties that are difficult to analyze. KK did succeed in ana-
lytically calculating a Dimits shift for their model, which was a significant proof
of principle. However, they employed a Galerkin truncation in order to reduce
the ITG PDEs to a small number of coupled amplitudes, and not surprisingly
the predicted shift was sensitive to the truncation. It is probable that a different
sort of analysis altogether must be done in order to properly obtain the Dimits
shift analytically, especially in realistic problems with magnetic shear. Such a
calculation remains one of the outstanding problems in plasma theory.

5.2 The nature of plasma turbulence; damped eigenmodes

In general, sufficiently large drive leads to turbulence. In neutral fluids at high
Reynolds number, that is frequently described by the standard paradigm involv-
ing long-wavelength energy-containing scales excited by macroscopic instability,
an intermediate-scale inertial interval, and very short dissipation scales. For
discussion of a similar situation in plasmas, see Schekochihin et al. (2009) and
Figure 4. However, plasmas can also behave quite differently. In some cases,
especially in magnetic fusion, the range of excited scales may be small, possibly
no more than a decade; a well-defined inertial range may not exist. The way in
which plasma turbulence saturates may be entirely different from the standard
Navier–Stokes scenario.

Although these differences have been long appreciated in general terms, only
recently have they been quantified. Terry and coworkers (Hatch et al. 2011,
Terry et al. 2006) have demonstrated that a new paradigm, involving coupling to
damped eigenmodes and not requiring a cascade in wave number, can sometimes
be superior. First consider an n-field fluid description. (For the Hasegawa–
Wakatani system, n = 2.) Such a system has n linear eigenmodes, most of which
are typically damped. Nonlinearity can then couple energy in an unstable mode
to stable modes at comparable wave numbers, providing a saturation mechanism.
Gyrokinetics is richer, as there are an infinite number of linear eigenmodes. Fig-
ure 5 shows a typical eigenmode spectrum for the gyrokinetic description of ITG
turbulence; a single unstable ITG mode can couple to a sea of damped eigen-
modes. For detailed discussion of Figure 5, see Hatch et al. (2011).

5.3 Entropy, phase-space cascades, and dissipation

It is well known that the behavior of the dissipative Navier–Stokes equation differs
profoundly from that of the conservative Euler equation. Analogous discussion
of the contrast between the collisional and collisionless gyrokinetic equations was
given by Krommes & Hu (1994), who argued that a numerically observed secular
growth in the entropy-like quantity

∫
dz δF 2/F could be tamed only by the in-

clusion of collisional dissipation. That insight was verified by careful simulation
measurements by Watanabe & Sugama (2004) and Candy & Waltz (2006). For
almost-collisionless physics, effective dissipation requires the generation of fine
scales in velocity space. That can be accomplished by the parallel streaming
term in the linearized GKE, as can be seen by an expansion of the v‖ dependence
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of the GKE into Hermite polynomials (Hammett et al. 1993). But nonlinear phase
mixing arising from the J0(k⊥v⊥/ωci) in the effective potential can be even more
efficient. The role of that term in the simultaneous generation of fine perpen-
dicular scales in both position and velocity has been discussed by Schekochihin
et al. (2009) in conjunction with the gyrokinetic theory of kinetic Alfvén cascades,
believed to be important in solar-wind physics (Figure 4). That mechanism pro-
vides “a nonlinear route to dissipation through phase space” (Schekochihin et al.
2008). The analytics lead to concrete predictions for the exponents of self-similar,
power-law, phase-space entropy cascades (Plunk et al. 2010). Those have been
observed numerically (Navarro et al. 2011, Tatsuno et al. 2009) and provide a
basis for interpreting some solar-wind spectra (Howes et al. 2008).

