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negative-mass effect
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The effect of radiation friction is included in the Hamiltonian treatment of wave-particle

interactions with autoresonant phase-locking, yielding a generalized canonical approach to

the problem of dissipative dynamics near a nonlinear resonance. As an example, the negative-

mass effect exhibited by a charged particle in a pump wave and a static magnetic field

is studied in the presence of the friction force due to cyclotron radiation. Particles with

negative parallel massesm‖ are shown to transfer their kinetic energy to the pump wave, thus

amplifying it. Counterintuitively, such particles also undergo stable dynamics, decreasing

their transverse energy monotonically due to cyclotron cooling, whereas some of those with

positive m‖ undergo cyclotron heating instead, extracting energy from the pump wave.

PACS numbers: 05.45.-a, 42.50.Wk, 45.20.Jj, 52.25.Os, 52.35.Mw

I. INTRODUCTION

Wave-particle resonant interactions are conveniently approached within a Hamiltonian theory

[1, 2], which however renders it difficult to account for dissipative forces. In this respect, of special

interest are interactions that lie beyond the traditional model of nonlinear resonance [3–5], partic-

ularly those where ponderomotive forces are essentially velocity-dependent [6]. An example here is

the particle motion in a homogeneous magnetic field B0 and a co-propagating circularly-polarized

electromagnetic wave. Due to autoresonant phase-locking [4, 7] at the cyclotron resonance, the

wave and the magnetic field effectively modify the inertia of the particle oscillation center (OC)

with respect to low-frequency (or static) forces applied along B0. Hence, the OC mass m‖ along

B0 may be seen as negative, thereby yielding what is called the negative-mass effect, or NME

[8–11].

Due to particle oscillations in a wave, dissipation is always associated with pondermotive in-

teractions, particularly in the form of the radiation friction, which can transfer energy from the

particle “internal” (e.g., cyclotron) motion to the outgoing waves [12, 13]. Hence, it can influence

possible practical applications [9] of the NME and related effects, anticipated by analogy with

other systems where negative mass of charge carriers is realized [10]. Therefore, a new formalism is

necessary that would unite the existing Hamiltonian theory of autoresonant effects like NME [10]

with the description of essentially non-Hamiltonian forces like the radiation friction.
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The purpose of this paper is, thus, twofold. First, we propose how dissipative perturbations can

be included in the canonical formalism for a broad class of Hamiltonian systems similar to those

yielding the NME, and also how the unperturbed phase space structure determines the effect of

weak friction on the particle average dynamics at autoresonance. In application to wave-particle

interactions, this theory, albeit quasi-Hamiltonian, allows one to describe slow dissipative dynamics

of both the wave and the particles; hence, scenarios are found in which the wave is amplified or

particles gain energy despite the fact that the system total energy decays. Second, we reconsider the

NME, as produced by the charged particle interaction with a pump wave in a static magnetic field,

and study how this particular effect is altered by the presence of the radiation friction. We show

that particles with negative parallel masses m‖ transfer their kinetic energy to the pump wave,

thus amplifying it. (An analogy here is how negative-energy waves are amplified in the presence of

dissipation; see, e.g., Refs. 14, 15.) Counterintuitively, such particles also undergo stable dynamics,

decreasing their transverse energy monotonically due to cyclotron cooling, whereas some of those

with positive m‖ undergo cyclotron heating instead, extracting energy from the pump wave.

The paper is organized as follows. In Sec. II, we describe the general formalism showing how

the effect of weak dissipation can be understood by studying the unperturbed phase space of a

Hamiltonian system; we also explain how this formalism predicts the direction of the energy flow

in dissipative wave-particle interactions. In Sec. III, we study the effect of radiation friction on

the particle dynamics driven by a pump wave in a static magnetic field and, particularly, how

the NME persists through the friction and how the trajectories of particles with positive m‖ can

become unstable.

II. GENERAL FORMALISM

In this section, we study the dynamics of a particle, treated as a generalized nonlinear dynamical

system, under the action of a weak resonant wave in the presence of an even weaker dissipative

force. First, in Sec. II A, we consider the direct effect of the wave on the particle. Then, in Sec. II B,

we also show how the evolution of the wave itself can be predicted from its effect on the particle.

