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A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence
[T.-D. Lee, “On some statistical properties of hydrodynamical and magnetohydrodynamical fields,” Q. Appl. Math. 10,
69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic
equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various
situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization
also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and
N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized
energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are
made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal
shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved
quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are
also discussed.

I. INTRODUCTION

Plasma dynamics encompasses a hierarchy of scales with
distinct physical processes. At scales much larger than the
mean free path and gyroradius, and time scales much larger
than the collision time and gyroperiod, the magnetohydrody-
namics (MHD) model is good (and is often quite useful over
a wider range of collisionality, particularly for phenomena
where the parallel kinetic dynamics are not important); while,
in the opposite limit of high frequencies and small scales, a
complete kinetic description with the Boltzmann or Vlasov
equation is necessary. In between, for frequencies well below
the ion cyclotron frequency but that may still involve scales
comparable to the gyroradius, a detail of the particle helical
motion around the field line, the cyclotron angle, may be aver-
aged out, resulting in a reduced system called gyrokinetics.1–6

With one dimension (the cyclotron angle) and the fast time
scales associated with that dimension excluded, gyrokinetics
helps the tractability of turbulent kinetic cascades of plasma
turbulence numerically and analytically.

In this contribution, we will present the equilibrium statis-
tical mechanics of the Fourier Galerkin truncated gyrokinetic
system and discuss the possible implications for plasma tur-
bulence.

Equilibrium-statistical-mechanics approaches to explore
turbulence have long been attempted to identify the flows or
to provide some relevant solutions to track the mechanisms
of fluid turbulent motions, which have been very illuminat-
ing and promising, if not completely successful.7,8 One sim-
ple but efficient strategy, initiated by Lee,9 is calculating the
Gibbs statistics of the Galerkin-truncated system: The flow
of the Euler equation in phase space is incompressible (where

a)Also at Princeton Plasma Physics Laboratory.

the coordinate axes σi(k) of this phase space are the real and
imaginary parts of the Fourier amplitude of the incompress-
ible velocity field with an upper bound of the wave number
k), i.e., the dynamics of σi(k) satisfies the Liouville theo-
rem, by which an equipartition of energy, which was consid-
ered as the conserved quantity, among σs was then predicted
(c.f. Appendix A for a pedagogical elaboration). There are
several reasons that the study of the statistical mechanics of
such idealized systems can be of interest.10–12 First is that this
can give analytic (or semi-analytic) predictions for the equi-
librium statistics that can be used as a nonlinear benchmark
to test codes. Such nonlinear analytic tests are rare and thus
valuable. (This has been useful for fluid codes and, in plasma
physics, for particle-in-cell codes,13–17 and could be used for
continuum kinetic codes as well.) Second, such analytic spec-
tra can also be useful test cases for analytic theories of tur-
bulence. Equilibrium statistics has been shown to have subtle
and deep relevance to statistically nonequilibrium turbulence.
It has been used to provide insights into two-dimensional (2D)
guiding-center plasma and 2-D vortex fluid models,10,18,19,
and other plasma models20,21. More recently, it has provided
insights22 into the unexpected phenomena of spontaneous
“spin-up” in bounded 2-D fluid turbulence simulations.23,24

(Interestingly, a current research topic in the fusion field is
spontaneous rotation observed in tokamaks.25,26) The most
well-known result from this approach may be the prediction
of inverse energy cascade in two dimensional turbulence by
Kraichnan,27 following which Frisch et al.28 calculated the
magnetohydrodynamic (MHD) absolute equilibrium and il-
lustrated how the inverse cascade of magnetic helicity may
help explain the generation of large-scale magnetic fields in
some astrophysical systems. Another example is how the con-
cept of ‘partial thermalization’ has recently been used to un-
derstand some observed phenomena such as the ‘bottleneck’
near dissipation scales in Fourier space and the reduction of
intermittency, or its scaling, in physical space,29,30 which em-
phasizes the persistence of some aspects of equilibrium statis-
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tical mechanics in turbulence, complementing the other side
of our knowledge of the persistence of aspects of cascade
physics beyond the inertial range (see, e.g., Zhu31). Revis-
iting and further extending such powerful tools to accumulate
relevant knowledge and to examine the relevance to definite
realities is then important. More recently, this approach has
been taken to analyze Hall MHD by Servidio et al.,32 find-
ing that, among others, equipartition of kinetic and magnetic
energy predicted by Lee9 for Alfvénic MHD turbulence no
longer holds. Here we will take this paradigm to investigate
the gyrokinetic model of plasma turbulence. The nontrivial
new feature in our problem is that the integrations over the
distributions are functional integrals because of the extra de-
pendence on velocity of the gyrokinetic variable.

More generally, understanding the statistical mechanics of
truncated gyrokinetics can help shed light onto the general na-
ture of nonlinear coupling in these equations, and phenom-
ena such as direct or inverse cascades. A better understand-
ing of nonlinear processes in gyrokinetics may also help in
the development of more effective sub-grid models for Large-
Eddy Simulations, and could improve understanding of the ul-
timate heating mechanisms as the fluctuations cascade to very
small spacial and velocity scales where collisional dissipation
occurs.4,33

Related to these sub-grid dissipation issues, the three-
dimensional (3D) energy spectrum of thermal fluctuations that
we calculate here for a discretized Eulerian gyrokinetic al-
gorithm turns out to be closely related to the noise spectrum
calculated earlier for particle-in-cell (Lagrangian) gyrokinetic
algorithms.34

In the two-spatial-and-one-velocity-dimension case, the
negative temperature state, leading to the condensation of the
generalized energy at the lowest modes, indicates a generic
feature of inverse energy cascade. Comparisons are made with
some classical results, such as those of Charney-Hasegawa-
Mima in the cold-ion limit, though more generally the spectra
are modified by finite Larmor radius (FLR) effects which de-
pend on the temperature parameters. The shape of the statis-
tical equilibrium for gyrokinetics in three spatial and two ve-
locity dimensions, where there is just one conserved quantity,
has a universal energy spectrum shape, resulting from FLR
effects.

In the main body we emphasize the general conceptual
ideas with only necessary details for illustration; specific
mathematical calculations, physical examples and other inter-
esting digressions are referred to the appendixes for further
interests.

II. FORMULATING THE PROBLEM AND CALCULATING
THE ABSOLUTE EQUILIBRIA

To be self-contained, here we very briefly introduce the
nonlinear gyrokinetic theoretical framework under which we
will be working. We won’t review the complete history of
the linear and nonlinear gyrokinetic theories3 but will just
present the basic ideas and results, borrowing from some of
the treatment and notation of Plunk et al.35,36 There are sev-

eral published derivations of gyrokinetic equations with varied
assumptions and techniques, including recent papers with a
tutorial emphasis.5,6 The starting point is the Boltzmann equa-
tion for the particle distribution function fs(r, v, t) for plasma
species s located at r moving with velocity v at time t:

∂fs
∂t

+ v · ∂fs
∂r

+
qs
ms

(E +
v ×B

c
) · ∂fs

∂v
= C[fs]

Here the operator C[f ] accounts for the effects of collisions
and the particles with mass ms and charge qs are accelerated
by the electric (E) and magnetic (B) fields, which are subject
to the classical Maxwell equations. The next step is introduc-
ing the gyrokinetic ordering (which is fundamentally to focus
on fluctuations that are low frequency compared to the fast
gyromotion of particles around the magnetic field) and the re-
sulting expansion parameter. A key operation in the resulting
equations is the average of any particular quantity Ψ around
a ring of gyroradius ρ perpendicular (⊥) to the magnetic field
direction (‖) surrounding the gyrocenter R:37

〈Ψ〉R =

∫
Ψ(r)δ(r‖ − R‖)δ[|r⊥ − R⊥| − ρ(R)]d3r

2πρ(R)
. (1)

Using a Fourier representation Ψ(r) =
∑
k exp(−ik · r)Ψ̂k,

and considering a straight magnetic field for simplicity here,
this becomes 〈Ψ〉R =