5.4 Submarginal and non-normal turbulence

‘Submarginal’ or ‘subcritical’ turbulence exists, by definition, in regimes where
the linear eigenmode spectrum is entirely stable. This phenomenon, intensively
studied in various neutral-fluid situations such as Poiseuille or planar Couette
flow, requires that the linear operator L be non-normal, i.e., [L,L†] �= 0 (Henning-
son & Reddy 1994). Non-normality can be important even when some modes are
linearly unstable. Submarginal or more generally non-normal turbulence can exist
in gyrokinetic plasmas for relevant parameters; it may be particularly important
to tokamak edges, the physics of which is considered to be of critical importance
for the understanding of magnetic confinement. Scott (1992a,b) demonstrated
numerically that drift-wave turbulence can be submarginal, and he described a
plausible scenario for the nonlinear self-sustainment. Itoh et al. (1996) described
simple closure approximations that suggested that submarginal turbulence can
exist quite generally. Krommes (1999a) discussed some of the ideas that Waleffe
(1995) had developed for the description of shear flows close to transition, pro-
viding an interpretation and generalization of some earlier plasma work by Drake
et al. (1995). Thorough study of the HW equations, which are non-normal, was
done by Farrell & Ioannou (2009a), who used the Stochastic Structural Stabil-
ity Theory introduced in Sec. 3.4. Their analytical closure predicted states of
both high (H) and low (L) transport. [Qualitatively similar regimes have been
observed experimentally, as described in the review by Wagner (2007), and are
a subject of longstanding interest.] They argued that their low-transport states
could be accessed through appropriate manipulations of external parameters.
Some details of the results are not definitive because the calculation was not fully
energetically self-consistent and the small-scale turbulence was modeled crudely.
However, Farrell & Ioannou (1996) have advanced powerful arguments that the
predictions should be relatively insensitive to the details of the stochastic mod-
eling when the linear operator is non-normal. Further application of these ideas
to models of gyrokinetic turbulence should be a fruitful line of research.

Recently, gyrokinetic simulations were used to obtain a description of ITG heat
flow Q parametrized by temperature gradient κT and flow shear κu (Highcock
et al. 2010). Nonzero flow shear allows the possibility of submarginal turbulence.
Parra et al. (2011) used the unusual shape of Q(κT , κu) to predict the optimal
amount of momentum input that minimizes transport, and showed that it admits
the possibility of bifurcations between regimes of high and low transport. Such
results provide a fresh look at the mechanisms for the transition between the L and
the H mode as well as the formation of internal transport barriers, understanding
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of which is important for the operation of future devices such as ITER.

5.5 Momentum conservation and toroidal rotation

For numerical studies of microturbulence in toroidal devices, a simulation should
be run for at least a few turbulence autocorrelation times τac in order that good
statistics can be obtained by time averaging, and that is already very challeng-
ing. Nevertheless, as computational resources continue to improve, attention is
beginning to shift toward simulations on the transport time scale on which the
macroscopic profiles evolve; that can be orders of magnitude larger than τac. One
appealing approach invokes a multiple-time-scale strategy in which a δF turbu-
lence code, run on the τac scale to obtain local fluxes, is coupled to a coarse-
grained transport code that advances mean profiles on macroscopic time scales
[see Figure 2, Barnes et al. (2010), and the work of Sugama & Horton (1997) on
the derivation of gyrokinetic transport equations]. But it is at least conceptually
interesting to inquire whether a full-F gyrokinetic code could be integrated di-
rectly to transport times. In a provocative PhD dissertation, Parra (2009) argued
to the contrary in the context of the calculation of the radial electric field and
toroidal rotation. [The latter is of interest for magnetohydrodynamic stability
and flow-shear stabilization of microturbulence (Terry 2000).] Two fundamental
assumptions were made: (i) the ‘low-flow ordering’ u/cs = O(ε); (ii) gyro-Bohm
transport scaling. Then the basic assertion was that the truncations of the gy-
rokinetic system that are usually implemented in the codes drop higher-order
terms that are essential for a correct evaluation of the rotation that develops at
long times. That has been highly controversial and has generated a considerable
amount of discussion and publications. Many of those are cited in the overview
by Parra & Catto (2010b). (The collected papers of those authors serve as an
authoritative primer on many facets of gyrokinetics.)

