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Evolution of nonlinear waves in compressing plasma
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Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in
one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves,
whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as
solitary electron holes, conserve their characteristic size D during slow compression. This leads to
a substantially stronger adiabatic amplification as well as rapid collisionless damping when L
approaches D. On the other hand, cessation of compression halts the wave evolution, yielding a
stable mode.VC 2011 American Institute of Physics. [doi:10.1063/1.3574343]

I. INTRODUCTION

Compressing and expanding plasmas can be found
throughout nature and the laboratory. In particular, a variety
of experimental techniques to compress plasma to thermonu-
clear temperatures and densities have been explored in the
field of inertial confinement fusion.1–3 With an eye toward
those and similar applications, it was suggested recently that
embedding waves in collisionless plasma could yield new
tools for manipulating the medium. Specifically, waves
might be amplified through compression4 and then damp res-
onantly on a particular species in a switchlike manner at a
predetermined moment.5 It was also suggested that concen-
trating energy in a compressing plasma in the form of waves
can increase the plasma effective compressibility,6 and
recent work7 has even described the basic thermodynamic
cycles whereby the interplay between plasma wave energy
and thermal energy could be utilized to construct a plasma
heat pump and heat engine. Yet, these studies were focused
primarily on linear waves, whereas practical applications
may require higher wave amplitudes. Thus, nonlinear effects
also need to be explored.

The purpose of this paper is to study such nonlinear
effects for wave evolution in one-dimensional (1D) collision-
less plasmas undergoing compression, within a paradigmatic
model5,6 of a bounded system with moving walls. Specifi-
cally, addressed here is the evolution of electrostatic Bern-
stein–Greene–Kruskal (BGK) modes,8 which are produced
as saturated states of a bump-on-tail instability, like in
unbounded plasmas.9–14 Unlike linear waves, whose wave-
length decreases proportionally to the system length L(t),5

we observe that nonlinear waves, such as solitary electron
holes,15 conserve their characteristic size D during slow
compression. This leads to a substantially higher adiabatic
amplification as well as rapid collisionless damping when L
approaches D. On the other hand, cessation of compression
halts the wave evolution, yielding a stable mode. These
effects are demonstrated numerically via particle-in-cell
(PIC) simulations.

The paper is organized as follows. Section II describes
the formation of nonlinear waves produced by the bump-on-
tail instability and relates them to those found in unbounded
plasma. Section III describes the amplification and subse-

quent collisionless damping of nonlinear waves through
compression. In Sec. IV, possible applications of these
effects are discussed. Section V summarizes the main results
of this paper.

II. FORMATION OFA NONLINEARWAVE

Saturation of the bump-on-tail instability yields BGK-
like modes, which represent quasistatic depressions of the
electron density in a self-consistent electric potential. How-
ever, in contrast to unbounded plasma, where such modes
remain stationary, PIC simulations reveal that they continue
to evolve in bounded plasma.

The evolution of electron holes was modeled here using
an electrostatic 1D PIC code. The code models the dynamics
of electrons bounded by perfectly reflecting walls, at x¼ 0
and at x ¼ LðtÞ, such that _L ¼ V $ 0. To maintain quasineu-
trality, ions are modeled as an instantaneously charge-
neutralizing background. (Simulating the self-consistent
ion motion has shown that the results are qualitatively
unchanged for an appropriate choice of initial parameters.5)
To produce a bump-on-tail instability, electrons are initial-
ized randomly in a homogeneous Maxwellian distribution,
fM1ðvÞ, superposed with smaller, homogeneous, symmetric
shifted-Maxwellian bumps, fM2ðvÞ [Fig. 1(a)]. The total ini-
tial distribution function f0ðvÞ is then

f0ðvÞ ¼ n0fð1% 2nÞfM1ðvÞ
þ n fM2ðvþ DvÞ þ fM2ðv% DvÞ½ ( g; (1)

where fMjðvÞ ¼ expð%v2=2v2TjÞ=
ffiffiffiffiffiffi
2p

p
vTj for j ¼ 1; 2. Specifi-

cally, the following parameters are taken: the bulk number
density n0 corresponds to the plasma frequency xp ¼ 1011

s%1; the thermal velocities are vT1 ¼ 109 cm/s and vT2
¼ 0:75vT1; the beam central speeds are Dv ¼ 5vT1; the nor-
malized density of the bumps is n ¼ 0:15; and, finally, the
characteristic initial transit period of BGK modes is given by
Ttr ) L0=Dv ¼ 4* 10%10 s + 6:4sp, where L0 is the initial
system length and sp ¼ 2p=xp.

