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Abstract

The modification of particle distributions by low amplitude magnetohydrodynamic modes is

an important topic for magnetically confined plasmas. Low amplitude modes are known to be

capable of producing significant modification of injected neutral beam profiles, and the same can

be expected in burning plasmas for the alpha particle distributions. Flattening of a distribution

due to phase mixing in an island or due to portions of phase space becoming stochastic is a process

extremely rapid on the time scale of an experiment but still very long compared to the time scale of

guiding center simulations. Thus it is very valuable to be able to locate significant resonances and

to predict the final particle distribution produced by a given spectrum of magnetohydrodynamic

modes. In this paper we introduce a new method of determining domains of phase space in which

good surfaces do not exist and use this method for quickly determining the final state of the particle

distribution without carrying out the full time evolution leading to it.

PACS numbers: 52.25.Fi, 52.25.Gj
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I. INTRODUCTION

The resonant interaction of magnetohydrodynamic (MHD) modes and particle distribu-

tions can produce significant modification of the distribution and even induce large scale

particle loss through profile avalanche, and is an important topic for magnetically confined

plasmas. Low amplitude modes are known to be capable of producing significant modifica-

tion of injected neutral beam profiles [1–5], and the same can be expected in burning plasmas

for the alpha particle distributions. Since magnetic field ripple is a strong function of po-

sition, increasing rapidly near the plasma edge, a broadened profile can lead to an increase

of stochastic trapped particle ripple loss. Portions of phase space becoming stochastic lead

to modification of the particle distribution, a process extremely rapid on the time scale of

an experiment but still very long compared to the time scale of guiding center simulations,

typically hundreds of hours of computing time to find saturated profiles under the action of a

particular mode spectrum. Previous work has focused on quasilinear models for the induced

particle transport[6, 7]. The subject of this paper is a method for determining the location

and extent of mode-particle resonances and the final state of the particle distribution with-

out carrying out the full time evolution leading to it. In section II we discuss methods of

determining the location and breadth of resonances, and introduce a new technique for de-

termining the existence of good Kolmogorov Arnold Moser[8] (KAM) surfaces. In section III

we discuss transport induced by the presence of multiple incommensurate modes. In section

IV we illustrate the determination of resonant domains with the new technique using some

examples employing equilibria and mode spectra observed on DIII-D[2, 3]. In section V we

examine a case of overlapping resonances producing a distribution avalanche, and in section

VI we construct a process of stochastic annealing, leading to the final state on a time scale

large compared to the stochastic diffusion rate. In section VII are the conclusions.

II. RESONANCE DETERMINATION

Using the guiding center drift approximation a particle orbit in an axisymmetric system

is completely described by the values of the toroidal canonical momentum Pζ , the energy E

and the magnetic moment µ. Particle spatial coordinates are given by ψp, θ, ζ, respectively

the poloidal flux coordinate, and the poloidal and toroidal angles. The magnetic field is
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given by

~B = g∇ζ + I∇θ + δ∇ψp, (1)

and in an axisymmetric equilibrium using Boozer coordinates g and I are functions of ψp

only. The trajectory of the particle motion in the poloidal plane and the toroidal precession

of the orbit are independent of the function δ[9, 10].

The guiding center Hamiltonian is

H = ρ2
‖B

2/2 + µB + Φ, (2)

where ρ‖ = v‖/B is the normalized parallel velocity, µ is the magnetic moment, and Φ the

electric potential. The field magnitude B and the potential may be functions of ψp, θ and

also ζ if axisymmetry is broken. Canonical momenta are

Pζ = gρ‖ − ψp, Pθ = ψ + ρ‖I, (3)

where ψ is the toroidal flux, with dψ/dψp = q(ψp), the field line helicity. Since we are

interested in particle distributions, density is a relevant quantity. Volume is given by dV =

2πJdθdψp, with the Jacobian J = (gq + I)/B2 in Boozer coordinates.

The equations of motion in Hamiltonian form are

θ̇ =
∂H

∂Pθ
Ṗθ = −∂H

∂θ

ζ̇ =
∂H

∂Pζ
Ṗζ = −∂H

∂ζ
. (4)

Equations for advancing particle positions in time, also in the presence of flute-like perturba-

tions of the form δ ~B = ∇×α~B with ~B the equilibrium field and α =
∑

m,n αm,n(ψp)sin(nζ−
mθ−ωnt) can easily be derived[10]. Including such a perturbation the Hamiltonian for guid-

ing center motion becomes H = (ρc − α)2B2/2 + µB + Φ, with ρc = ρ‖ + α, and variables

ζ, θ, ρc, ψp. In addition, for ideal MHD perturbations the rapid mobility of the electrons

makes the electric field experienced by the ions parallel to the magnetic field equal to zero.