A. Driven system

Consider a small perturbation to a generalized dynamical system governed by a Hamiltonian

H [16],

H = H0(I) + εH1(I) cos(! · φ− ω0t). (1)

Here (I,φ) are the action-angle variables of the unperturbed Hamiltonian H0(I), #i = ∂H0/∂Ii

are the unperturbed frequencies, ε " 1 is a small parameter, ω0 is some constant frequency,

! = (%1, . . . , %n) is a constant n-dimensional integer vector, and n ≡ dim I = dimφ. Without loss

of generality, assume non-zero %n. Using a generating function

Φ(J ,φ, t) = J1φ1 + · · ·+ Jn−1φn−1 + Jn(! · φ− ω0t), (2)
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perform a canonical transformation to the new variables (J ,θ); hence

θi<n = φi, θn = ! · φ− ω0t, (3)

Ji<n = Ii − %iIn/%n, Jn = In/%n. (4)

The new Hamiltonian H ≡ H + ∂Φ/∂t depends on only one canonical coordinate θn:

H = H0(J)− ω0Jn + εH1(J) cos θn. (5)

Therefore, all Ji with i < n are constants, and Eq. (5) can be treated as a Hamiltonian of the

motion in (Jn, θn) plane. The stationary points of this two-dimensional system are located near

the resonance surface ! ·$ = ω0 and are said to form stationary surfaces J0
n(J1, . . . , Jn−1) in the

n-dimensional J space (see also Ref. 17).

Let us also introduce stable surfaces J∗
n(J1, . . . , Jn−1) formed by the stable stationary points

of the system. The particle trajectories in the vicinity of a stable stationary point (J∗
n, θ

∗
n) are

periodic orbits with some characteristic period T . For a stable stationary point with sin θ∗n = 0

[10], one has a real

T ≈ 2π

(
−εH1

∂Ω

∂Jn
cos θ∗n

)−1/2

, (6)

where Ω = ∂H0/∂Jn − ω0 + ε (∂H1/∂Jn) cos θ∗n, and all functions of J are evaluated at (Ji<n, J∗
n).

Consider a perturbation to the system (5) by a weak dissipative force ξ(J ,φ) = (G,K), i.e.,

J̇i = εδinH1(J) sin θn +Gi, (7)

θ̇i = ωi(J)− δinω0 + ε
∂H1

∂Ji
cos θn +Ki, (8)

where δij is the Kronecker symbol, and ωi = ∂H0/∂Ji. Assume initial conditions such that the

system is close to an unperturbed stable surface S, that ξ(J ,φ) is not resonant to the oscillations

at frequencies #i, and that T is much larger than all 2π/#i and the corresponding beat frequencies.

Then, for i < n, one can average Eqs. (7) and (8) over the fast oscillations in φ to get

J̇i<n = 〈Gi〉, θ̇i<n = ω̄i, (9)

where ω̄i = ωi+ε (∂H1/∂Ji) cos θn+〈Ki〉, and 〈. . . 〉 denotes averaging over the phases φi. Therefore,

the effect of friction on the degrees of freedom corresponding to i < n consists in adding a slow

drift in Ji and slightly modifying the frequencies to ω̄i.

Now let us consider the remaining degree of freedom, (Jn, θn). Recalling that the dynamics in

these variables is slow compared to the dynamics in φ, average Eqs. (7) and (8) for i = n over the

fast oscillations in φ:

J̇n = εH1(J) sin θn + 〈Gn〉, (10)

θ̇n = ωn(J)− ω0 + ε
∂H1

∂Jn
cos θn + 〈Kn〉. (11)
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Unlike for i < n [Eqs. (9)], the average friction force can now be compensated by Hamiltonian

forces. This means that the dissipation does not destroy the equilibrium in (Jn, θn) plane but

rather shifts it to a new location (J̄∗
n, θ̄

∗
n) given by

εH1(Ji<n, J̄
∗
n) sin θ̄

∗
n = −〈Gn〉, (12)

ωn(Ji<n, J̄
∗
n)− ω0 + ε

∂H1

∂Jn
cos θ̄∗n = −〈Kn〉, (13)

which drifts slowly due to Ji<n following Eqs. (9). Hence, we consider this (quasi-) equilibrium

as a local stationary point of the system. The surface formed by the local stationary points

J̄∗
n(J1, . . . , Jn−1) will be further called a local stationary surface S̄.