Figure 1 depicts the evolution of the electron phase space
density during a strong, initially isotropic bump-on-tail insta-
bility in a bounded system without compression. It is seen that
electron holes form and then merge such that eventually only

1070-664X/2011/18(4)/042103/5/$30.00 VC 2011 American Institute of Physics18, 042103-1

PHYSICS OF PLASMAS 18, 042103 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://php.aip.org/php/copyright.jsp

http://dx.doi.org/10.1063/1.3574343
http://dx.doi.org/10.1063/1.3574343


one hole survives [Fig. 1(f)]. During the merging, the wave
energy is gradually transferred from the wave to electrons
(Fig. 2). This effect exists also in unbounded plasma;9–11,16

however, the difference here is that slow decay of the wave
persists also after the last hole has been formed.

Consider, in particular, the evolution after t ¼ 500 sp. In
unbounded plasma, this would have been enough time for a

solitary electron hole to phase-mix and thus yield an equilib-
rium state. However, for the bounded plasma simulated here,
one can observe the wave energy to continue decreasing
over the next 1000sp. This effect is likely due to the interac-
tion between counterpropagating modes; those cause phase-
dependent perturbations in the mode structure and thereby
lead to further trapping, untrapping, and phase-mixing. Since
even a single isolated electron hole produces a counterpropa-
gating hole when it reflects off a wall, there always remains
room for more phase-mixing. Hence, collisionless dissipa-
tion is never suppressed completely.

This slow damping mechanism provides a caveat to the
claim in Ref. 14 that the time-asymptotic state of the sym-
metric bump-on-tail instability is two counterpropagating
BGK modes. It also provides a practical example of the lim-
its of the nonlinear superposition principle derived in Ref.
17, which states that only at small enough amplitude can two
BGK modes traveling at sufficiently different phase veloc-
ities form a plasma equilibrium state. A similar effect was
observed in colliding driven BGK modes,18 where the fast
interaction of two counterpropagating electron holes resulted
in some degradation of their structure.

An example of electron detrapping is shown in Fig. 3.
The particle starts off deeply trapped at the bottom of the non-
linear wave potential, which emerged at t + 365sp. For sev-
eral hundred plasma periods afterward, Fig. 3(a) shows that
the amplitude of the electron bounce oscillations grows, indi-
cating that the particle is transitioning to more weakly trapped
orbits closer to the separatrix. Finally, at t + 700sp, the parti-
cle escapes the potential well and becomes untrapped. Since
plasma is not being compressed in this simulation, implying
the conservation of the total system energy, the energy for
detrapping is apparently extracted from modes counterpropa-
gating to that holding the electron initially.

FIG. 1. (Color online) Snapshots of the electron phase space density f ðx; vÞ
(in arbitrary units) in bounded plasma without compression. These snapshots
show the development of the bump-on-tail instability and subsequent evolu-
tion of nonlinear BGK-like modes: (a) t¼ 0, initial bump-on-tail distribu-
tion; (b)–(e) formation and merging of electron holes; (f) t ¼ 280sp, final
state, corresponding to a solitary electron hole (circled). Time is measured
in units sp ¼ 2p=xp. For specific parameters, see the main text.

FIG. 2. (Color online) Electric field evolution in bounded plasma without
compression. (a) Semilogarithmic plot of the total electrostatic energy WE

normalized to the total plasma energy W0. Inset shows a close-up of the first
50 plasma cycles. (b) The absolute value of the electric field spatial Fourier
spectrum E(k) vs time t and wavenumber k, measured, correspondingly, in
plasma periods 2p=xp and inverse Debye lengths, k%1

D .

FIG. 3. (Color online) Electron detrapping from a nonlinear wave. (a) Elec-
tron absolute velocity jvj normalized to vT1. (b) Coordinate of the electron,
xðtÞ=L0 (dashed; L0 is the plasma initial length), superimposed on the poten-
tial energy e/ðx; tÞ measured in units of the particle average initial kinetic
energy w0. The particle is trapped until t + 700sp, at which point (circled) it
escapes the potential well.
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These results suggest that a BGK mode can be at an
equilibrium in bounded plasma only as long as it does not
reach the walls. On the other hand, one can see (Fig. 2) that
dissipation caused by reflection is relatively weak, and non-
linear modes can persist on time scales far exceeding the
transit time. Therefore, they represent robust structures,
potentially applicable for mechanical manipulation through
plasma compression, which will now be addressed.