In this case it is necessary to add an electric potential Φ to cancel the parallel electric field

induced by d ~B/dt, with

∑

m,n

ωBαm,ne
i(nζ−mθ−ωt) − ~B · ∇Φ/B = 0, (5)
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FIG. 1: Plane of Pζ , E for a range of 20 to 60 keV with µB0 = 20 keV, showing domains of

confined particles. Shown are co-passing (C-P), counter passing (CT-P), trapped (T) and trapped

loss (T-L) domains. The apexes of the parabolas are at E = µBmax (a), E = µB0 (b), E = µBmin

(c).

where we have neglected terms of order α2. In Boozer coordinates, used in our simulations,

taking Φ =
∑

m,n Φm,ne
i(nζ−mθ−ωt) the solution is

(gq + I)ωαm,n = (nq −m)Φm,n, (6)

but in general coordinates where I = I(ψ, θ) the solution is complicated by the coupling of

different poloidal harmonics. The guiding center equations including MHD perturbations

are realized using a fourth order Runge-Kutta method in the code ORBIT[11]. The units

are conveniently defined by the on-axis gyro frequency ω0 (time) and the major radius R

(distance).

The magnetic moment µ is conserved by the interaction of a particle with a mode with

frequency much smaller than the cyclotron frequency, so only Pζ and E are modified by

interaction with it. For a given equilibrium and a fixed value of µ the domains of confined

particles in the Pζ , E plane are given by parabolas defining orbits that make contact with

the magnetic axis, the low field side outer boundary, and the high field side outer boundary

as well as the trapped-passing boundary.
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An example is shown in Fig. 1 for a reversed shear equilibrium with q = 4.7 on axis

and q = 9 at the plasma boundary. Shape and size of the various domains changes with

the equilibrium parameters, but the general topology is always similar to that shown. The

plane of Pζ , E is shown for µB0 = 20keV with B0 the magnetic field on axis and the particle

distribution is limited have energy between 20 and 60 keV. The apex of the parabolas are

at E = µBmax (label a) for the high field side (left edge, parabola with label L), E = µB0 (

label b) for the magnetic axis (parabola with label A), and E = µBmin (label c) for the low

field side (right edge, parabola with label R). The confined counter passing and co-passing

orbits share a common triangular region, in which they have the same values of Pζ and

E but opposite signs of pitch. The small eye shaped region near point b consists of potato

orbits, particles for which v‖ vanishes along the orbit, but which circle the magnetic axis due

to drift. The trapped particle domain borders both the co-passing and the counter passing

domains at low energy.

To produce a particle distribution of all confined particles with a fixed value of µ, simply

launch particles along the entire outboard minor radius (0 < ψp < ψw) (normally θ = 0) with

a full range of energy and positive pitch λ = v‖/v with v‖ =
√

2E − 2µB(ψp, θ) giving all

confined co-moving orbits and all confined trapped orbits, thus bounded in Pζ on the left by

the right wall and on the right by the magnetic axis and the lower boundary of the trapped

particle domain. Energy is of course limited to E > µBmin. Similarly launch particles along

the inboard minor radius (normally θ = π) with a full range of energy and negative pitch

to produce all confined counter-moving orbits, thus bounded in Pζ on the left by the left

wall and on the right by the magnetic axis. The full distribution of confined orbits with

µB0 = 20keV and E between 20 and 60 keV is shown shaded in Fig. 1. This deposition

process assumes that the minimum and maximum values of B lie along the midplane. For

some highly shaped equilibria this may not be the case and a more complicated procedure

must be used. But for most practical applications the particle distribution is given by a

neutral beam injection algorithm or an alpha particle birth profile algorithm.

We are interested in the case of the interaction of particles of arbitrary pitch with modes

of nonzero frequency. It is fairly easy to assess the effect of a particular mode on a particle

distribution by examining a Poincaré plot for a particular choice of either co-moving and

trapped or counter-moving particles, which we refer to as a kinetic Poincaré plot to distin-

guish it from a plot of the magnetic field. Points are plotted in the poloidal cross section
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whenever nζ − ωnt = 2πk with k integer, where ζ is the toroidal particle coordinate, and

ωn is the mode frequency. The toroidal motion then gives successive Poincaré points in the

poloidal cross section ψp, θ, or better, since Pζ is constant in the absence of perturbations,

the Pζ , θ plane. Individual modes produce islands in the phase space of the particle or-

bits, which through phase mixing produce local flattening of the particle distribution. In

addition, overlap of these islands, the Chirikov criterion, leads to stochastic transport of

particles[12, 13]. Such a plot shows the canonical division of orbits into those following good

KAM surfaces, isolated islands bounded by separatrices, and stochastic domains. In an

ideal situation with a single perturbation the separatrix is a well defined boundary, but in

an actual equilibrium it is broadened into a stochastic layer by toroidal coupling or nonlinear

coupling to other perturbations.

Energy is not conserved since the mode is time dependent, and for a mode of a single

n value the perturbation of the Hamiltonian includes ζ and t only in the form H(nζ −
ωnt). Similarly, canonical toroidal momentum is not conserved. From Hamilton’s equations

dPζ/dt = −∂ζH, and dE/dt = ∂tH and thus for fixed n we find that ωnPζ − nE is constant

in time. To obtain a kinetic Poincaré plot the distribution must be initiated with a fixed

value of µ and ωnPζ−nE = c. A plot with particles of fixed µ and energy E does not give a

coherent plot: it contains intersecting surfaces, since it is really an overlaying of plots with

different values of c. Choosing the energy to be E0 at the magnetic axis where ψp = 0 the

pitch on axis is λ0 =
√

1 − µB0/E0, and c = g(0)ωnλ0v0/B0 − nE0. Then for any surface

the pitch is λ = ±
√

1 − µB(ψp, θ)/E and finally the velocity on surface ψp is the solution

to

c+ ωnψp −
g(ψp)ωnλ(v)v

B
+
nv2

2
= 0, (7)

which can be solved by Newton’s method.