From expanding Eqs. (10) and (11) in the vicinity of the new stable stationary point (J̄∗
n, θ̄

∗
n), it

follows that the effect of friction is determined by derivatives of 〈Gn〉 (and 〈Kn〉) rather than 〈Gi〉
itself [unlike in Eq. (9)]. To see this, consider the normalized phase space area that the particle

orbit encircles in (Jn, θn) plane:

Λ =
1

2π

∮
Jn dθn. (14)

Without friction Λ would be an adiabatic invariant [18], i.e., Λ̇ ≈ 0, as shown in Ref. 2. The

conservation of Λ causes the autoresonant phase-locking effect [4, 7] when the system state “sticks”

to the the local stationary surface S̄. With the friction, however, an argument similar to that in

Ref. 2 yields

2πΛ̇ ≈
∮

l

〈Gn〉 dθn −
∮

l

〈Kn〉 dJn, (15)

where l is the periodic orbit of the Hamiltonian system (5). Using the Stokes theorem, Eq. (15)

can then be transformed to

2πΛ̇ ≈
∫

M

(
∂〈Gn〉
∂Jn

+
∂〈Kn〉
∂θn

)
dJn dθn, (16)

where M is the oriented area of the phase space (Jn, θn) encircled by l. (The area sign is positive

for clockwise-rotating orbits and negative otherwise.) Assuming that the system oscillates in a

small vicinity of the stable point (J̄∗
n, θ̄

∗
n), and neglecting the variations of ∂〈Gn〉/∂Jn on this scale,

one can approximate:

Λ̇

Λ
≈ ∂〈Gn〉

∂Jn
, (17)

where we used Λ = (2π)−1
∫
M dJn dθn. This shows that the phase space within the (Jn, θn) orbit

grows or shrinks depending on the sign of ∂〈Gn〉/∂Jn. If ∂〈Gn〉/∂Jn > 0, a particle perturba-

tion from the stable stationary surface grows exponentially, thus indicating dissipation-induced

instability as introduced in the general theory of dynamical systems [19, 20].

The subset of the local stationary surface S̄ close to the stationary surface S of the original

Hamiltonian system, for which ∂〈Gn〉/∂Jn < 0, is an attractor of the system with friction. Specif-

ically, trajectories are pulled toward this surface due to friction, and further motion along S̄ is
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determined by the properties of the dissipation function ξ. Notice also that the attracting part

of S̄ is generally characterized by a specific value of θ∗n, therefore indicating the phase bunching

occuring in the system. At intersections of S̄ with 〈Gi<n〉 = 0 (which is, generally, a set of one-

dimensional curves in n-dimensional space J), the attractor has stationary points. The stability of

these points in the Ji<n subspace can be determined by calculating the eigenvalues of the matrix

Dij ≡ ∂〈Gi〉/∂Jj . Specifically, if there is at least one eigenvalue of Dij with a positive real part,

the corresponding stationary point is unstable.

B. Wave-particle system

Suppose now that the generalized dynamical system that we introduced above actually describes

the interaction between a particle and a wave, with ω0 being the wave frequency; hence, one may

ask what happens to the wave action Iw as the friction force ξ is applied to a particle. Despite the

total action in the particle-field system decays (by definition of ξ), Iw may, in fact, grow, meaning

that the wave is amplified through dissipation. Below, we derive the general conditions under

which such a dissipative amplification of the wave is possible.

Consider system where the wave is treated as a single independent degree of freedom. The

corresponding Hamiltonian then reads as

H ′ = H0(I) + εH1(I, E) cos(! · φ− ψ) + ω0Iw, (18)

where ψ = ω0t is the wave canonical phase, and Iw is the action variable conjugate to ψ [21].

Instead of the generating function (2), take

Φ = J1φ1 + · · ·+ Jn−1φn−1 + Jn(! · φ− ψ) + Iψ, (19)

so I = Iw+Jn is the new action representing the total number of quanta in the two resonant degrees

of freedom, θn and ψ. Then, (Ji, θi) are the new actions and angles correspondingly, defined, as

before, through Eqs. (3) and (4), and

θn = ! · φ− ψ. (20)

Since the new Hamiltonian, H′ = H ′, or

H′ = H0(J) + εH1(J , I) cos θn + ω0(I − Jn), (21)

does not depend on ψ or θi<n, one concludes that Ji<n and I are constants of motion.