∑
k exp(−ik ·R)J0(k⊥ρ)Ψ̂k, where J0

is a Bessel function.
Writing v = v⊥ + v‖ẑ and f = F01 + h + h.o.t. (and

suppressing the species subscript s for now), with h.o.t. rep-
resenting “higher order terms,” the resulting gyrokinetic equa-
tions for the case of slab geometry with a homogeneous
plasma in a straight equilibrium magnetic field B0 = B0ẑ)
is

∂h

∂t
+ v‖ẑ ·

∂h

∂R
+

c

B0

(
ẑ× ∂〈χ〉R

∂R

)
· ∂h
∂R

= q
∂〈χ〉R
∂t

F0

T0
,

complemented with the similar ordering-gyroaveraging treat-
ment of the Maxwell equations for the electrostatic potential
ϕ and the perturbed vector potential A which compose the gy-
rokinetic potential χ = ϕ− v ·A/c. Here the collisional term
is omitted. The zeroth and first order term F01 is in general
taken to be the equilibrium Maxwell distribution (F0) multi-
plied by a Boltzmann factor, exp(−qϕ/T0) ≈ 1− qϕ/T0. In
what follows below, as in Plunk et al.,35,36 we will work with
the gyroaveraged, perturbed, guiding center distribution func-
tion g = h − F0q〈ϕ〉R/T0, instead of with the non-adiabatic
component h, and for simplicity we will focus on the case
of electrostatic fluctuations (neglecting magnetic fluctuations,
A = 0) with one particle species governed by the gyrokinetic
equation and the other species having a Boltzmann response
of some form (discussed below).

To make it easier to compare with other codes and theo-
ries that use a variety of normalizations, and in particular to
make it easier to take the cold-ion limit in 2-D to compare
with the Hasegawa-Mima equations, we will use a generalized
normalization for space and time scales based on a reference
temperature Tr, a reference sound speed cr =

√
Tr/m, and a



3

reference gyroradius ρr = cr/Ωc, (here the mass m and Lar-
mor (cyclotron) frequency Ωc = qB/mc are for the species
that is governed by the gyrokinetic equation), but still scale v‖

and the velocity dependence of F0 and g to vth =
√
T0/m,

where T0 is the temperature of the gyrokinetic species. More
specifically, we use the following normalizations and defini-
tions, with physical (dimensional) variables having subscript
‘p’:

t = tpcr/L x = xp/ρr y = yp/ρr z = zp/L

v⊥,‖ =
v⊥,‖,p
vth

ϕ = ϕp
qL
Trρr

h = hp
vth

3L
n0ρr

F0 =
F0pvth

3

n0

The equilibrium density and temperature of the gyrokinetic
species of interest are n0 and T0; the thermal velocity is
vth =

√
T0/m; L is the reference macroscopic scale length

(i.e., system size), satisfying ρ/L � 1 for consistency with
gyrokinetic ordering.

In these normalized units, the Maxwellian background
distribution function is given by F0 = exp(−(v2⊥ +
v2‖)/2)/(2π)3/2, and the gyrokinetic equation for the gyroav-
eraged, perturbed, guiding center density g(R, v‖, v⊥, t) is
given by

∂g

∂t
+ ρ0v‖

∂g

∂z
+

(
ẑ× ∂〈ϕ〉R

∂R

)
· ∂g
∂R

= − v‖

ρ0

∂〈ϕ〉R
∂z

F0,

(2)

where ρ0 = ρth/ρr = vth/cr =
√
T0/Tr is the thermal gyro-

radius ρth of the gyrokinetic species normalized to the refer-
ence gyroradius ρr. (Our normalization reduces to that used
in Plunk et al.35,36 if we choose Tr = T0 so ρ0 = 1, which in
fact we will do in the 3-D case.)

The gyrokinetic equation expresses how the guiding centers
evolve in time due to parallel motion along the magnetic field,
the gyro-averaged E × B drift across the magnetic field (this
is the nonlinear term), and parallel electric field acceleration.
(Note that the slow E × B drift of the guiding center location
R is different than the rapid gyration velocity v⊥ of a particle
around its guiding center.)

This equation is closed by using the gyrokinetic quasi-
neutrality equation to determine the electrostatic potential,
which in Fourier space with these normalized units is given
by

ϕ̂(k, t) =
β(k)

2π

∫
d3vJ0(k⊥ρ0v⊥)ĝ(k, v‖, v⊥, t)

= β(k)

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥v⊥J0(k⊥ρ0v⊥)ĝ(k, v‖, v⊥, t),

(3)

where

β(k) =
2π

τ(k) + Tr

T0
(1− Γ̂(k2⊥ρ

2
0))

, (4)

Γ̂(k2) = I0(k2)e−k
2

is an exponentially-scaled modified
Bessel function, I0(k2) = J0(ik2), and τ(k) represents the
shielding by the species that is treated as having a Boltz-
mann response of some form, the choice of which depends

on physical situation. If we are treating the ions gyrokinet-
ically (such as for ion-scale drift waves or Ion Temperature
Gradient-driven turbulence) and using an adiabatic approxi-
mation for electrons because of their fast parallel motion rel-
ative to a typical frequency, k‖vte � ω (except for modes
with k‖ = 0), then τ(k) = (Tr/Te)(1 − δk‖), where Te is
the electron temperature and the discrete Kronecker δ func-
tion ensures that the electrons do not respond to zonal modes
with k‖ = E‖ = 0. If we are treating electrons gyrokineti-
cally (such as for small electron scale Electron Temperature
Gradient-driven turbulence) with an adiabatic approximation
for ions because k⊥vti � ω (the k⊥ = 0 mode is not driven
by any nonlinearities in a periodic domain), then τ = Tr/Ti.

Finally, one can also consider a no-response model, τ =
0, which in the 2-D cold-ion limit T0 → 0 leads to β →
2π/k2⊥, J0 → 1, and the gyrokinetic equation reduces to 2-D
hydrodynamics.

The above difference in zonal flow dynamics for ion vs.
electron scale fluctuations is responsible for a large enhance-
ment in zonal flows for ion-scale turbulence, so that zonal
flows play a key role in the saturation dynamics of ITG
turbulence38–40 and leads to the Dimits nonlinear shift in the
critical gradient.41,42 It is also responsible for a significant re-
duction in the effect of zonal flows for electron-scale turbu-
lence, so that they can get to larger amplitude than one would
at first expect from scaling from ion-scale turbulence.43,44

A. 2D Gyrokinetic absolute equilibria

For a plasma in a two dimensional (∂/∂z = 0) cyclic box,
the collisionless gyrokinetic equation in wavenumber space
reads

∂tĝ(k, v) = ẑ×
∑

p+q=k

pJ0(pρ0v)ϕ̂(p) · q ĝ(q, v) (5)

with the potential ϕ determined by the quasi-neutrality condi-
tion

ϕ̂(k) = β(k)

∫
vdvJ0(kρ0v)ĝ(k, v), (6)

where the subscript on v⊥ has been dropped and the parallel
velocity v‖ has been integrated out of the problem.

The only known rugged (still conserved after mode trun-
cation) invariants are the “energy” E = (1/2V )

∫
d2r[(τ +

(Tr/T0))ϕ2 − (Tr/T0)ϕΓϕ], and a parameterized set of
invariants related to the “perturbed-entropy” G(v) =
(1/2V )

∫
d2Rg2 (in these equations, V is the volume (area)

of the integration domain and Γ is a convolution operator
in real space given by the Fourier transform of Γ̂). (See
Refs.(4,35,and 36) and references therein for a discussion of
these conserved quantities and their interpretation.) In Fourier
space these become E = π

∑
k |ϕk|2/β(k) and G(v) =∑

k |g(k, v)|2/2. As promised in the introductory discus-
sion, following Lee,9 in what follows we will keep summa-
tions over only a finite subset K of all possible wavenumbers
k—the Fourier Galerkin truncation.45 The Fourier modes in
the lower half plane are determined by the reality condition,
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g(−k, v) = g∗(k, v), so the state of a system can be uniquely
specified by the values of the real and imaginary parts of the
Fourier coefficients g(k, v) for wavenumbers in the upper half
plane. We will thus consider a further subset K+, defined as
the modes in K in the upper half plane, which satisfy ky ≥ 0 if
kx > 0, or ky > 0 if kx ≤ 0 (see also Krommes and Rath17).
All spectral sums will be expressed in terms of the finite set of
independent modes in K+, and we denote this summation by∑̃

k.
We can discretize Eq. (6) into

˜̂ϕ(k) = β(k)