Some progress can be made analytically to determine the location of resonances. A

Poincaré point occurs when nζ−ωnt = 2πk. For there to be a periodic fixed point in θ with

period m′ we also require ∆θ = 2πl/m′ between successive points with l integer. Here m′ is

the number of islands in a poloidal cross section Poincaré plot. The helicity of the resonance

is then

R(Pζ , E, µ) =
∆ζ − ωn∆t/n

∆θ
=
m′

nl
, (8)
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which must be rational. Note that the poloidal mode number m does not appear in this

expression. For a resonance to appear there must exist integers m′, l such that this relation

can be satisfied, but this is not a sufficient condition for the formation of an island.

The modification of these quantities due to the perturbation α can be neglected. Con-

verting integrals over time to integrals over θ, we have

∆ζ =

∫

ζ̇

θ̇
dθ, ∆t =

∫

1

θ̇
dθ (9)

where the integrands must be evaluated following a closed particle orbit, and for passing

particles ∆θ = 2π, but for trapped particles the integrals must be between the bounce

points.

To do these integrals one needs ψp as a function of θ over the orbit, which can be obtained

by equating the two expressions for ρ‖,

ρ‖ = ±
√

2E − 2µB

B
=
Pζ + ψp

g
. (10)

Given Pζ , E, µ, θ one thus finds ψp and then ζ̇, θ̇, and can perform the integrals[10]. For

fixed values of E, µ we scan the range of Pζ and carry out the integrals, looking for values

of Pζ for which R(Pζ , E, µ) is a low order rational. This determination of the existence of

fixed points is not sufficient for the formation of an island, since it is also necessary that the

perturbation, of the form α =
∑

m,n αm,n(ψp)sin(nζ −mθ − ωnt) be nonzero at this value

of Pζ , E, µ and also that it be in resonance with the fixed point period, either directly or

through toroidal coupling, which normally means that m′ is not far removed from m. In

performing the scan over Pζ for rational values of R the relation ωnPζ−nE = c is maintained

so that the resonance points can be compared to resonances seen in a kinetic Poincaré plot.

Although a Poincaré plot is instructive, it is too time consuming to examine effects on a

whole distribution because it gives information on only one line in the Pζ , E, µ volume and

there is no obvious way to automate it. In this paper we introduce a general method for

numerically determining the existence of or the destruction of good KAM surfaces.

Consider following two orbits located very nearby one another. Examine a Poincaré

section in Pζ , θ and define the angle χ to give the orientation of the vector joining them

in this plane. If good KAM surfaces exist χ can change by at most an angle of π, due

to their relative velocity in the angular coordinate. However two orbits within an island

rotate around one another with χ increasing with the rotation about the island O-point,
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FIG. 2: The Pζ , θ plane showing a single m = 1 resonance island, and vectors between nearby

points on good KAM surfaces and in the island. On nearby KAM surfaces the phase vector can

rotate by at most π, whereas a phase vector in an island rotates through 2π with a period given

by the trapping bounce time.

also refered to as the bounce frequency of a particle trapped in the wave, which increases

with the size of the island. The rate of change of χ is a function of distance from the island

O-point, dropping to zero at the separatrix. This is illustrated in Fig. 2, showing vectors

between nearby points in the Pζ , θ plane on good KAM surfaces and in a resonance. Thus

we determine the nonexistence of good KAM surfaces by examining nearby pairs of orbits,

looking for phase vector rotation χ exceeding π.

An example of such a determination is given in Figure 3. A simple circular equilibrium

was used, with the q profile equal to 1 on axis and to 5 at the plasma edge. Shown is a

Poincaré plot of the field, produced by three zero frequency tearing modes with m/n = 1/1,

m/n = 3/2 and m/n = 2/1. First order Fibonacci resonances (∼ α2) are thus produced at

4/3 and 5/3 and the next order (∼ α3) gives islands at 5/4, 7/5, 8/5, and 7/4. The Poincaré

plot shows the three lowest order resonances and also the 5/3 resonance at Pζ = −0.5.

Barely visible is the 7/5 resonance at Pζ = −0.39 caused by coupling of 4/3 and 3/2 and

other high order resonances are not visible with this resolution.

In addition we show the result of the phase vector rotation criterion. Superimposed on

a Poincaré plot are points obtained by launching pairs of particles distributed in Pζ , θ,
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FIG. 3: Kinetic Poincaré for 2/1, 3/2 and 1/1 tearing modes with ω = 0, and amplitudes α =

10−5R, and rotation indicator. Resonant surfaces from Eq. 8 are also shown with large triangles

for surfaces 2/1, 5/3, 3/2, 4/3, and 1/1, listed in order from the left in the plot.

and recording only those initial values participating in phase vector rotation. The major

resonances at 2/1, 3/2 and 1/1 as well as the higher order resonances at 5/3 and 4/3 are

clearly seen. The 4/3 is more visible in the phase vector rotation plot than in the Poincaré

plot. Also shown with large triangles are the locations of the resonances for 2/1, 5/3, 3/2,

4/3, and 1/1 from Eq. 8.