III. AMPLIFICATION AND DAMPING THROUGH
COMPRESSION

As shown in Refs. 4 and 5 for linear modes, the ampli-
tude of an initially undamped Langmuir wave changes in
time as plasma is compressed adiabatically. For example, it
is seen from the conservation of the wave action I ¼ W=x,
where W is the wave total energy, x is the instantaneous fre-
quency, x ¼ xp 1þ 3k2k2D=2

" #
, k is the wavenumber, kD is

the Debye length, and xp / V%1=2 is the electron plasma fre-
quency, where the plasma volume V now varies in time.
Thus, taking W ¼ W0x=x0, with the subscript 0 henceforth
denoting initial conditions, one obtains for the wave total
electrostatic energy WE / e%1=2 to lowest order in e , L=L0.
In other words, linear waves can be adiabatically amplified
through compression, and what is shown below is that non-
linear waves can also be manipulated in a similar manner.

Figure 4 shows an example of the evolution of a solitary
electron hole, same as in Fig. 1, as plasma is being com-
pressed. (Note that the figure reads from right to left, with
the system beginning at e ¼ 1 and compressing to a final
state with e < 1.) Like in simulations with linear waves,5

monotonic amplification is observed for the wave during
most of the compression phase (0:24<) e < 1). However, the
amplitude is now amplified by a factor G + 17, much larger

than that reported in Ref. 5 for linear waves (G < 2), with G
defined as the ratio of the peak electrostatic energy of the
wave immediately prior to the onset of damping and the ini-
tial electrostatic energy of the wave prior to compression.

The amplification factor is increased for two reasons: (i)
nonlinear modes do not experience Landau damping, and (ii)
their amplitude changes more rapidly with e. The latter, in
turn, is due to the fact that the dynamics of a strongly nonlin-
ear mode is determined primarily by phase-locked, resonant
particles (cf. Ref. 19), unlike in a linear wave featuring few
of those. Specifically, this is explained as follows.

First, notice that a localized electron hole has a charac-
teristic length D < L [Fig. 1(f)]. Associated with that is a
characteristic time scale during which reflection from a wall
occurs, Tr ¼ D=vph < Ttr, where vph is the mode phase veloc-
ity. For parameters considered in this paper, Tr is a few times
smaller than the characteristic bounce period sb,

20 especially
considering that most of trapped particles reside close to the
separatrix. Hence, during the reflection time, the trapped par-
ticles are essentially free-streaming.

Second, notice that the distance D between two free-
streaming particles with equal initial velocities is the same
before and after reflection from a moving wall. This is because
D is a Galilean invariant and obviously is conserved in the
frame moving together with the wall. For Tr - sb, the veloc-
ity spread over the trapping island is sufficiently small to guar-
antee also that the distance is conserved between all trapped
particles. This means that the whole island also preserves its
shape at reflection. Besides that, away from the walls, particles
determining the nonlinear mode are phase-locked due to autor-
esonance. Therefore, the mode shape is not affected by mov-
ing walls, at least until it fits the system, i.e., as long as

D=2<) L: (2)

Conservation of the mode size under the condition (2) is
indeed observed in simulations (Fig. 5) and allows one to
predict the scaling for the electrostatic energy WEðeÞ as fol-
lows. The electron density depletion due to the nonlinear
mode results in an uncompensated background ion density
dni. Since compression conserves the total number of par-
ticles, one has dni / e%1, assuming that, for simplicity, the
electron hole total charge is also fixed. Hence, the character-
istic field in the hole is E ) dniD, so conservation of D yields
WE / e%2. This estimate is, in fact, reasonably close to the
scaling observed in simulations [Fig. 4(a)], although it was
also found that the function WE=WE; 0 ¼ exp½aðe%1=2 % 1Þ(,
with a ¼ 2:8, may be a somewhat better fit.