In the original derivations of nonlinear gyrokinetics, truncations were in prin-
ciple made independently in the kinetic equations and in the Poisson equation.
That can obviously lead to problems with conservation laws. As an illustration,
Parra & Catto (2010a) revisited the slab calculation of Dubin et al. (1983) and
showed that if one retains terms through second order in both places, then a spu-
rious nonconservative term emerges in a momentum evolution equation. They
recognized that the spurious term would be eliminated if third-order drifts were
retained in the kinetic equation. However, those are very complicated and possi-
bly impractical to code. Moreover, in the presence of magnetic inhomogeneities
it seemed possible that even higher-order effects would be required.

The correct way to truncate is given a definitive answer, and in fact is su-
perceded, by the field-theoretic derivations of gyrokinetics. As was described in
Sec. 2.4, truncation should be done directly on the action functional S; use of an
nth-order Hamiltonian in S is equivalent to truncations of O(εn) in the kinetic
equation and O(εn−1) in the gyrokinetic Poisson equation. From Noether argu-
ments in the presence of toroidal symmetry, that ensures a conservative form of
the equation for toroidal momentum. Left open is the possibility that the mo-
mentum fluxes are calculated inaccurately if n is too small [errors of O(1) in the
predicted rotation profile may be possible even if n = 2]. It was thus significant
that Scott & Smirnov (2010) derived the exact form of the gyrokinetic conser-
vation law for toroidal angular momentum, expressing the fluxes in terms of an
arbitrarily accurate Hamiltonian H. [A concise and elegant rederivation of that
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law by A.J. Brizard (2010, private communication) has been very helpful to the
author.] Knowledge of that conservation law is technically useful, as it can serve
to verify the fidelity of gyrokinetic simulation codes; an authoritative discussion
of related issues was given by Scott et al. (2010). Moreover, it is conceptually
important, as it bears on the ordering issue. Scott & Smirnov concluded that one
must use an H valid through second order (i.e., second-order drifts but first-order
polarization). That supports a basic complaint of Parra & Catto that most extant
codes use only first-order drifts. However, naive estimates suggest that under the
assumptions (i) and (ii) the momentum fluxes stemming from H

(3) may be of
the same order as those from H

(2) (the latter, nominally of second order, must
in fact be smaller in order to recover gyro-Bohm scaling). At the time of writing
the necessity of an H

(3) remained unresolved; subtle symmetry considerations
are involved. The issue would disappear if the actual transport were larger than
gyro-Bohm, and that is the case in some important physical situations. In any
event, while further research should lead to a consensus, it must be emphasized
that the full-F quasineutral method may not be practical for long-time gyroki-
netic simulations; alternate hybrid approaches may be superior (Parra & Catto
2009, and references therein).

6 SUMMARY POINTS

1. Nonlinear low-frequency gyrokinetics is the major formalism used to study
microturbulence in magnetically confined plasmas.

2. The nonlinear gyrokinetic equation (a 5D PDE in gyrocenter phase space)
coupled with the gyrokinetic Maxwell equations is a unique dynamical sys-
tem describing the drift motion of gyrocenters in a ‘gyrokinetic vacuum’
with large permittivity due to ion polarization.

3. Modern derivations of the gyrokinetic–Maxwell system exploit variational
principles, noncanonical Lagrangian methods, and Lie perturbation theory.

4. Gyrokinetics provides a good description of the nonlinear interactions be-
tween drift waves and self-consistently generated zonal flows. The former
cause turbulent transport; the latter regulate the turbulence level.

5. Numerical simulation of the nonlinear gyrokinetic equation, though com-
putationally very challenging, is becoming a quantitatively predictive tool.

6. A nonlinear phase-mixing mechanism unique to gyrokinetics is responsible
for entropy cascade in phase space, which provides a route to collisional
dissipation at fine scales.

7. The gyrokinetic conservation law for angular momentum can be used to
address subtle issues relating to the development of toroidal rotation on
long time scales.

8. Modern nonlinear gyrokinetics is elegant, subtle, and powerful. It should
reside in the toolbox of every plasma physicist.