For this plot the particle energy was taken very small and all particles have pitch equal

to one, so that the orbits simply follow field lines. Since for very small islands the phase

vector rotation is very slow, the particles must be followed for a longer time to detect smaller

islands, and the length of the simulation is determined by the desired resolution. In addition,

islands smaller than the separation between the pairs of orbits are of course not detectable.

The separation cannot be chosen too small or it will result in false positive island detection

due to numerical error. Thus there are three parameters to adjust for an optimization of this

procedure; the initial orbit pair separation, the number of toroidal transits followed, and the

critical value of rotation to indicate KAM destruction. For the present work we have chosen

a separation of 2 × 10−4 times the minor radius, a run time of 500 toroidal transits, and

a critical value of rotation of |dχ| = 4. Optimal values of these parameters depend on the

spectrum of perturbations studied, and must be adjusted so that the regions of good and
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FIG. 4: Kinetic Poincaré plots for a global perturbation with 1/1, 3/2 and 2/1 tearing modes with

ω = 0, and phase vector rotation indicator, with larger amplitude, so islands overlap. Rotation is

seen also to reliably indicate the stochastic region.

broken KAM surfaces agree with kinetic Poincaré plots showing the phase space structure

to within the desired resolution.

If the mode amplitudes are increased so that a stochastic region is produced, even more

KAM surfaces are destroyed. In Fig. 4 is shown a plot with amplitudes of the 1/1, 3/2 and

2/1 modes of Fig. 3 multiplied by ten, and thus island size by about a factor of three. In

this case the islands overlap, and the Chirikov criterion is well satisfied. We see that the

criterion of looking for phase vector rotation also reproduces the stochastic region, that is

the lack of rotation is a necessary condition for the existence of a good KAM surface. Note

that the region in Pζ is not simple, since it is dependent on the mode phase, so that for given

Pζ the region is θ dependent. We wish to define domains in the space of Pζ , E using this

method, close to the maximum extent of the island or stochastic region, so a few particle

pairs are initiated in each domain with random phase with respect to the perturbations, the

rotation of any pair indicating broken KAM surfaces for the domain.

III. MULTIPLE MODES

If two perturbations have the same values of ω/n a single kinetic Poincaré plot can show

the interaction of the modes and any produced stochastic domains, as demonstrated in Fig.
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FIG. 5: Kinetic Poincaré plots for a 100 kHz global perturbation with m/n = 3/2, 100 kHz, and

one with m/n = 2/1, 100 kHz. Both modes produce a large island chain at Pζ ' 1.15. Resonance

locations from Eq. 8 are shown for m′/n = 4/2, 3/2, 2/2 in the left plot and m′/n = 1/1 in the

right.

4. With modes of different values of ω/n it is not so easy to assess the effect of their mutual

presence. Shown in Fig. 5 are the effects of two large amplitude modes, on the left the kinetic

Poincaré plot of a m/n = 3/2 perturbation and on the right the kinetic Poincaré plot of a

m/n = 2/1 perturbation, each with frequency of 100 kHz. The particle distributions for the

two Poincaré plots have a fixed value of µB0 of 20 keV with B0 the on-axis value of the field

and E = 59 keV at the plasma edge at the outboard midplane. A simple circular equilibrium

was used with 0.8 < q < 4 and B0 = 20kG. Resonance locations from Eq. 8 are shown for

m′/n = 4/2, 3/2, 2/2 in the left plot and m′/n = 1/1 in the right. For all these resonances

l = 1. We see that Eq. 8 is reasonably accurate in predicting resonance location.

If both modes are present the resulting effect cannot be shown in a single Poincaré plot.

The modes are chosen large enough so that the large islands near Pζ = 1.15 clearly overlap.

If these perturbations had the same values of ω/n the Chirikov overlap criterion would

indicate a large stochastic domain similar to that shown in Fig. 4.

In Fig. 6 are shown the modifications of the two particle distributions in the presence of

both modes. On the left is shown the full long time evolution of the distribution initiated

with dE/dPζ = ω. This initial distribution is that necessary for producing a Poincaré plot
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FIG. 6: Particle distributions, showing particle paths with m/n = 3/2, 100 kHz and m/n = 2/1,

100 kHz modes together. In the plot on the left the initial distribution is along a line with

dE/dPζ = ω, and on the right the initial distribution is along a line with dE/dPζ = ω/2.

corresponding to the n = 1 mode with ωPζ − nE = c. The n = 1 mode by itself can move

particles only along the line of the initial deposition. Seen near Pζ = 1.2 are particles that

have been moved along the line dE/dPζ = ω/2, the effect of the n = 2 mode, due to the

large island produced by this perturbation at that location. Smaller effects are also seen

at Pζ = 0.7 and at Pζ = 0.81. The resulting motion is diffusion produced by combined

motion along the two lines dE/dPζ = ω and dE/dPζ = ω/2. Note the presence of significant

correlations and structure, not simple stochastic motion in the two possible directions.

Similarly, on the right is the modification of the initial distribution with dE/dPζ = ω/2,

necessary for producing a Poincaré plot corresponding to the n = 2 mode. This distribution

can be moved only along this line by the n = 2 mode, but it is seen that near Pζ = 1.0

particles are also moved along dE/dPζ = ω, the effect of the n = 1 mode. Once again one

notes the presence of significant correlations and structure, not stochastic motion in the two

possible directions.