N∑
i=1

wi(k)ĝ(k, vi), (7)

where wi(k) = miviJ0(kρ0vi), and mi is the weight of
velocity grid point vi. This discrete form can correspond
to the case that ĝ(k, v) is uniform on the lattice around
node i; in general, it is used as a numerical approxima-
tion for the arbitrary distribution over v as applied in the
present continuum codes.46 For a simple midpoint integra-
tion rule on a grid that extends up to some maximum ve-
locity vmax = vN , the weight is given by the grid spacing,
mi = ∆vi. (More general integration algorithms can also
be represented in this form.47) With this velocity discretiza-
tion, there are now N + 1 conserved quantities, given by the
energy Ẽ =

∑̃
k2πβ(k)

∑N
i,j wiĝ

∗(k, vi)wj ĝ(k, vj) and the

entropy-related quantities G̃i =
∑̃

k|ĝ(k, vi)|2.
So, with the common belief of the applicability of Gibb-

sian statistical mechanics or Jaynes’48,49 idea of “statistical
mechanics as a form of statistical inference", we have the dis-
tribution function ∼ exp{−S̃}, where S̃ is a linear combina-
tion of conserved quantities, which will be written as

S̃ =

N∑
i=1

αiG̃i + α0Ẽ. (8)

Here, the αi are the “(inverse) temperature parameters” intro-
duced as Lagrangian multipliers to form the constant of the
motion. The Gibbs measure can be shown to be conserved
by the flow as a generalized Liouville theorem, the incom-
pressibility of the flow of the phase points in the hyperplane
spanned by the real and imaginary parts of the Fourier modes.9

Note that, importantly, conservation laws and the Liouville
theorem are inherited, which, with some more assumptions
(such as ergodicity) makes the discrete system possible to pro-
duce a Gibbs ensemble. A pedagogical illustration on the
Gibbs canonical distribution for this system can be found in
Appendix A.

As this is a multivariate Gaussian distribution, one can
numerically invert the matrix of the quadratic form S =∑
i,j [δijαi+α02πβ(k)wi(k)wj(k)]ĝ(k, vi)ĝ∗(k, vj), but, ac-

tually, using the Sherman-Morrison formula (see Appendix
B), one can write down the N ×N covariances

ci,j(k) = 〈g∗(k, vi)g(k, vj)〉/2

=
δi,j
2αi
−

α0πβ(k)wiα
−1
i wjα

−1
j

1 + α02πβ(k)
∑
l w

2
l α
−1
l

. (9)

The spectral energy density D(k) then can be calculated as
follows:

D(k)=
π

β(k)
〈|ϕ̂(k)|2〉 = 2πβ(k)

∑
i,j

wiwjcij

=
πβ(k)

∑
l w

2
l (αl)

−1

1 + α02πβ(k)
∑
l w

2
l α
−1
l

. (10)

The isotropic energy spectrum then is E(k) ∼ kD(k). The
spectral density of the perturbed entropy Gi is

Gi(k) =
1

2
〈|ĝ(k, vi)|2〉 = ci,i(k)

=
1

2αi

[
1− α02πβ(k)w2

i α
−1
i

1 + α02πβ(k)
∑
l w

2
l α
−1
l

]
, (11)

which expresses the nearly equipartition on Fourier modes
when the second term in the brackets has negligible
contribution.50 (Note that D(k) and Gi(k) depend on
wavenumber not only through β(k) but also through wi =
wi(k).)

The temperature parameters are determined by the values
of the invariants G̃i and Ẽ. Note that these give the invari-
ants as nonlinear functions of the temperature parameters α0

and αi, so this requires numerical solution or further analytic
approximations to invert.

Discussion concerning 2+1D gyrokinetic spectra

To gain insight into the behavior of these spectra, we will
explore them in various simplifying limits, such as the small
and large-k limits and the cold-ion Hasegawa-Mima limit. We
will also plot example spectra for particular values of the α0

and αi parameters.
The gyroaveraging by plasma particles through Eq. (1) (fi-

nite Larmor radius effects) introduces several special func-
tions whose asymptotic behaviors help shape the energy spec-
trum. For convenience, let’s write here the asymptotic recipes
for these special functions:

k → 0, J0(kρ0vi) ≈ 1− k2ρ20v2i /4, Γ̂(k2ρ20) ≈ 1− k2ρ20
k →∞, J2

0 (kρ0vi) ∼ 2 cos2(kvi−π/2)
(πkvi)

, Γ̂(k2ρ20) ∼ 1√
2πkρ0

The simplest limit to consider first is ρ0 =
√
T0/Tr → 0,

i.e., the cold-ion limit considered by Hasegawa and Mima in
their study of drift-wave turbulence51 (see Appendix C for
more details). The Hasegawa-Mima equation coincides with
the Charney equation for geophysical flows52 formulated ear-
lier, so it is also called the Charney-Hasegawa-Mima (CHM)
equation.

In this limit, J0(kρ0v) → 1, and wi(k) =
miviJ0(kρ0v) → mivi so the factor of

∑
l w

2
l (k)/αl in

Eq. (10) becomes independent of k and can just be taken as
a constant, which we will define as 1/(2π2ᾱ). In the expres-
sion for β(k) in Eq. (4), we use Γ̂(k2ρ20)→ 1−k2ρ20 and find
β(k) → 2π/(τ + k2). For comparison with Hasegawa and
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Mima, we set the reference temperature to the electron tem-
perature, Tr = Te, (the electrons are the adiabatic species for
ion-scale drift waves) and neglect the δk‖ factor and associ-
ated zonal flow effects53 in the expression for τ so that τ = 1.
Note that our normalized k = k⊥ = k⊥,pρs, where k⊥,p is the
physical perpendicular wavenumber, and ρs =

√
Te/mi/Ωci

is the ion sound radius. (Alternatively, one can consider these
as equations for electron-scale turbulence where the role of
ions and electrons is reversed: the ions are adiabatic and a cold
electron limit is used, in which case the normalizing length is
an “electron sound radius”, ρse =

√
Ti/me/Ωce.)

The result is that the isotropic energy spectrum given by
Eq. (10) reduces in the cold ion limit to

E(k) ∝ kD(k) ∝ k

ᾱ(1 + k2) + 2α0
, (12)

where ᾱ and α0 are coefficients that are determined by the
values of the invariants E and Gi. Note that this is of the
same form of a 2-parameter family of spectra as in Charney-
Hasegawa-Mima (CHM) or 2-D Euler absolute equilibrium,
E(k) ∝ k/(αCHM + βCHMk

2) (Appendix C).
A remarkable feature of this type of spectrum is that if

αCHM or βCHM are negative, corresponding to a negative
temperature, then the denominator has the opportunity of
tending to zero leading to the energy condensation at the low-
est or highest wave numbers. Energy condensation to the
lowest modes (one example is shown in Fig. 1) would indi-
cate an inverse cascade of energy following the argument of
Kraichnan for the 2D Euler equation27 (see also Hasegawa and
Mima51, and, Fyfe and Montgomery.54) It then seems that the
inverse cascade of energy in 2D gyrokinetics could be quite
a generic feature: Recent relevant theoretical arguments and
numerical simulation results4,36,55 are consistent with this.