7 FUTURE CHALLENGES

1. Continue to develop simulations of the edge and scrapeoff-layer regions of
toroidal devices (an endeavor that is complicated because of the change of
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magnetic topology from closed to open field lines).

2. Continue to explore effective ways of performing gyrokinetic simulations on
the transport time scale, with particular focus on momentum transport.

3. Pursue an integrated program of theory, simulation, and experiment to
deeply understand the submarginal and non-normal nature of plasmas.

4. Develop new gyrokinetic simulation algorithms that exploit modern com-
puter hardware such as graphical processing units.
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ANNOTATIONS TO REFERENCES

Brizard (2000): A variational principle alternate to the one proposed by Sugama
(2000); based on constrained variations.
Dubin et al. (1983): The first Hamiltonian formulation of nonlinear gyroki-
netics.
Frieman & Chen (1982): The first derivation of a nonlinear GKE.
Krommes & Hu (1994): A discussion of the implications of the singular nature
of the collisionless limit, and resolution of the ‘entropy paradox.’
Lee (1983): The first derivation of a nonlinear GKE in characteristic form,
suitable for simulation by the PIC method.
Littlejohn (1982): Describes the advantages and technical use of noncanonical
variables.
Nevins et al. (2005): A theoretical and numerical demonstration that some
PIC simulations can be noise-dominated.
Schekochihin et al. (2009): A detailed discussion of the predictions of gyroki-
netics for some astrophysical contexts.
Scott & Smirnov (2010): The first derivation of the gyrokinetic conservation
law for toroidal momentum.
Sugama (2000): The first derivation of a field-theoretic variational principle
for the gyrokinetic system.

SIDEBAR: BRIEF HISTORY OF MODERN STATISTICAL
CLOSURE THEORY FOR PLASMAS

The transition to numerical gyrokinetics was not instantaneous; it substantially
overlapped with the development of analytical statistical closures for plasmas over
a period of several decades. The history and theory of statistical closures for mag-
netized plasmas were reviewed by Krommes (2002). ‘Modern’ statistical plasma
turbulence theory dates from the mid-1970’s with the development of Kraich-
nan’s direct-interaction approximation (DIA) for plasma physics by DuBois &
Espedal (1978) and Krommes (1978). [An overview of Kraichnan’s substantial
contributions to statistical turbulence theory is given by Eyink & Frisch (2010).]
Similon & Sudan (1990) described various early (1980’s) plasma applications of
the DIA. Some efforts at Markovian statistical closures for plasmas were also
made during the 1980’s (Waltz 1983). But systematic development of Markovian
closures, and proper comparison of their predictions with direct numerical sim-
ulations, did not occur until the 1990’s with the work of Bowman et al. (1993),
Bowman & Krommes (1997), and Hu et al. (1995, 1997). Closure theory contin-
ues to be of use in specific contexts such as the theory of zonal flows (Krommes
& Kim 2000), it provides the natural framework for qualitative interpretations
of numerical and experimental data, inspires diagnostic techniques (Itoh et al.
2005), and may serve to motivate useful sub-grid-scale models for large eddy
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simulations (Morel et al. 2011, Smith & Hammett 1997). However, it has always
been clear that realistic plasma turbulence (being inhomogeneous, anisotropic,
and 6D) will not yield in any quantitative way to analytical statistical closures.
By the early 1980’s, the time was ripe for a new tool.

ACRONYMS

1. DW: drift wave
2. FLR: finite-Larmor-radius
3. GKE: gyrokinetic equation
4. HME: Hasegawa–Mima equation
5. HW: Hasegawa–Wakatani
6. ITER: This is not (any more) an acronym; for discussion, see www.wikipedia.

org/wiki/Iter. It is now understood to mean ‘the way’ in Latin.
7. ITG: ion temperature gradient
8. PDF: probability density function
9. PIC: particle-in-cell

10. ZF: zonal flow

KEY TERMS

Adiabatic invariant: A quantity that is conserved through all orders under
slow variations.