In Fig. 7 is shown the evolution of < dE2 >, < dP 2
ζ >, and < dEdPζ >, for those

particles of Fig. 6 along the line dE/dPζ = ω/2 with the initial energy between 63 and 64

keV, where the brackets indicate an average over the full particle distribution. The values

of dP have been multiplied by 10 to keep all data on the same plot. There is seen to be an
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FIG. 7: Evolution of E and Pζ , with m/n = 3/2, 100 kHz and m/n = 2/1, 100 kHz modes together.

initial ballistic period with dE and dPζ ∼ t followed by a fairly linear evolution of all three

variables, during which time one can estimate diffusion values. The value of < dEdPζ > is

intermediate between < dE2 > and < dP 2
ζ > indicating strong correlation, because motion

can only occur along the two lines ω/2 and ω. Finally the variables reach the boundary of

the transport domain and settle to steady state values after bouncing for some time in the

transport domain, indicating that there is phase memory during the first few transits of the

domain. If this same simulation is repeated with only one mode present the excursions are

orders of magnitude smaller and do not resemble diffusive motion. Thus we conclude that

two such modes indeed interact, producing a limited domain in which the particle motion

is highly diffusive, although still with strong correlations. The interaction of the two modes

is motion along the two different lines in the Pζ , E plane, each step in one direction by one

mode moving to a different part of the island produced by the other mode, thus allowing

the distribution to explore the full range of both islands, rather than simply experiencing

phase mixing and flattening in a single island. In realistic cases there are not only two such

modes, but an entire spectrum, each with its lines in the Pζ , E plane.

To confirm the nature of the motion, perform a quasilinear approximation for the

diffusion in energy. We have a perturbation of the form δ ~B = ∇ × α~B with α =
∑

m,n αm,n(ψp)sin(nζ − mθ − ωnt) where α has the units of length. The energy change
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is given by

dE/dt = −ρ‖B2∂tα + ∂tΦ. (11)

The units of length are in terms of the major radius R and time is in terms of the on axis

cyclotron frequency ω0, so the energy is in terms of Mω2
0R

2 with M the particle mass. The

potential is given in Boozer coordinates by (gq + I)ωαm,n = (nq −m)Φm,n, giving

dE = Amncos(nζ −mθ − ωnt)dt (12)

with Amn = [ρ‖B
2 + (gq + I)ωn/(nq −m)]ωnαmn. The quasilinear approximation gives

< E2 >=
∑

mn

A2
mn

4πωn
t. (13)

Make a simple estimate. Note that the particle energies are above 60 keV, much larger

than µB0, so the particles are deeply passing and ρ‖B ∼ v, and the contribution of the

potential is of the order or smaller than that due to δB, giving A2
mn ∼ 2(E/M)B2ω2

nα
2
mn,

and for the diffusion

< E2 >=
∑

mn

(E/M)B2α2
mn(ωn/2π)t. (14)

Reinserting units using αmn = 2×10−5R, B = Mω0 and using Mω2
0R

2 = Mc2ω2
0R

2/c2, with

a plasma of deuterium so Mc2 = 1862Mev, ω0 = 9.3 × 107/sec, R = 100cm, E = 60keV ,

(ωn/2π) = fn = 100kHz we find

< E2 >

t
=
∑

mn

EMc2(ω2
0R

2/c2)(α2
mn/R

2)fn (15)

or < E2 >∼ 40keV 2t(msec) in reasonable agreement with Fig. 7. Thus we conclude that

overlap of resonance due to modes of different frequencies results in significant stochas-

tization of particle orbits, as the naive application of the Chirikov overlap criterion would

indicate. For these incommensurate modes the process is diffusion in a higher dimension and

can be treated using what is called the stochastic pump model[14], by successively finding

the motion due to each perturbation.

IV. CONFIRMATION OF THE PHASE VECTOR ROTATION CRITERION

Now we carry out a test of this procedure using the DIII-D reversed shear equilibrium for

shot 122117 shown in Fig. 8, along with the q profile, considered in [2, 3]. We consider one
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FIG. 8: DIII-D reversed shear equilibrium and q profile for shot 122117.

of the eleven TAE and RSAE modes present in this discharge. The phase vector rotation

determination was performed using 100 domains in energy, from 20 to 60 keV and also 100

domains in canonical momentum. The initial pair separation was ∆ψp = 2× 10−4ψw, where

ψw is the magnitude of the poloidal flux at the last flux surface. Two particle pairs were

deposited in each domain, initiated at θ = 0 but with random ζ so that each pair has a

different phase relation with the mode. The run time was chosen to be 500 toroidal transits.

Any orbit pair exhibiting phase vector rotation greater than |χ| = 4 causes that domain

to be labeled non-KAM. Only positive pitch was used, so that this analysis is restricted to

trapped and co-passing particles, neglecting the counter passing population.