In the presence of a dissipative force ξ on the particle, one then obtains, like in Sec. IIA:

〈Ḣ′〉 =
∑

i<n

〈
∂H′

∂Ji
Gi

〉
+

〈
∂H′

∂Jn
Gn

〉
+

〈
∂H′

∂θn
Kn

〉
+

〈
∂H′

∂I GI

〉
, (22)

where the effective dissipative force GI corresponding to I [in the sense of Eq. (7)] satisfies GI =

Gn. (Remember that, without interacting with the particle, the wave is assumed undamped.)
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Close to S̄, the second and the third terms are negligible; then, 〈Ḣ ′〉 ≈ Ω · 〈G〉, where Ω =

(ω1, . . . ,ωn−1,ω0). Therefore, the force ξ dissipates energy if [22]

Ω · 〈G〉 < 0. (23)

Even when the latter is satisfied, though, the wave energy does not necessarily decay. Indeed,

consider the evolution of the wave action Iw:

İw = 〈Gn〉 − J̇n. (24)

Assuming, as before, that the system operates near S̄, one obtains:

İw = 〈Gn〉 −
∑

i<n

∂J̄∗
n

∂Ji
〈Gi〉. (25)

The same can be written as

İw =
∑

i≤n

〈Gi〉
∂R

∂Ji
, (26)

where R(J1, . . . , Jn) = Jn − J̄∗
n(J1, . . . , Jn−1). Hence, İw equals the derivative of R along 〈G〉 in J

space:

İw = 〈G〉 ·∇JR. (27)

On the other hand, since R is constant (zero) on the stationary surface, the gradient of R in J

space, ∇JR, is orthogonal to S̄. Particularly, since ∂R/∂Jn > 0, the vector ∇JR points toward

larger Jn. Thus, the dissipation causes the wave energy to decrease (İw < 0) only if 〈G〉 at S̄

points toward the lower one of the two halves of the Jn space separated by S̄.

In principle, though, 〈G〉 can also point in the opposite direction, causing wave amplification;

that is, Iw increases in this case through dissipation, apparently, at the expense of the particle

internal energy. (Notice that this effect is different from the conventional dissipation-induced

instabilities [23–26]; in particular, the wave energy growth may not be exponential.) In Sec. III,

we illustrate how this effect is possible in a specific physical system.

III. EXAMPLE: WAVE-DRIVEN PARTICLE IN A MAGNETIC FIELD

A. Basic equations

Assume a homogeneous magnetic field of the form B0 = B0ẑ, governed by the vector potential

A0 = −x̂By, and a wave field with circular polarization, governed byAw = (mc2/q)(a0/
√
2) (x̂ cos ξ − ŷ sin ξ),

where m and q are the particle mass and charge, c is the speed of light, a0 is the normalized wave

amplitude, x̂, ŷ, and ẑ are unit vectors directed along x, y, and z correspondingly, and ξ = ω0t−kz.

The particle Hamiltonian reads as

H =
√

m2c4 + c2(P − qA/c)2, (28)
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where A = A0 + Aw, and P is the particle canonical momentum. After a series of canonical

transformations, Eq. (28) can be cast [10] into the form of Eq. (5):

H ≈ H0 − ωJ2 −
ε
√
J2

H0
cos θ2, (29)

with

H0 = c[m2c2 + 2mΩ0J2 + k2(J1 + J2)
2]1/2, (30)

J1 = p‖/k − µ̃, θ1 = kz, (31)

J2 = µ̃, θ2 = θ̃ − ωt+ kz. (32)

Here p‖ ≡ Pz is the component of the particle kinetic momentum parallel to B0, ε = mc3
√
mΩ0a0

is the normalized (yet dimensional) amplitude playing a role of the small parameter, Ω0 = qB0/mc

is the nonrelativistic Larmor frequency, and µ̃ is the canonical momentum, which is related to the

particle magnetic moment µ ≡ p2⊥/(2mΩ0) (here p⊥ is the kinetic momentum transverse to B0) as

µ = µ̃+
mc2a20
4Ω0

− a0c

√
mµ̃

Ω0
cos(θ̃ − ωt+ kz). (33)

B. Radiation friction

The radiation reaction four-force on a particle reads as [27]:

gi =
2q3

3mc3
∂F ik

∂xl
uku

l − 2q4

3m2c5
F ilFklu

k +
2q4

3m2c5

(
Fklu

l
)(

F kmum
)
ui, (34)

where Fik is the electromagnetic four-tensor, and ui is the particle four-velocity. Since the domi-

nant motion in our case is assumed [10] to be the cyclotron motion (rather than the wave-driven

oscillations), keep only the terms due to the static field B0; then,

gx = − 2q4

3m2c5
B2

0 [(u
x)2 + (uy)2 + 1]ux, (35)

gy = − 2q4

3m2c5
B2

0 [(u
x)2 + (uy)2 + 1]uy, (36)

gz = − 2q4

3m2c5
B2

0 [(u
x)2 + (uy)2]uz. (37)