Instead of the cold-ion limit, we now consider the more
general case of warm ions (for ion-scale turbulence, or warm
electrons for electron-scale turbulence), and for simplicity let
us take Te = Ti = Tr (so that ρ0 = 1) and neglect zonal flow
effects (so that τ = 1). In the limit k � 1, we have β(k)→ π,
and the magnitude of wi(k)2 ∝ J2

0 (kvi) will be bounded
by C/(kvi) for some constant C. Assuming positive αi for
i > 0, we find that the denominator in Eq. (10) approaches
1 for large k, so D(k) ∼ 1/k and E(k) ∼ kD(k) ∼ k0.
This could give a larger tail for gyrokinetics than for CHM,
which has ECHM (k) ∼ 1/k (for βCHM > 0). In this
same k � 1 limit, Eq. (11) simplifies to Gi(k) = 1/(2αi),
which corresponds to equipartition of the generalized entropy.
We plot the spectra over the reachable wave number regime
with given temperatures just to sketch the physical picture
without even bothering to accurately calculate the realizable
wave number bounds but only with estimations sufficient to
directly illustrate the problem. (Another way to think about
the problem and do the corresponding plots is to take the
bounds of wavenumbers to be prescribed and then realizable
temperature parameters are determined accordingly. Detailed
computations and illustrations of more example spectra with
possible physical discussions are given in Appendix D for
those who are interested.) Actually, much is already known
from the knowledge of absolute equilibria of 2D Euler27 and

FIG. 1. (Color online) Example spectra for various values of α0, with
αi = 103 exp{v2i /2} for i > 0, and ρ0 = 10−1, τ = 1. Negative
α0 state can occur that correspond to condensation of most of the
energy into the longest wavelength modes.

Hasegawa-Mima51, though it may still be helpful to give some
general physical picture, especially the finite Larmor radius
effects, with some example spectra as shown in Fig.1: The αi
for i > 0 were set by α−1i = 10−3 exp(−v2i /2). We take
N = 40 with vi homogeneously collocated between 0 and
V = 3, and, K = {k|1 6 kx,y 6 150} for positive tem-
peratures cases while K = {k|4 6 kx,y 6 150} for a neg-
ative temperature case. Some details, including the values of
mi (= 1 here), are not important, and reasonable changing
of them (as a re-normalization of the variables) won’t affect
our results. Here, as E(k) ∼ kD(k), the low-k equiparti-
tion range have E(k) ∼ k and E(k) ∼ k0 for large k, both
of which can be easily checked with the asymptotic recipe of
the special functions given in the beginning of this subsection.
The transition in between represents the FLR effects, the de-
tails of which also depend on the details of the temperature
parameters. Other temperature parameter values may change
the k ranges where such asymptotic behaviors can be realized;
or, if the truncation wave numbers in the computations kmin
and kmax (which may be relevant to some characteristic, such
as the collisional, scales in real physical systems) were not
chosen properly, we would not be able to reach such asymp-
totic behaviors.

A negative value of α0 corresponds not only to an enhance-
ment of energy at larger spatial scales (low k) but also to an
enhancement of fluctuations at larger velocity scales, as given
by Eq. (9). If α0 = 0, then this equation indicates that differ-
ent velocity grid points i 6= j are uncorrelated, while making
α0 more negative will increase the correlation length in the
velocity, particularly at low k. If collisions are included, they
will cause dissipation at both small velocity scales and small
spatial scales (through FLR effects corresponding to classical
diffusion),56 so the inverse cascade found here in 2D will tend
to reduce both forms of dissipation.

We end up this sub-section by remarking that, since the
CHM limit absolute equilibrium statistics has already been
verified by numerical experiment,54 our theoretical calcula-
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tion for gyrokinetic is then also, to some degree, endorsed.

B. 3+2D Gyrokinetic absolute equilibria

The mathematical treatment for the calculation of Galerkin
truncation absolute equilibrium is basically the same for 3+2D
and 2+1D cases. However, some brief remarks about the sys-
tem and the conserved quantity, followed by some technical
details in the calculation are still necessary.

In the full gyrokinetic equation with three spatial and two
velocity dimensions, notice that two linear terms, from paral-
lel motion along the magnetic field and from the parallel elec-
tric field acceleration, are simply added to the equation for the
(2 + 1)-D case, without changing anything about the nonlin-
ear term. While the gyroaveraged E cross B drift conserves E
and G separately, the parallel motion makes them talk to each
other and combines them into another conserved quantity, the
generalized energy W = E+Wg0 (see Refs.(4,33,36,and 57)
and references therein for further discussions of this quantity):

W =

∫
d3r

2V
[(1 + τ)ϕ2 − ϕΓϕ] +

∫
d3v

∫
d3R

2V

g2

F0
. (13)

(For simplicity in all of our 3+2D work, we will set the refer-
ence temperature Tr used in normalizations to the temperature
of the kinetic species T0, so ρ0 = 1.) The Fourier Galerkin
truncated form of the generalized energy is

S = 2
∑̃

k

{
π

β(k)
|ϕ̂(k)|2 + π

∫∫
v⊥dv⊥dv‖

|ĝ(k,v)|2

F0

}
.

We will discretize velocity space in a way that makes it easy
to reduce the previous 2D spatial + 1D velocity results to the
3D spatial + 2D velocity results here. Specifically, we will
discretize velocity integrals as∫

d3vg(v) = 2π

∫ ∞
0

dv⊥

∫ ∞
−∞

dv‖v⊥g(v‖, v⊥)

≈ 2π

N∑
i

miv⊥,ig(vi), (14)

where i now indexes over all points vi = (v⊥i, v‖i) in the
2D velocity space grid. For a logically rectangular mesh in
(v⊥, v‖) there would be a total of N = Nv⊥Nv‖ grid points,
with Nv⊥ points in the perpendicular velocity direction and
Nv‖ in the parallel velocity direction. (As in the 1D ve-
locity case, for a simple midpoint integration algorithm, mi

is the weight of the i’th velocity cell, mi = ∆v⊥,i∆v‖,i,
while more generally the weights mi and grid point locations
(v⊥,i, v‖,i) can be chosen to give high-order Gaussian quadra-
ture.) The 2D velocity generalization of Eq. (7), the dis-
cretized quasineutrality equation to determine the potential,
now reads ϕ̂(k) = β(k)

∑
i wi(k⊥)ĝ(k, vi), where wi(k⊥) =

miv⊥,iJ0(k⊥v⊥,i).
We then can calculate the absolute equilibria following the

same procedure as in the 2D case, but now only one inverse

temperature parameter γ shows up in the canonical distribu-
tion ∼ exp{−γS}. Using the above velocity discretization
for S̃ = γS = γ(E +Wg0) gives

S̃ = γ
∑̃

k
2πβ(k)Σi,jwiĝ

∗(k,vi)wj ĝ(k,vj)

+γΣNi=12πmiv⊥,i

∑̃
k
|ĝ(k,vi)|2/F0(vi)

We note from this that a negative temperature is not re-
alizable any more. Comparing this expression for the 3D
S̃ with the 2D result in Eq. (A1), we see that they become
identical if we make the substitutions α0 = γ and αi =
2πγmiv⊥,i/F0(vi). All of the 2-D results thus generalize to
the 3-D case with these variable substitutions. For example,
the electrostatic component of the spectral energy density in
Eq. (10) becomes

D(k) =
1

2γ

[
β(k)

∑
imiv⊥,iF0(~vi)J

2
0 (k⊥v⊥,i)

1 + β(k)
∑
imiv⊥,iF0(~vi)J2

0 (k⊥v⊥,i)

]
(15)

In the small lattice size limit50, where we
can use 2π

∑
imiv⊥,iF0(~vi)J

2
0 (k⊥v⊥,i) ≈∫

d3vF0(~vi)J
2
0 (k⊥v⊥,i) = Γ0(k2⊥), the electrostatic po-

tential spectral density becomes

〈|ϕk|
2〉 =

β(k)

π
D(k) =

1

γ

Γ0(k2⊥)

(τ + 1− Γ0(k2⊥))(τ + 1)
(16)

The shape of this spectrum is consistent with the discrete-
particle thermal noise spectrum for gyrokinetic PIC codes cal-
culated by one of us previously, as given in Eq. (5) of Ref.(34),
which reduces to the above result in the limit where numeri-
cal details such as spatial filtering and finite differencing58 are
ignored by setting SG(k) = 1 and d‖(k) = 1, and by taking
the τ = 1 limit in our expression. (The thermal spectrum in
Ref.(34) was calculated for the case of one gyrokinetic species
and one adiabatic species, as also assumed in the present pa-
per, and also accounted for various numerical factors as used
in typical PIC codes. The first calculations of the discrete-
particle thermal noise spectrum for gyrokinetic particle codes
are in Refs.(16 and 59) and were for the case where all species
were treated gyrokinetically.)