The poloidal harmonics of the TAE mode are shown in Fig. 9. The mode had a frequency

of 81 kHz with n = 3. The mode is located near the plasma center in the region of reversed

shear. We examine the resonances due to the mode spectrum using both the phase vector

rotation and kinetic Poincaré plots, to determine the validity of the use of the rotation to find

broken KAM surface domains. Shown in Fig. 10 is the E,Pζ plane showing the result of the

phase vector rotation determination for a distribution with µB0 = 14keV and three kinetic

Poincaré plots showing the nature of the resonances along lines with ωPζ − nE = constant,

with energies at the left (end point of the Poincaré plot) of 44, 35 and 25 keV. The domains

in the E,Pζ plane are shaded where phase vector rotation indicated broken KAM surfaces.

The first Poincaré figure, showing the plot for the line starting at 44 keV, shows a small
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FIG. 9: Poloidal harmonics (×10−6) of an 81 kHz n = 1 TAE mode with 10 ≤ m ≤ 23, observed

in DIII-D in shot 122117.

m′/n = 12/3 resonance at Pζ = -0.16, a small m′/n = 11/3 resonance at Pζ = -0.02, a small

m′/n = 10/3 resonance at Pζ = 0.26, and a large m′/n = 10/3 resonance at Pζ = 0.47. All

of these resonances are clearly visible in the Pζ , E plane, and exist continuously for a large

range of energies.

The second plot, for the line starting at 35 keV, shows the same small ten island resonance

seen in the first plot, now at Pζ = -0.02, and the same large ten island resonance now at

Pζ = 0.45.

The third plot, for the line starting at 25 keV, shows a large nine island resonance at

Pζ = 0.21. Note that the large resonance near the plasma center has m′ = 10 above 35 keV,

then there is a break with no resonance near 30 keV, and it resumes as a m′ = 9 resonance

between 25 and 30 keV. Again there is a break, and the resonance seen in the Pζ , E plane

at 22 keV has m′ = 8.

Now we examine a part of the distribution including trapped particles. Shown in Fig.

11 is the E,Pζ plane showing the result of the phase vector rotation determination for a

distribution with µB0 = 30keV and three kinetic Poincaré plots showing the nature of the

resonances along lines with ωPζ − nE = constant, with energies at the left (end point of

the Poincaré plot) of 36, 30 and 26 keV. The domains in the E,Pζ plane are shaded where

phase vector rotation indicated broken KAM surfaces. In this case the distribution contains

many trapped particles.
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FIG. 10: Plane of Pζ , E with µB0 = 14keV , for the 81 kHz n = 1 TAE mode with 10 ≤ m ≤ 23

observed in DIII-D in shot 122117, showing paths for kinetic Poincaré plots for the three lines

originating at the left at 44, 35 and 25 keV . Also shown are the three Poincaré plots associated

with these lines.

The first Poincaré figure, showing the plot for the line starting at 36 keV, shows a dense

series of resonances existing in the trapped domain. The size and proximity of these reso-

nances are such that they are not resolved in the E,Pζ plane with the domain size used.

The second plot, for the line starting at 35 keV, shows a dense series of resonances existing

in the trapped domain, again partly not resolved in the E,Pζ plane. There is a large m′ = 8

resonance in the passing domain at 36 keV , probably the same resonance also visible in Fig.

10 at 22 keV .
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FIG. 11: Plane of Pζ , E with µB0 = 30KeV , for the 81 kHz n = 1 TAE mode with 10 ≤ m ≤ 23

showing three paths for kinetic Poincaré plots originating at the left at 36, 30 and 26 keV, and the

three Poincaré plots produced along these lines.

The third plot, for the line starting at 26 keV, shows a m′ = 1 resonance at Pζ = -0.45

and many small resonances near the trapped passing boundary, along with larger m′ = 5,

m′ = 6 and m′ = 7 resonances in the passing domain.

Many of the resonances in the trapped particle region are too small and too close to-

gether for resolution using the phase vector rotation. On the other hand the actual particle

distribution is sparse in this region, so it is not clear that failure to completely resolve these

resonances presents a problem for calculating the final relaxed state of the distribution un-

der the effect of these modes. A complete analysis of this problem must await a future
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FIG. 12: Plane of Pζ , E with µB0 = 5KeV , for a 10 kHz local mode with m/n = 6/5 and amplitude

α = 5 × 10−6R and a kinetic Poincaré plot made along the line originating at the wall at 12 keV.

Resonance locations from Eq. 8 are shown for m′/n = 9/5, 8/5, 7/5, 6/5, and 5/5, and also, at

points were no island is visible in this plot, for m′/nl = 13/10, and m′/nl = 11/10.

publication.

V. AVALANCHE

Now we wish to investigate the approach to avalanche conditions due to several resonance

island chains. For this we again use a simple circular equilibrium with 0.8 < q < 4. In Fig.