Using an approximate relation µ̃ ≈ (p2x + p2y)(2mΩ0)−1 and Eqs. (35) and (36), one obtains

〈G2〉 ≈ −κJ2
γ̃

(
2J2 +

mc2

Ω0

)
, (38)

where κ = (4q2Ω3
0)(3m

2c5)−1, and γ̃ = H0/(mc2). To find 〈G1〉, recall that J1 = pz/k − J2, and

thus G1 = ṗz/k −G2, where ṗz can be taken from Eq. (37):

ṗz ≈
cgz

γ̃
= − 4q2Ω3

0

3m2c5γ̃
k(J1 + J2)J2. (39)

Therefore,

〈G1〉 = −κJ2
γ̃

(
J1 − J2 −

mc2

Ω0

)
. (40)
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FIG. 1. (Color online) Two stationary curves plotted for n0 = 0.5 and n0 = 1.5 for ε = 0.01, ω = 0.98Ω0

(in units m = q = c = 1). The stable parts of the curves are solid and the unstable parts are dashed. The

curve G1(J1, J2) = 0, which is a straight line here, intersects the stationary curves for n0 = 1.5 and n0 = 0.5

in one and two points correspondingly. The direction of the dissipation-driven drift along the stationary

curves is shown with arrows.

C. Stationary points and dissipative dynamics

Consider now how the dissipative force G affects the average dynamics, taking into account

that the particle remains attached to the stationary curve S̄, or J̄∗
2 (J1), that we found in Ref. 10

(Fig. 1). Since

∂〈G2〉/∂J2 < 0, (41)

the dissipation makes this curve an attractor (as discussed in Sec. II), in contrast to some other

dynamical systems, in which the radiation friction can lead to an instability [13]. The stationary

points A(j) ≡ (J (j)
1 , J (j)

2 ) on this attractor are found from its intersection with the curve 〈G1〉 = 0,

which, according to Eq. (40), represents a straight line in (J1, J2) space, given by

J1 − J2 = mc2/Ω0. (42)

Depending on the wave refraction index, n0 ≡ kc/ω0, there can be one or two stable stationary

points, as seen in Fig. 1 [10]. Using Eq. (42) together with the equation for S [10], one can find

A(j) explicitly to the leading order in ε, at least for ω0 close to Ω0 and |n0 − 1| " 1. Specifically,

at n0 > 1, there is only one stationary point, A(1) = (J (1)
1 , J (1)

2 ), with

J (1)
1 ≈ mc2/Ω0, (43)

J (1)
2 ≈ ε2(3 + 2

√
2)

8m2c4Ω2
0

. (44)



9

whereas at n0 < 1, there exist two such points, A(2) ≈ A(1) and A(3) = (J (3)
1 , J (3)

2 ), with:

J (3)
1 ≈ mc2Ω0

4ω2(1− n0)
, (45)

J (3)
2 ≈ mc2

Ω0

[
Ω2
0

4ω2(1− n0)
− 1

]
. (46)

Since

∂〈G1〉/∂J1 < 0, (47)

each of the stationary points A(j) (j = 1, 2, 3) is stable, i.e., attracts trajectories lying in its

vicinity (Fig. 2). Hence, the particle response to the radiation friction in the system considered

here can be summarized as follows: First, the particle is picked up by the wave and is accelerated

by the light pressure. Yet, the altered longitudinal velocity affects the detuning from the cyclotron

resonance and, thus, also the energy of wave-driven oscillations. On the other hand, the latter

energy can either decrease or increase, depending on the initial conditions, because the stationary

curve J∗
2 (J1) is a multi-valued function (Fig. 1). Specifically, if a particle is originally closer to the

branch connected to A(1) (at n0 > 1) or A(2) (at n0 < 1), then it will be further attracted to this

branch and follow it toward the equilibrium, losing the transverse energy. On the other hand, if a

particle is instead closer to the branch connected to A(3) (this is only possible at n0 < 1), it will

follow the branch toward higher J2, thereby increasing the transverse energy (Figs. 1 and 2).