Canonical variables: 2N generalized coordinates zα whose Poisson brackets

are {zα, zβ} = σαβ , where σ
.=

(
0 I
−I 0

)
, I being the N × N identity matrix.

Dimits shift: In collisionless ITG turbulence, the amount by which the gradient
required for the onset of turbulence exceeds the threshold for linear instability.

Gyrokinetics: The study of fluctuations in magnetized plasmas having fre-
quencies much smaller than the ion gyrofrequency.

Gyrokinetic vacuum: The background state, endowed with large dielectric
permittivity due to ion polarization, in which gyrocenters move with the effective
E × B and magnetic drifts.

Magnetic moment (μ): The adiabatic invariant associated with the gyration
of a charged particle around a magnetic field line.

Noether Theorem: Loosely, the statement that any symmetry of the La-
grangian is associated with a conservation law.

Polarization-drift nonlinearity: The E × B advection of the vorticity of
E×B motion; the nonlinearity in the Hasegawa–Mima paradigm for drift waves.

Pull-back (transformation): Operator T̃ that transforms the gyrocenter
PDF F̃ into the particle PDF f : f = T̃ F̃ .

Zonal flow: E × B flow (mostly poloidal) generated from a potential that is
toroidally and (mostly) poloidally symmetric.
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Figure 1: Full-torus (‘global’) GENE simulation of a discharge in the TCV toka-
mak that exhibits an internal transport barrier (ITB). Realistic input data and
comprehensive physics are used. The figure displays contours of electrostatic po-
tential (stream function). In this cross section, the ITB corresponds to a fairly
narrow ring near the mid minor radius of the torus. Reprinted from Görler et al.
(2011, Figure 8). Copyright 2011 by the American Institute of Physics; used with
permission (obtained from author, but not yet from AIP).
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Figure 2: Predictions (red curves) of the TGYRO code (https://fusion.gat.com/
theory/Tgyrooverview) for DIII-D discharge 128913 compared with experimen-
tal measurements (discrete data points). The electron temperature is particularly
well-reproduced. Fits to the experimental data (blue curves) are also shown. For
this case, 10 simulation radii (10 instances of GYRO) were used. All three profiles
(ne, Te, Ti) were evolved by TGYRO using nonlinear GYRO calculations of the turbu-
lent electron particle flux, electron energy flux, and ion energy flux. Unpublished
figure courtesy of J. Candy.
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Figure 3: Gyrokinetic simulation of ITG turbulence by the PIC code XGC1 in an
edge pedestal region with the realistic diverted geometry of the DIII-D device.
More than 109 marker particles were used. Such simulations, still in an early stage
of development, are difficult because of the change of magnetic topology associ-
ated with the divertor separatrix. Reprinted from Chang et al. (2009, Figure 6).
Copyright 2009 by the American Institute of Physics; used with permission.
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Figure 4: One-dimensional energy spectra of the perpendicular magnetic (solid),
electric (dashed), and parallel magnetic (dot-dashed) fields from gyrokinetic sim-
ulations (with AstroGK) of kinetic Alfvén wave (KAW) turbulence from the ion
to electron Larmor radius scales. These spectra demonstrate that KAW turbu-
lence can indeed yield energy spectra reaching the electron scales, as found in
recent observations (Sahraoui et al. 2009). Thin lines are the perpendicular elec-
tric (dashed) and parallel magnetic energy (dot-dashed) spectra predicted from
the perpendicular magnetic energy spectrum using the linear kinetic Alfvén wave
eigenfunction, demonstrating that, even in fully developed turbulence, the fluc-
tuations retain the character of linear wave modes. Reprinted from Howes et al.
(2011, Figure 1). Copyright 2011 by the American Physical Society; used with
permission (obtained from author, but not yet from APS).
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Figure 5: Gyrokinetic eigenmode spectrum for ITG fluctuations, demonstrating
the possibility of nonlinear coupling of an unstable ITG mode (red) to damped
eigenmodes. Reprinted from Hatch et al. (2011, Figure 2). Copyright 2011 by
the American Institute of Physics; used with permission (obtained from author,
but not yet from AIP).
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