12 are shown the results of the phase vector rotation determination for a single broad 10

kHz mode with m/n = 6/5, with amplitude of α = 5 × 10−6R and kinetic Poincaré plots

showing the nature of the resonances. In Fig. 12 resonance locations from Eq. 8 are

shown for m′/n = 9/5, 8/5, 7/5, 6/5, and 5/5. Also appearing between 7/5 and 6/5 is a

second order Fibonacci resonance point for m′/nl = 13/10, and between 6/5 and 5/5 one

for m′/nl = 11/10, but no islands visible at these surfaces in this plot. Island widths are

comparable for m′ = m,m± 1 and somewhat smaller for m′ = m + 2,m + 3. The surfaces

for resonances with m′ = m − 2,m − 3 are outside the plasma. In the plane of Pζ , E the

major resonances are clearly visible as well as the first order Fibonacci sequence, appearing

as thinner partly broken lines in between the major broader resonances. The phase vector

rotation indicates that islands exist at m′/nl = 13/10, and at m′/nl = 11/10 but they are
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FIG. 13: Blow up of the Poincaré plot of Fig. 12 showing the m′/nl = 11/10 visible in the plane

of Pζ , E in Fig. 12. Also shown is the resonance point from Eq. 8.

not visible in this Poincaré plot.

In Fig. 13 is a blow up of the region around Pζ = 0.32, showing that in fact the m′/nl =

11/10 resonance visible in the plane of Pζ , E is present. The phase vector rotation criterion

appears to be reasonably sensitive. The island width is about 0.02ψw, well above the particle

pair separation of 2× 10−4ψw. This corresponds to an island of about one centimeter width

in DIII-D. Note however that the resonance location as given by Eq. 8 is incorrect by a few

times the width of the island.

In Fig. 14, with the mode amplitude ten times larger, a continuous stochastic domain

has appeared between Pζ = 0.05 and Pζ = 0.42, containing remnant islands from the major

resonances. On the left are still visible a m′/n = 9/5 and a m′/n = 10/5 island chain, also

visible in Fig. 12 in the Pζ , E plane. Note that good KAM surfaces exist both near the

plasma edge and near the axis, so this mode should produce only local profile flattening,

but no particle loss.

For the most part the phase vector rotation appears to give a reasonable description of

the non-KAM domains. It has the advantage over methods that simply determine resonance

location through integrals such as Eq. 8, see also[15, 16] that the resonance is shown only if

the mode is sufficiently large at the requisite surface, and in addition the full width of the

resonance is displayed, not only the location. Also there can be no innacuracy regarding
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FIG. 14: Plane of Pζ , E with µB0 = 5KeV , for a 10 kHz local mode with m/n = 6/5 and a kinetic

Poincaré plot for amplitude 5 × 10−5 made along the line originating at the wall at 12 keV.

the location. It thus makes evident which perturbations and nonlinear produced islands of

the Fibonacci sequence should be taken into consideration. Besides this, as is evident from

examples shown, resonance location is only approximate. Primary resonances are reasonably

well given, but higher order resonances are often displaced significantly from the location

given by Eq. 8.

If necessary, resolution can be improved significantly at some computing cost, but phase

vector rotation appears to be able to detect very small island chains. In fact with the

parameters used here it may be more sensitive than necessary. If only large islands are

responsible for profile modification the parameters of the search can be relaxed, leading to

less computation. It is not clear that the failure to observe very small domains of good

KAM surfaces with the phase vector rotation is a serious problem. In any real system

there are also small particle scattering processes, capable of moving particles across narrow

barriers. The method should also form an important check of the first step in constructing

quasilinear diffusion models of transport in such systems, which must be the determination

of the location and extent of resonances.
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VI. ANNEALING

We wish to use the determination of domains in the Pζ , E plane with destroyed KAM

surfaces to find the final state of a given particle distribution under the action of the mode

spectrum. We are interested in collisionless effects, but we point out that pitch angle scat-

tering, since it conserves energy, results in simple diffusion in Pζ and µ, and can be included.

Similarly it is simple to include the effect of energy loss through slowing down on electrons.

Construct a numerical method of producing the final state of a given particle distribution

under the action of a given spectrum of modes. In the final state the density should be

constant for a particular mode with frequency ω and toroidal mode number n, in all island

and stochastic domains along lines given by ωPζ −nE = constant, since this combination is

conserved and annealing can happen only along this line. However, as seen above, repeated

annealing for multiple modes, with different values of ω/n, produces diffusive motion in the

combined non-KAM domains of the modes involved. Thus the necessary algorithm must be

an iterative annealing process, one mode at a time, but repeated so as to capture the effect

of the combination of modes present.

Examine a high energy particle distribution as predicted by a neutral beam deposition

calculation or an alpha particle birth profile calculation, and make a number of domains in

the magnetic moment µ sufficient to give a good representation of the distribution. For each

µ, divide the space of confined particles in the Pζ , E plane into small domains, with size

determined by the desired resolution of small islands. Then find the domains of broken KAM

surfaces for that part of the plane which is occupied by the distribution by following pairs

of orbits and looking for phase vector rotation, noting whether each domain is stochastic

or consists of good KAM surfaces. This is the only computationally demanding part of the

calculation, depending on the desired resolution for island size. Reintroduce the original

distribution and distribute it into the µ, Pζ , E domains. At this point, to improve accuracy

of the annealing process the number of particles can be multiplied by a factor sufficient

to make the number of particles in each domain large. Then carry out an equilibration of

densities in stochastic domains which are in contact along lines ωPζ−nE = c for each mode,

iterating this process until a final state is achieved.