The time scale for these processes can be estimated as follows. To the stationary curve, a particle

is attracted on the time scale δtΛ derived from Eq. (17), with 〈G2〉 ≈ −κJ2mc2/Ω0 [Eq. (38)], where

we assumed, for simplicity, that the particle motion is nonrelativistic. Then,

δtΛ ∼ Ω0

mc2κ
≈ 2.6 s× M3

Z4B0[T]2
, (48)

where M is the particle mass in the units of the electron mass, Z is the particle charge in the units

of the electron charge, and B0[T] is the static magnetic field measured in Teslas. For the motion

along the curve, the time scale δt is found from:

J̇2
J2

=
dJ̄∗

2

dJ1

J̇1
J2

= −κ

γ̃

dJ̄∗
2

dJ1

(
J1 − J2 −

mc2

Ω0

)
≈ dJ̄∗

2

dJ1

mc2κ

Ω0γ̃
. (49)

When |dJ̄∗
2/dJ1| ∼ 1 (on the negative-mass branch), one has δt ∼ δtΛ; however, on the low-energy,

quasi-flat branch J̄∗
2 (J1), δt can be much larger.

D. Negative-mass effect with radiation friction

Now let us study whether the wave-particle interaction leads to wave damping or amplification.

As shown in Sec. II B, the wave-particle interaction in the presence of friction can lead to wave

damping (İw < 0) or wave amplification (İw > 0). Assuming that the particle is nonrelativistic
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FIG. 2. (Color online) Two trajectories of a particle in (J1, J2) space obtained by numerical integration

of the motion equations corresponding to the Hamiltonian H [Eq. (28)] and added radiation friction g

[Eqs. (35)-(37)]. In this example, n0 = 0.5, ω = 0.97Ω0, ε = 0.01, and m = c = q = 1. Two initial

particle states are shown with solid disks at J1 = 0.8 and J1 = 2.0. Both particle trajectories asymptotically

converge (see the arrows) to the intersection (circle) of the stationary curve and the curve given by G1 = 0

(dashed), yielding a stationary point A(3) [cf. Fig. 1].

(or weakly relativistic), one can rewrite the condition for amplification, İw > 0 using Eq. (25) as

dJ̄∗
2/dJ1 < 〈G2〉/〈G1〉. Using Eqs. (38) and (40), this also rewrites approximately as

dJ̄∗
2

dJ1
<

2J2 +mc2/Ω0

J1 − J2 −mc2/Ω0
. (50)

Interestingly, Eq. (50) coincides with the necessary and sufficient condition for the particle “effective

parallel mass” m‖ to be negative; cf. Eq. (56) in Ref. 10. Hence, we can summarize the results of

this section also as follows. All particles with negative parallel mass exhibit slow drift along the

stable stationary curve, driven by the light pressure and accompanied by the wave amplification.

The corresponding dynamics turns out to be “stable”, in respect that the particle transverse energy

is monotonically decreasing due to cyclotron cooling. On the other hand, some of particles with

positive parallel mass exhibit “unstable” dynamics, i.e., while the particles are accelerated by the

light pressure, their transverse energy also grows due to cyclotron heating. The characteristic

time of the particle drift along the stable stationary surface S̄ is given by Eq. (49). At B ∼ 1T,

it is of order of seconds for electrons and 109 s for ions. Hence, we can conclude that the NME

predicted in Refs. 8 and 10 persists through dissipation and thereby represents a robust physical

effect, potentially observable in experiment.

IV. CONCLUSIONS

In this paper, we showed that the effect of radiation friction can be included in the Hamiltonian

treatment of wave-particle interactions with autoresonant phase-locking, yielding a generalized

canonical approach to the problem of dissipative dynamics near a nonlinear resonance. As an
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example, the negative-mass effect exhibited by a charged particle in a pump wave and a static

magnetic field is studied in the presence of the friction force due to cyclotron radiation. Particles

with negative parallel masses m‖ are shown to transfer their kinetic energy to the pump wave, thus

amplifying it. Counterintuitively, such particles also undergo stable dynamics, decreasing their

transverse energy monotonically due to cyclotron cooling, whereas some of those with positive m‖

undergo cyclotron heating instead, extracting energy from the pump wave.
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drecht, 1999), NATO ASI Ser. Math. Phys. Sci. 533, p. 193.

[18] Note that Λ is not the same as the average Jn, because dθn changes its sign along the orbit.

[19] R. Krechetnikov and J. E. Marsden, Rev. Mod. Phys. 79, 519 (2007).

[20] O. N. Kirillov and F. Verhulst, Z. Angew. Math. Mech. 90, 462 (2010).

[21] I. Y. Dodin and N. J. Fisch, Phys. Lett. A 372, 6111 (2008).
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