As also found in simulations (not shown here), a stable
electron hole is produced if compression is halted while the
condition (2) is satisfied. In the opposite case, though, the
mode does not fit inside system, so outer orbits start to
detrap. Rapid deterioration of the hole with further compres-
sion is then anticipated when the condition (2) is violated,
and this is confirmed in simulations. For example, from
Eq. (2), the mode in Figs. 4 and 5 is expected to persist until
e ) 0:2, and this estimate is reasonably close to the value
e + 0:24 after which the rapid damping actually starts [Fig.
4(a)]. Remarkably, the subsequent wave evolution due to

FIG. 4. (Color online) Evolution of a solitary electron hole during plasma
compression. (a) Electrostatic energy WE normalized to initial plasma total
energy W0. Pictured are both the instantaneous and local time-averaged WE

(wide and thin line plots, respectively) and also the fitting functions
WE=WE; 0 ¼ exp½2:8ðe%1=2 % 1Þ( (dashed line) and WE=WE; 0 ¼ e%2 (dashed-
dotted line). (b) The absolute value of the electric field spatial Fourier spec-
trum E(k) (in arbitrary units) vs compression parameter e ¼ LðtÞ=L0 and
wavenumber k, measured in inverse Debye lengths k%1

D , where kD / e%1=2.
Note direction of time indicated by arrow in (a).
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collisionless damping is determined primarily by the instan-
taneous value of e rather than the compression rate, as also
confirmed in our simulations.

IV. DISCUSSION

By embedding waves in a plasma subject to compression,
new tools for manipulating the plasma are made available. In
the case of linear, initially undamped waves, it was found that
some fraction of mechanical work exerted on the bulk plasma
could be coupled into the coherent motion of the wave by
means of the wave action conservation,4 and this wave energy
could be sustained until a critical moment when a collisionless
damping threshold was reached.5 Then, the localized wave
energy could be channeled into the thermal energy of a particu-
lar species in a switchlike manner at a predetermined moment
of time. Unlike heating the plasma at the start, embedding
energy in the form of waves enables the concentration and con-
finement of energy in a form not subject to normal thermal dif-
fusion. Furthermore, because nonlinear waves are already
resonant with the thermal plasma, they are not subject to Lan-
dau damping, so that much higher compression ratios could be
obtained before the onset of wave dissipation compared to the
case involving initially undamped linear waves.5

There is also significant interest in generating and sustain-
ing waves at high kkD, a goal that these resonant nonlinear
waves are well-suited to accomplish. Even though k ceases to
increase with compression, kkD continues to increase, since
thermal velocities grow faster than the plasma frequency. This
means that, by means of compression, structures in the plasma
are formed at high amplitude with an effectively high kkD.

Why is this important? There are several applications
for insinuating high-amplitude high-kkD structures in a
plasma.

First of all, there is a possibility of using these structures
effectively as a grating thereby to process laser light. This is
particularly interesting in the regime where the light is
intense enough to undergo compression effects through a
nonlinear Raman decay process.21 The advantage of high-
kkD structures surviving near the plasma frequency is that
lower-density plasma can then mediate the resonant decay
between counterpropagating laser pulses. Absent the persist-
ence of such structures, the phase-matching conditions
would imply that the plasma wave at a low density has a
lower phase velocity and therefore would be Landau-
damped. The ability to use relatively lower-density plasma is
particularly important in Raman compression for very short
wavelength light, particularly for x-rays, where these surviv-
ing structures are absent, the higher densities needed would
imply a smaller window in density-temperature space for
which the compression effect survives.22

In addition to using these structures to process light
through wave–wave interactions, there may also be the pos-
sibility of manipulating particles through wave–particle
interactions. The added flexibility of using these nonlinear
structures at high amplitude facilitates a number of phase-
space manipulations of particles with modes at phase veloc-
ities that would otherwise be unavailable at high amplitudes.
This would be particularly important, for example, thereby
to generate electric current and magnetic fields23 or to chan-
nel energy to ions rather than to electrons.24 (For the pur-
poses of generating current, structures with only one sign of
k would be employed, which means that the compression ge-
ometry would differ from the 1D compression examples con-
sidered here, where the walls are compressed in the direction
of k; rather, the compression or expansion would be perpen-
dicular to k, but the principle would be the same.)

V. CONCLUSIONS

In this paper, the evolution of resonant, nonlinear Lang-
muir waves in a compressing plasma background was stud-
ied using PIC simulations. A major finding is that unlike
linear waves, whose wavelength decreases proportionally to
the system length, nonlinear waves, and in particular solitary
electron holes, conserve their characteristic size during slow
compression. This wavelength conservation leads to a sub-
stantially stronger adiabatic amplification of the wave as
well as rapid collisionless damping when the wave no longer
fits inside the system. If at any time the compression is
halted, the resulting mode is stable and long-lived.
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