Ref.(34) found good agreement between this analytic ther-
mal spectrum and the fluctuation spectrum in a PIC code in
a noise-dominated regime, providing support for the calcula-
tion done here. Readers interested in a discussion of noise in
numerical schemes are referred to Appendix E.

Relevance to 3D plasma turbulence

There are several interesting features of the 3D spectrum in
Eq. (16). Note that it is independent of k‖, i.e., the equilib-
rium spectrum corresponds to equipartition in k‖, so presum-
ably the nonlinear dynamics of a turbulent system should tend
to drive cascades to high k‖. (Gyrokinetics assumes k‖ � k⊥,
so there is a limit to how far this spectrum can extend within
this model.) Also note that even with the finite-Larmor ra-
dius averaging in gyrokinetics, the electrostatic potential spec-
trum falls relatively slowly at high k⊥ since Γ0 ∼ C/k⊥, so
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the electrostatic energy spectrum is flat at high wave number,
Eϕ(k⊥) ∝ k⊥|ϕ(k)|2 ∼ k0⊥.

For ion-scale non-zonal flows with adiabatic electrons, the
long-wavelength limit of Eq. (16) is 〈|ϕk|2〉 = 1/(2γ) (set-
ting τ = Tr/Te = Ti/Te = 1 for simplicity). But for
zonal flows, which have ky = kz = k‖ = 0 and thus have
τ = 0 (see the discussion after Eq. (4)), the long wavelength
limit is 〈|ϕZF,k|2〉 = 1/(γk2x) (here the “ZF” subscript refers
to the zonal flow component of the potential), so the ampli-
tude of long-wavelength zonal flows is enhanced relative to
other nearby modes by a factor of ∼ 1/kx. (While the re-
sulting zonal potential blows up as kx → 0, the shearing rate
∝ dvy/dx ∝ d2ϕZF /dx

2 ∝ k2xϕZF,k ∝ kx remains well-
behaved.) However, one of us, GWH, tends to believe that
this enhancement in the 3-D statistical equilibrium is interest-
ing but by itself is probably not enough to explain the observed
importance of zonal flows in ITG turbulence, since there are
very few zonal modes compared to the many other modes with
ky 6= 0 or k‖ 6= 0. The importance of ITG zonal flows is prob-
ably due to other effects, such as the way in which the lack of
adiabatic electron response causes an enhancement of the sec-
ondary instabilities60 (or related parametric instabilities) that
drive zonal flows.

However, much stronger enhancement of zonal flows can
exist in the 2-D absolute equilibrium of Eq. (10) where nega-
tive α0 can strongly enhance modes with τ = 0. The mech-
anism for this enhancement is related in a way to the en-
hancement of zonal flows in secondary/parametric instabilties.
This 2-D equilibrium effect might be related to the enhance-
ment of zonal flows in an actual turbulent plasma, if there
are regions of the turbulent spectrum where the parallel dy-
namics is slow compared to the nonlinear decorrelation rate
k‖vt � ∆ωNL ∼ k⊥vE×B and so act in a quasi-2D man-
ner. However, there will also be competition from 3D effects,
which limits the inverse cascade and tends to push the spec-
trum towards equipartition in k‖.

The 2D and 3D gyrokinetic absolute equilibrium results
may also provide insight into other aspects of driven non-
equilibrium gyrokinetic turbulence, such as the directions of
turbulent cascades in (k‖, k⊥). The inverse cascade found in
2D may imply that in regions of a turbulent spectrum where
k‖vt � k⊥vE×B , then the interactions may be quasi-2D and
undergo an inverse cascade to smaller k⊥, simultaneously with
a cascade to higher k‖ (towards equipartition in k‖), until the
parallel dynamics becomes competitive with nonlinear terms,
k‖vt ∼ k⊥vE×B . At this point it might then switch to a
forward cascade to higher wavenumber, but along a path in
(k‖, k⊥) space such that k‖vt ∼ k⊥vE×B . Thus this supports
the critical balance hypothesis suggested for gyrokinetic tur-
bulence in Refs.(4 and 33), that the turbulence will primarily
cascade along a path in wave number space that has parallel
linear time scales comparable to perpendicular nonlinear time
scales, similar to critical balance ideas in astrophysical Alfvén
turbulence in Refs.(61 and 62). Further analysis of gyrokinetic
statistical equilibria may lead to more specific insights.

There are other more subtle physics, such as the bottleneck
and its associated weakening of intermittency growth issues,63

as proposed to be explained as partial thermalization by Frisch

et al.29 For example, as the Fourier transform is linear, the
physical-space field of the Fourier Galerkin truncated absolute
equilibria would also be Gaussian, whose residual may result
in a resistance in the departure from Gaussian (intermittency)
for the turbulence fluctuations.30 Before examining the details
of collision and wave-particle interaction mechanisms, so far
we unfortunately are not able to say anything more on this for
the plasma turbulence. Nevertheless, such considerations em-
phasize the importance of implementing the correct collision
operators (which is necessary in many physical situations) and
in interpreting the numerical data.

III. CONCLUSION AND FURTHER REMARKS

Here we have extended previous work on statistical equi-
libria of 2D and 3D hydrodynamics and MHD to the case of
higher-dimensional gyrokinetics. Previous work in hydrody-
namics found that there was a profound difference between
2D and 3D, because the existence of 2 invariants in 2D lead to
the existence of negative temperature equilibrium states with
most of the energy condensing into the longest wavelengths in
the system (related to the inverse energy cascade in 2D turbu-
lence), while in 3D there was only a single invariant resulting
in energy equipartition among Fourier modes (related to the
forward cascade of energy to small scales in 3D turbulence).

For gyrokinetics in the limit of 2 spatial and 1 velocity di-
mension (2+1D), we have worked out the Gibbs equilibrium
in the presence of N + 1 invariants (where N is the number
of velocity grid points) and find that, like 2D hydrodynam-
ics, this can also exhibit negative temperature states where
much of the energy condenses to the longest wavelengths
in the system. For a range of typical parameters explored
so far, 2+1D gyrokinetics exhibits a very strong inverse cas-
cade. At high k⊥, the 2D gyrokinetic energy spectrum has an
asymptotically-flat tail, E(k⊥) ∼ k0⊥, which is enhanced rel-
ative to the high k⊥ limit of Hasegawa-Mima’s thermal spec-
trum, E(k⊥) ∼ 1/k⊥. The amplitude of this tail in gyrokinet-
ics is found to depend sensitively on the ratio of Gi to energy.

We also calculated the statistical absolute spectrum for
Fourier-truncated gyrokinetics in the full 3 spatial and 2 ve-
locity dimensions, and found that the result was equivalent
to earlier thermal noise spectra calculated for particle-in-cell
gyrokinetics, indicating that the random phase and amplitude
of shielded Fourier components of the distribution function in
a continuum representation is related to the random position
and weights of shielded particles in the Klimontovich repre-
sentation of a PIC code. The resulting 3-D gyrokinetic spec-
trum corresponds to equipartition in k‖, and even with all of
the finite-Larmor radius averaging in gyrokinetics, the elec-
trostatic potential spectrum only falls relatively slowly at high
k⊥, so Eϕ(k⊥) ∝ k⊥|ϕ(k)|2 ∼ k0⊥.