To carry this out, note that the differential volume is given by dV = J(ψp, θ)dθdψp,

where in Boozer coordinates JB2 = gq + I. Thus the domain at µ, Pζ , E with range dPζ
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has volume

dV = dPζ

∫

dθ

(

dψp
dPζ

)

E,µ

J(ψp, θ), (16)

the integration being over the particle orbit. Using Pζ = gρ‖ − ψp and E = ρ‖B
2/2 + µB

we find

dV = dPζ

∫

dθ
(gq + I)

B2

1

1 + g(ρ2
‖B + µ)∂ψp

B/ρ‖B2 − g′ρ‖
(17)

where the integral is taken over a constant µ, Pζ , E surface and g′ = ∂ψp
g. Thus in

neighboring stochastic domains along the lines with ωPζ − nE = c with initial particle

numbers n1, n2 and n1 + n2 = N , particle conservation gives n′
1 + n′

2 = N and equal

densities gives n′
1/dV1 = n′

2/dV2 so the new particle numbers are

n′
1 =

NdV1

dV1 + dV2

, n′
2 =

NdV2

dV1 + dV2

. (18)

In addition to replacing the densities in adjacient stochastic domains with the modified

values for the two domains, stochastic domains in contact with the outer wall are emptied of

particles, they being counted as lost. In the present case there are no losses because of the

good KAM surfaces near the outer edge. This process must be repeated several times using

the stochastic domain template for each mode. After the annealing the particle distribution

can be reconstructed. Given µ, Pζ , E the orbit is completely determined, but not the particle

location on the orbit. The distribution can be reconstructed using a uniform distribution

in θ. Since n′
1, n

′
2 from Eq. 18 are not integer, reconstructing the distribution involves

rounding to the nearest integer, hence the reason for making n1, n2 large.

To test this procedure a simple circular equilibrium with q = 0.8 on axis and q = 4

at the last closed flux surface was used, with a simple distribution with a single value of

µB0 = 5KeV and with energy ranging from 10 to 15 keV, but with a steep density profile.

The single mode of Fig. 14 was used, consisting of a large amplitude m/n = 6/5 localized 10

kHz perturbation. Also shown is the result of the phase vector rotation indicator. Twenty

domains in energy were used, since the range of energy of the distribution was chosen to

be small, and 200 domains in canonical momentum Pζ to provide sufficient resolution. The

orbit pairs were separated by ∆ψp = 2 × 10−4ψw, with ψw the value of poloidal flux at the

plasma edge. In the Pζ , E plot a broad stochastic band is seen, as well as three narrow

partly broken bands to the left of it. Note that the location of resonances in θ is at constant
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FIG. 15: The kinetic Poincaré plot of Fig. 14, shown in the X, Z plane, showing the extent of the

stochastic domain, with µB0 = 5KeV , for a local 10 kHz mode with m/n = 6/5, and the result of

annealing. Shown is the initial distribution and that obtained using the annealing process, plotted

versus the square root of the volume, approximately equal to the minor radius.

Pζ , but not on a flux surface. The good KAM surfaces shown in the plot of the poloidal

cross section in Fig. 15 do not coincide with flux surfaces, they are shifted outboard. The

resonance location in the poloidal plane depends on poloidal angle, mode frequency and

particle energy. The magnitude and location of the perturbation was chosen so that there

are bands of good KAM surfaces both in the plasma center and near the outer edge. Thus the

expected result is local flattening at the location of the stochastic domain with no induced

loss.

The annealing process is carrried out repeatedly in the stochastic domains, equalizing

densities along the lines ωPζ − nE = constant until the particle distribution has stabilized,

this process taking a very small amount of computing time. The second plot of Fig. 15

shows the initial and modified profiles of the density, obtained by binning particles using

equal size bins in the volume inscribed by a given flux surface, plotted versus the square root

of the volume, approximately the minor radius, showing the canonical near flattening of the

distribution in the stochastic domain. The flattening is not perfect because the boundaries

of the stochastic domain do not coincide with flux surfaces.
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VII. CONCLUSION

In conclusion, we describe a new method for the determination of domains of broken

KAM surfaces in the space of Pζ , E, µ describing confined particles in a toroidal confinement

device due to the presence of a spectrum of MHD modes. This method should be useful

for the application of quasilinear diffusion calculations, the first step of which must be the

determination of the location and extent of the resonances. In addition we have applied

the method to the determination of the final state of a distribution in the presence of given

spectrum of modes through a process of local flattening of the distribution in domains of

broken KAM surfaces. The method takes significantly less time than a full simulation of

the time evolution of the distribution using a guiding center code and is more instructive in

that the plot of the Pζ , E plane reveals the important resonances and their extent. In this

paper we only demonstrate the use of the method. In future publications we will describe

the application of the method to previously studied and well documented cases of toroidal

Alfvén modes in the DIII-D tokamak[2, 3]. In particular it is necessary to make a study of

the resolution necessary in the Pζ , E plane in order to correctly predict the final distribution.

This analysis only approaches part of the problem of the modification of a distribution by

MHD modes. A complete theory must include the prediction of mode spectrum including

amplitudes. However note that if stochastic domains result then the original distribution

used to predict the mode spectrum is modified by the modes, and the new distribution

in turn will change the spectrum. In fact it is very likely that the DIII-D case previously

studied[2, 3] consisted of a spectrum of MHD modes near stochastic threshold for distribution

modification, with the mode amplitudes in equilibrium with the flattened profile.
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