As described in the introduction, statistical equilibria spec-
tra as calculated here have several useful purposes. In partic-
ular, they provide an analytic nonlinear test for benchmarking
of gyrokinetic codes, which could be pursued in future work.
They may also provide insights into certain aspects of the non-
linear dynamics in driven, non-equilibrium gyrokinetic turbu-
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lence simulations. For example, in regions of the turbulent
spectrum where the parallel linear dynamics is slow compared
to the nonlinear decorrelation rate, k‖vt � k⊥vE×B , then the
interactions may behave in a quasi-2D behavior, which can
cause an inverse cascade to smaller k⊥ in general, and in par-
ticular can strongly enhance the ITG zonal flows because of
the lack of adiabatic electron shielding for ITG zonal flows.
But these may be offset by the tendency towards equipartition
of the spectrum in k‖, so that eventually k‖vt ∼ k⊥vE×B and
parallel linear dynamics becomes competitive with nonlinear
perpendicular dynamics. In this region of wavenumbers, the
turbulent cascade would then switch to a forward cascade to
higher |k|, along a path where parallel and perpendicular dy-
namics remain comparable and so stay full 3D, consistent with
the critical balance hypothesis for gyrokinetic turbulence sug-
gested in Refs.(4 and 33). There are various directions in
which the present work could be extended in the future that
may further help in understanding plasma behavior in actual
experiments, such as extensions to include a kinetic treatment
of all particle species, electromagnetic fluctuations, and the
effects of magnetic curvature and grad-B drifts in toroidal ge-
ometry.
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Appendix A: Pedagogical illustration of the calculation of
the canonical ensemble

The line of reasoning presented by T.-D. Lee9 regarding
how to apply a statistical mechanics approach to hydrodynam-
ics and MHD can be straightforwardly extended to the higher
dimensional gyrokinetic case considered here. We briefly
summarize that line of reasoning here, which also serves to
explain the notation that we use. Consider a system governed
by Eqs. (5) and (7) (with Eq. (5) evaluated at the same velocity
grid points as used in Eq.(7)). The state of a system at a partic-
ular time can be specified by a vector g in an extended phase
space of dimension NkN , where Nk is the number of Fourier
modes and N is the number of velocity grid points. The el-
ements of g are ĝ(k, vi), the complex amplitude of Fourier
modes k ∈ K+ at velocities vi, where K+ is the set of inde-
pendent modes k in the truncation K that are in the upper half
plane. One can consider an ensemble of many such systems,
and define the function P(g, t) that gives the probability of a
system being in state g at time t. For continuous dynamics,

this satisfies a conservation law ∂tP + ∂g · (ġP) = 0 where
an over-dot is used to denote a time derivative so ġ is given
by Eq. (5). A generalized Liouville theorem holds for these
equations, i.e., the flow in this extended phase space is incom-
pressible, ∂g · ġ = 0, because for a given value of k, the right
hand side of Eq. (5) vanishes if p = ±k (because q = k − p
means p× q vanishes), and thus also vanishes if q = ±k. (In
other words, the rate of change ġ(k) at any instant in time de-
pends only on the amplitude of other modes ĝ(p) with p 6= k.)

Since a Liouville theorem holds, standard results and as-
sumptions from statistical mechanics can be applied to these
equations. A generalized Liouville equation holds, ∂tP +
ġ · ∂gP = 0, i.e., the probability P(g(t), t) is constant on a
moving trajectory in this extended phase-space. Looking for
a time-independent statistical steady state, we take an equal
probability for all points along a trajectory’s path. Assuming
that the dynamics are sufficiently mixing and an ergodic hy-
pothesis holds, so that a trajectory samples all possible points
on a hyper-surface in phase-space constrained only by the
invariants, leads to the micro-canonical ensemble given by
P = Cδ(E − E0)ΠN

i=1δ(Gi − Gi0), where E = E(g) and
Gi(g) are the previously given expressions for the energy and
entropy invariants, which are functions of g, E0 and Gi0 are
the values of those invariants (set by initial conditions), and
ΠN
i=1 indicates repeated multiplication over all possible ve-

locity points i.
As is well known, for systems with a large number of de-

grees of freedom, many features of a micro-canonical en-
semble are often well-approximated by a Gibbs canonical
ensemble, P = Z−1 exp(−S) where S is a linear combi-
nation of conserved quantities, which in this case is S =
α0E +

∑
i αiGi, α0 and the N values of αi are the “(in-

verse) temperature parameters”, and Z is a normalization co-
efficient such that

∫
dgP(g) = 1. One way48,49 to derive

this is to choose P to maximize the Liouville phase-space en-
tropy SL = −

∫
dgP(g) log(P(g)) (i.e., choose P to be as

uniformly distributed as possible) subject only to constraints
on the average values of the invariants (this leads to the La-
grange multipliers α0 and αi in the canonical ensemble). For
example, the constraint on the ensemble-averaged value of the
energy is E0 = 〈E〉 =

∫
dgP(g)E(g).

[Note that the fact that a Liouville theorem is satisfied is an
important part of justifying the maximum-entropy approach
of the previous paragraph, as it means that the probability dis-
tribution P can be constant along trajectories in these coordi-
nates, which is not necessarily true in other coordinates. For
example, something that is uniformly distributed in x is not
uniform in x3.]

Inserting the expressions for the energy and entropy invari-
ants into the the expression for S gives

S = α0

∑̃
k
2πβ(k)

∑
i,j

ĝ∗(k, vi)wi(k)wj(k)ĝ(k, vj)

+

N∑
i=1

αi
∑̃

k
|ĝ(k, vi)|2 (A1)

With a little rearrangement, the Gibbs canonical distribu-
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tion becomes

P ∝ exp

(
−1

2

∑̃
k

g∗(k) ·M(k) · g(k)

)
, (A2)

This is of the form of a multivariate Gaussian distribution,
where the elements of the k-dependent, N ×N matrix M are
given by Mij = δij2αi + α04πβ(k)wi(k)wj(k), and g(k)
is the N -dimensional vector of the velocity-indexed values of
the complex amplitudes ĝ(k, vi).

Expressing g in terms of its real and imaginary parts,
g(k) = gR(k)+igI(k), note that the sum over wavenumbers
in Eq. (A2) can be written as

∑̃
kgR(k) ·M(k) · gR(k) +∑̃

kgI(k) · M(k) · gI(k) since M is real, so the real and
imaginary parts of g are uncorrelated and have the same
co-variance, 〈gR(k, vi)gR(k, vj)〉 = 〈gI(k, vi)gI(k, vj)〉 =
cij(k), where cij are the elements of the co-variance matrix
C(k) given by the inverse of M, i.e., C(k) = M−1(k).

Appendix B: Calculating the covariance matrix using
Sherman-Morrison formula

In principle, once that M(k) in Eq. (A2) is known, one
can calculate the co-variance matrix C(k) = M−1(k), and
one can then calculate various statistical properties of interest,
such as the energy spectrum of fluctuations. However, M is in
general a dense matrix, so at first it looks like this may require
a numerical treatment to invert it. To make analytic progress,
one can initially consider the limit α0 = 0, in which case
M is diagonal and easily invertible. One can then do a matrix
series expansion for small α0 and discover that it is possible to
sum the result to all orders in α0 because of the special tensor
product form of the coefficient of α0 in M. This turns out to
be a special case of the general Sherman-Morrison formula.

In linear algebra, suppose A is an invertible square matrix
and u, v are vectors and that 1 + vTA−1u 6= 0, then the
Sherman-Morrison formula reads64

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

To derive the covariance matrix C = M−1 in Eq. (9),
we use the definition of M given after Eq. (A2). Thus
in the Sherman-Morrison formula, the elements of A
are aij = 2αiδij , and we can set ui = α04πβwi
and vi = wi. Then the elements of A−1uvTA−1

are xij = α02πβ(k)wiα
−1
i wjα

−1
j , and vTA−1u =

α02πβ(k)
∑
i

∑
j wiwjα

−1
i δij = α02πβ(k)

∑
i w

2
i α
−1
i . So,

we have Eq. (9).

Appendix C: From gyrokinetics to fluids: recovering the
Charney-Hasegawa-Mima equations

We first briefly reproduce the derivation of the Charney-
Hasegawa-Mima (CHM) equations from gyrokinetics by
Plunk et al.36 with slight variation: From Eqs. (5) and (6)

we have

∂tϕ̂(k) = β(k)
∑

p+q=k

ẑ× p · qϕ̂(p)

×
∫
vdvJ0(kρ0v)J0(pρ0v)ĝ(q, v). (C1)

In the cold ion limit ρ0 → 0 (as described in Sec. II A),
the first kind zeroth order Bessel functions reduce to unity,
and β(k) to 2π/(τ + k2), and then, with substitution of the
quasi-neutrality Eq. (6) in the second line of (C1), gyrokinet-
ics reduces to CHM. In physical space, it reads

∂t(τ −∇2)ϕ = ẑ×∇ϕ ·∇(∇2ϕ) (C2)

This is the inviscid (the collision operator in Plunk et al.36 also
vanishes after integration over velocity by particle conserva-
tion) CHM equation. The scale to which gradients were nor-
malized in these equations corresponds to the Rossby defor-
mation radius in quasi-geostrophic turbulence, or to the sound
Larmor radius, ρs, in a plasma. We have left a τ dependence
in these equations for generality, as the two-dimensional Euler
equation can be obtained in the case τ = 0 (the no-response
model).

There are two invariants of the CHM/Euler equation that are
relevant to our discussion, referred to as energy and enstrophy
(although their physical interpretation depends on the specific
scale of interest):

ECHM =
1

2

∫
d2r

V
[τϕ2 + |∇ϕ|2] (C3a)

ZCHM =
1

2

∫
d2r

V
[τ |∇ϕ|2 + (∇2ϕ)2]. (C3b)

This leads to absolute equilibrium energy spectra of the form
E(k) ∝ kD(k) ∝ k/(αCHM +βCHMk

2), where αCHM and
βCHM will be determined by the values of these two invari-
ants, via ECHM = 2

∑̃
kD(k) and ZCHM = 2

∑̃
kk

2D(k).
The first invariant, ECHM , is formally the reduced energy, E,
of gyrokinetics in the cold-ion limit. The enstrophy, ZCHM ,
however is new and deserves further inspection of its origin.

The CHM equation can be written as ∂n/∂t = ẑ×∇ϕ·∇n,
where the potential is determined from the guiding-center
density n = 2π

∫
dvvg by inverting (τ − ∇2)ϕ = n. The

nonlinear term on the RHS of CHM has the property that
it can be multiplied by either the density n or the poten-
tial ϕ and then will vanish when integrated over all space.
This leads to the two standard energy and enstrophy invari-
ants used for the CHM equations. However, in gyrokinet-
ics where we keep a finite, non-zero temperature, the veloc-
ity and wavenumber dependence in the Bessel functions in
the second line of Eq. (C1) introduces extra non-local posi-
tion and velocity scale interactions that mean that ZCHM is
no longer conserved. Due to these FLR effects, gyrokinet-
ics instead has a set of invariants that hold at each velocity,
G(v) ∝

∫
d2Rg2(R, v), while CHM had an additional invari-

ant proportional to
∫
d2R(

∫
dvvg)2. This new CHM invari-

ant is not representable as a combination of the gyrokinetic
G(v) and E invariants. One way to think of this is to note
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that CHM depends only on the velocity integral of g through
n = 2π

∫
dvvg, so the CHM dynamics are independent of

any details of the velocity structure of g, thus allowing an ad-
ditional invariant that is not present in gyrokinetics because of
its FLR effects.

Appendix D: Example 2D Spectra for Specified Initial
Conditions65

Here we consider a numerical gedankenexperiment, in
which a gyrokinetic code is operated in the 2+1D limit and
is initialized with perturbations concentrated near some initial
wavenumber k0 but with no other forcing. Those perturba-
tions will then interact nonlinearly and scatter energy to other
wave numbers, while preserving certain invariants of the mo-
tion. Presumably the spectrum will eventually reach a statis-
tical steady state, and here we make plots of the energy spec-
tra expected from canonical equilibria corresponding to some
sample initial conditions. This helps provide further insight
into the nature of these equilibria.

Before making these plots, we first consider some of the
properties of spectra and the relationship between the invari-
ants and the αi parameters in more detail. For positive α0

and αi (i > 0), then the factor in brackets in Eq. (11) is
close to unity for all wavenumbers, and one can sum over
all wavenumbers to find Gi = Nk/(2αi) (where Nk ≈
π(kmax/kmin)2 is the number of Fourier modes), which can
be used to determine αi in terms of the conserved Gi. Eq.(10)
can be summed over all wavenumbers to determine the total
energy and then determine α0. For fixed positive values of
αi, the energy is a monotonically decreasing function of α0,
so if the energy is sufficiently large (for given values of the
Gi), then α0 must go negative to produce a “negative temper-
ature” state. If we perturbatively use αi ∝ 1/Gi to evaluate
the energy spectrum, and assume a Maxwellian velocity dis-
tribution for the fluctuations so Gi =

∫
d2Rg2(R, v)/2 ∝

exp(−v2), then the commonly occurring factor
∑
l w

2
l α
−1
l ∝∑

l v
2
l J

2
0 (kvl) exp(−v2) is a monotonically decreasing func-

tion of k, as is β(k), so if α0 goes negative in the denominator
of Eq. (10), it will preferentially enhance the energy in the
low-k part of the spectrum. (If the denominator of Eq. (10)
gets sufficiently close to zero for some wavenumbers, then the
factor in square brackets in Eq. (11) could differ from unity
and alter the relationship between Gi and αi assumed here.)
Note that the realizability constraint that the energy spectrum
be non-negative in this case means that the limiting value of
α0 for this set of αi’s is αlim = −[2πβ(k)

∑
l w

2
l (k)α−1l ]−1

evaluated at k = kmin. (If the enhancement of ion-scale zonal
flows due to the lack of electron response is accounted for,
then this would strongly increase the value of β for the zonal
modes, reduce the magnitude of the limiting value of α0, and
strongly enhance the amplitude of zonal flows.)

Returning to the numerical gedankenexperiment, consider
an initial perturbation of the form

g(~R, v, t = 0) = cos(k0Ry)
e−v

2/2

2π
J0(k0v) (D1)

(here we set ρ0 = 1 for simplicity), as a model that has some
characteristics of the drive by drift-wave types of instabilities.
This initial condition models what happens if a linear source
term −vE×B · ∇F0 (representing instabilities that drive drift-
wave gyrokinetic turbulence) had been turned on in the gy-
rokinetic equation for a time of order L/cr in the presence of
a background density gradient ∇F0 = −x̂F0/L, where the
eddy has a bi-normal wavenumber ky = k0. (In an actual
code, a small amount of energy must initially be put in other
Fourier modes as well, because a single Fourier mode does
not interact with itself nonlinearly.) The energy and entropy
invariants corresponding to this initial condition are E =

β(k0)Γ̂2
0(k20)/(8π) and Gi = exp(−v2i )J2

0 (k0vi)/(16π2).
Given the specified values of the energy and entropy in-

variants, it is not analytically easy in general to invert the
equations to determine the corresponding temperature pa-
rameters α0 and αi, because the energy and entropy are
nonlinear functions of the temperature parameters, as dis-
cussed after Eq. (11). That is, the entropy invariants are
related to the covariance matrix by Gi = 2

∑̃
kci,i(k),

and the energy is related by E = 2π
∑̃

k|ϕk|2/β(k) =∑̃
k4πβ(k)

∑N
i,j wiwjci,j(k), where the wavenumber sums

are over the independent set K+ and ci,j(k) is a nonlinear
function of the temperature parameters as given by Eq. (9).

A code was written to numerically carry out the inversion
using a nonlinear root solver based on Powell’s method and
Broyden’s quasi-Newton algorithm in the minpack software
package.66 To aid in finding a root, a variable transformation
was used for α0 to ensure that during the search α0 never
exceeded the lower limit set by realizability constraints that
the energy spectra be non-negative. The results in this sec-
tion used a uniformly spaced 2-D wavenumber grid,67 where
the set of retained Fourier modes is K = {k| kmin ≤ |k| <
kmax + ∆k/2}, with kmin = ∆k = 0.1, kmax = 10, and
the number of modes is Nk = 31, 576. A uniformly-spaced
velocity grid was used with N = 40 points, equally spaced
from ∆v/2 to vmax = 3+∆v/2, withmi = ∆v = 3/N . The
background plasma temperatures were set to T0 = Te = Tr so
ρ0 = 1 and an adiabiatic species response factor of τ = 1 for
simplicity, neglecting possible enhancements of zonal flows.

Fig. (2) shows the gyrokinetic equilibrium spectrum that
results from these initial conditions with k0 = 0.3. (The
wavenumbers in the figures refers to the physical kp, where
the normalized k = kpρr, and the reference gyroradius is
set to ρs =

√
Te/mi/Ωci for comparison with the cold-

ion Hasegawa-Mima drift-wave equations.) This figure also
shows the spectrum given by the Charney-Hasegawa-Mima
equations for these same initial conditions.68 Both the gyroki-
netic and CHM spectra show strong transfer of energy to large
scales relative to the initial location of the energy at k0 = 0.3,
though there is more of a tail in CHM case. Both the gyroki-
netic and CHM equations result in a negative temperature state
(α0 < 0 for the gyrokinetic case69) with most of the energy
condensed into the longest wavelengths in the domain.

Fig. (3) is similar to Fig. (2) except that the energy is ini-
tially at a higher wavenumber of k0 = 5.0. There are now sig-
nificant differences between the gyrokinetic and Hasegawa-



11

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1  1  10

k 
E(

k)

k!s

CHM k0!=0.3
GK k0!=0.3

FIG. 2. (Color online) Spectra for 2+1D gyrokinetics (GK) and for
the Charney-Hasegawa-Mima (CHM) equations, corresponding to
the model initial conditions with energy initially at k0ρs = 0.3. Both
spectra show a significant transfer of energy to larger scales, result-
ing in a negative temperature state with most of the energy condensed
into the longest wavelength in the domain.

Mima spectra, with gyrokinetics still showing a very strong
transfer to large scales while the energy remains primarily at
higher k in the Hasegawa-Mima case. This is because the
cold-ion Hasegawa-Mima equations have an additional invari-
ant (see Appendix C), the enstrophy (the mean squared vor-
ticity), which is not conserved by the general warm-ion gy-
rokinetic equations because of FLR effects in the Bessel func-
tions. (This is related to the fact that although the 2+1D gy-
rokinetic spectrum in Eq. (12) for the T0/Tr � 1 regime has
the same 2-parameter form as the Charney-Hasegawa-Mima
(CHM) spectrum, the relationship between those 2 parame-
ters and the invariants is different for gyrokinetics than for
CHM, because CHM has an additional invariant at T0 = 0
that doesn’t exist in gyrokinetics with non-zero T0.) The ini-
tial wavenumber of k0 = 5 in Fig. (3) is sufficiently close to
the truncation wavenumber kmax = 10 that there is not much
room for the enstrophy density∝ k2E(k) to transfer to higher
wavenumber, thus inhibiting how much transfer of energy to
larger scales can occur in the Hasegawa-Mima equations.

It is possible to increase the size of the tail in the 2+1D gy-
rokinetic spectrum by increasing the amplitude of the Gi rel-
ative to the energy, as shown in Fig. (4). Considering a long-
wavelength initial condition ignoring FLR effects, this can oc-
cur if a component is added to g(R, v, t = 0) that oscillates
in velocity so that it makes no contribution to the potential ∝∫
dvvg, but does enhance Gi =

∫
d2R |g(R, vi)|2. This can

model the effects of temperature gradients in the background
F0 that drives the initial perturbation, or the build up of large
values of Gi in a long turbulence simulation without adequate
dissipation because of the entropy balance relationships,34,57

thus leading to bottleneck problems.29 Note that the depen-
dence of the tail on the enhancement of Gi is a strongly non-
linear function.70 In the limit of very largeGi/E, the spectrum
will approach equipartition among Fourier modes, E ∝ k.
One can also consider how the spectrum depends on the as-
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FIG. 3. (Color online) Spectra for 2+1D gyrokinetics and Charney-
Hasegawa-Mima, like Fig. (2) except the energy is initially at a
higher wavenumber of k0ρs = 5.0.
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FIG. 4. (Color online) Spectra for 2+1D gyrokinetics for initial con-
ditions with the energy at k0ρs = 0.3 like Fig. (2), but with the
value of the entropy invariants Gi enhanced relative to the model
initial conditions by factors of 1×, 4×, 10×, and 500×.

sumed velocity grid spacing ∆v. From numerical results, con-
firmed by analytic scalings, one finds that as ∆v goes to zero,
with fixed values of E andGi, that α0 ∝ −1/∆v goes to neg-
ative infinity (while αi → constant for i > 0), corresponding
to a negative temperature state with all of the energy in the
lowest k mode, so E(k) = 0 for all k > kmin.

Appendix E: Thermal noise spectra in numerical schemes

In the 3+2D results in Sec. (II B), we worked out the elec-
trostatic spectrum, Eq. (16) and showed that the shape agrees
with earlier results for the spectrum in a PIC code. Here we
show that the magnitude agrees as well, with the proper re-
lation between certain quantities in a continuum code and a
PIC code. Begin by defining a weighted mean-square average
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of the distribution function g2 =
∫
d3R

∫
d3v〈g2〉/(F0V ) (an

overbar is used here to indicate a combined velocity space av-
erage and an ensemble/volume average, to be distinguished
from angle brackets that indicate an ensemble average). This
uses the same velocity weighting as found in the Wg0 compo-
nent of the generalized energy in Eq. (13). After discretiza-
tion, this becomes g2 = 2

∑̃
k

∑
imici,i(k)/F0(vi). Us-

ing Eq. (11) evaluated with the coefficients given just before
Eq. (15) for the 3+2D case, and using the same approxima-
tions as used just before Eq. (16) (where velocity summations
are approximated by integrals assuming a well-resolved ve-
locity limit), one can show that

g2 =
2

γ

(
N
∑̃

k
−
∑̃

k
Γ0(k2⊥)

)
≈ NNk

γ
,

forN � 1 (recall that
∑̃

k is defined as a sum over the modes
in the upper half plane, so the total number of Fourier modes is
2
∑̃

k = Nk). We thus find that the thermal noise spectrum in
Eq. (5) of Ref. 34 for δf PIC codes (using a weighted-particle
Klimontovich representation for the distribution function) is
identical to the thermal spectrum calculated here for a contin-
uum code using a spectral representation for the distribution
function, with the identification of 1/γ = g2/(NNk) in a con-
tinuum code with w2/Np in a PIC code. So the total number
of particlesNp in the PIC code is equivalent toNNk, whereN
is the number of velocity grid points and Nk is the number of
Fourier modes in the continuum code, and the mean squared
particle weight w2 (which is called 〈w2〉 in Ref. 34) is equiva-
lent to the continuum value of the mean-square particle distri-
bution function g2. (From the PIC perspective, this is consis-
tent because the particle weights w are equivalent to δf/F0,
and in w2 =

∑Np

i=1〈w2
i 〉/Np, the marker particles have an F0

distribution.) This equivalence between continuum and PIC
thermal spectra is similar to that found in 2-D hydrodynamics
between Fourier-Galerkin and point-vortex representations of
the problem. (The finite-size particles used in most plasma
PIC codes provides a kind of ultraviolet cutoff that removes
issues that could arise from point vortices or point particles
forming tightly-bound pairs.)

The thermal noise spectrum in PIC codes can be worked
out using the test-particle superposition principle, assuming
that shielded test particles can be considered independent and
random. The equivalence of the PIC and continuum thermal
spectra indicates that one can likewise consider the random
phase and amplitude of a Fourier-mode in g at a particular
velocity (plus the plasma shielding of this mode) to be like
the random position and weight of a shielded test particle.

Since the thermal noise level 〈ϕ2〉 = 2
∑̃

k〈|ϕ̂k|2〉 scales
as g2/N , it is important for both PIC and continuum codes to
either have enough particles or velocity grid points per spa-
tial grid point so that the noise does not get too large on the
time scale of the simulation, or to have enough small-scale
dissipation to prevent the particle weights or g2 from grow-
ing too large during the simulation and causing a bottleneck
problem29 or a numerical diffusion problem.34 (We have con-
sidered the uniform plasma case in this paper where g2 is a

constant set by initial conditions, but in the case of turbu-
lence driven by a background gradient, g2 will increase in time
due to an entropy balance relation34,57 unless dissipation is ac-
counted for.) Most continuum codes avoid such problems by
employing either physical collisions or numerical dissipation
such as high order upwinding or hyperdiffusion, though work
on improved subgrid models might be able to help optimize
the performance by reducing resolution requirements. While
δf PIC simulations can formally work correctly for a given
simulation time period if enough particles are used, eventu-
ally the noise can grow in time to become a problem. PIC
codes can avoid this issue and/or reduce the particle resolu-
tion requirements by employing weight-resetting methods,71

which essentially provide some numerical diffusion to limit
the growth of the weights.
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