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The rich information contained in the plasma response to external magnetic perturbations can be
used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel-
oping a simple, direct method to study perturbations in stellarators that do not break stellarator
symmetry and periodicity. The method applies a small perturbation to the plasma boundary and
evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the
important physics attributes of the underlying configuration. Using this sensitivity information, de-
sign methods for better stellarator coils are then developed. The procedure and a proof-of-principle
application are given that (1) determine the spatial distributions of external normal magnetic field
at the location of the unperturbed plasma boundary to which the plasma properties are most sen-
sitive, (2) determine the distributions of external normal magnetic field that can be produced most
efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced
magnetic distributions so the sensitive plasma properties can be controlled. Using these methods,
sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are
either smoother or can be located much farther from the plasma boundary than those of the present
design.

I. INTRODUCTION

If the pressure and the rotational transform (or the
plasma current) are specified as functions of the toroidal
magnetic flux and the shape of the outermost magnetic
surface is given, a toroidal plasma equilibrium is de-
fined [1]. The shape is frequently chosen to optimize
plasma equilibria to be stable at high beta and to have
neoclassical transport that is sufficiently small. Once a
plasma shape is obtained that has favorable properties,
coils must be found that produce the required external
magnetic fields.

The coils that surround a toroidal plasma have two
functions: (1) produce the toroidal magnetic flux and
(2) produce external magnetic fields necessary to make
the total field normal to the plasma surface zero. A given
plasma equilibrium requires coils produce both a definite
toroidal magnetic flux and a normal magnetic field on
its outermost surface. Unfortunately, the properties of
Laplace’s equation, ∇2Φ = 0, imply that practical coils
cannot produce the normal magnetic field that results
from a stellarator optimization [2].

Between the coils and the plasma the magnetic field
produced by the coils has the form

~Bc =
µ0G0φ̂

2πR
+ ~∇Φ (1)

with ∇2Φ = 0. The potential Φ is specified by ~Bc · n̂ =
(µ0G0/2πR)φ̂ · n̂ + n̂ · ~∇Φ on the plasma surface. The
magnitude of ~Bc increases exponentially away from the
surface, and various spatial distributons of ~Bc · n̂ on the
plasma surface for a given toroidal magnetic flux are as-
sociated with different rates of exponentiation. The nor-
mal magnetic field that the coils must supply to support

an equilibrium produced by an optimization contains, in
general, distributions that exponentiate too rapidly to be
produced faithfully by coils.

The traditional method for dealing with the absence of
consistency between optimized plasma shape and practi-
cal coils for supporting these shapes is to design coils at
a practical distance from the plasma that minimize the
root-mean-square (RMS) deviation of the normal mag-
netic field from zero on the desired plasma surface [3] [4].
A smaller RMS deviation implies more difficult coils, so
a small enough RMS deviation is typically chosen such
that an equilibrium obtained will adequately approxi-
mate the properties of the original optimized equilibrium.
The traditional procedure for obtaining practical coils for
an optimized stellarator equilibrium implicitly assumes
that, by minimizing the RMS deviations, degradation of
the optimized properties of the plasma will also be min-
imized, irrespective of the plasma sensitivity to the dis-
tributions of the deviations. This procedure would be
optimal only if the plasma had the same sensitivity to all
external magnetic perturbations, which it does not.

Alternatively, methods have been proposed to mini-
mize the normal surface displacements from the desirable
plasma shape, instead of minimizing the RMS deviations
of the normal magnetic field from zero [5]. Such methods
implicitly assume, also, that the plasma has the same sen-
sitivity to all displacements. The procedures developed,
thus, lead to similar coil solutions as those from the tra-
ditional method, which are not optimal. It is possible to
optimize directly the properties of the plasma by varying
the geometry of the coils [6]. But because of the vast-
ness of the configuration space in stellarators, a ‘good’
initial coil geomerty is often needed to converge on find-
ing the desirable final solution that matches the original
optimized equilibrium. The initial geometry is typically
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gotten from using the traditional procedure.
The study in this paper has two purposes: (1) to de-

velop a method for finding the mode perturbations that
degrade the physics properties the most and need to be
carefully controlled for a stellarator plasma whose shape
is known, (2) to demonstrate that information of the
plasma response to magnetic field perturbations can be
used to help design coils more efficiently.

In Ref.[7], it was shown that the standard δW method
for the ananlysis of the ideal magnetohydrodynamic
(MHD) stability also gives the response of a plasma to
small perutrbations. In this paper, we present a direct
approach for the study of the effects of magnetic pertur-
bations. The method, which is essentially a numerical
experiment, is to apply a small external magnetic field
perturbation directly to the boundary of an otherwise
stable, quasi-axisymmetric configuration and then ob-
serve how the plasma responds. The plasma, responding
to the perturbation, will re-establish a state of equilib-
rium by altering the shape such that the magnetic fields
normal to all plasma surfaces become zero. The current
potential on a surface located at a small distance from
the plasma is calculated such that the normal magnetic
fields, including the perturbation, vanish on the plasma
boundary. The free-boundary equilibrium supported by
the magnetic fields from this current potential manifests
the plasma response to the perturbation. In section II
the algorithm for the boundary perturbation method is
outlined. In section III the method is applied to NCSX
to study the sensitivity of the plasma response to differ-
ent modes of perturbations. Our method can be applied
to non-symmetric, periodicity breaking perturbations by
treating numerically a configuration as having one field
period and using both even and odd functions to describe
the stellarator geometry. For this paper, however, we
consider only the perturbations that are stellarator sym-
metric and periodicity preserving. These are the pertur-
bations important for coil designs.

Each favorable plasma property has a range of sensi-
tivities to the distributions of external perturbations to
the normal magnetic field on the plasma surface. This
paper finds only the perturbation distributions to which
the plasma has the greatest sensitivity and shows that
the solutions for the coils can be simplified by minimiz-
ing the errors in these distributions rather than in just
RMS normal field. The method can and should be ex-
tended to include additional distibutions of high plasma
sensitivity. In section IV algorithms are discussed that
use the plasma response to magnetic field perturbations
to help design coils more efficiently. There are two meth-
ods developed: one is to use the sensitivity data to con-
struct a basis for representing normal magnetic fields on
the plasma boundary and the other is to use the sensi-
tivity data to construct an importance vector to differ-
entiate components in the normal magnetic fields that
should carry more weight in the coil design. Taking ad-
vantage of the importance information, we have devel-
oped a new method for designing coils for stellarators.

The new method uses the technique of singular value de-
composition for the inductance matrix that relates the
magnetic flux on the plasma surface to the current po-
tential on the coil winding surface. A small set of singular
values producing the magnetic field distributions that de-
cay most slowly through space and can, therefore, be pro-
duced most efficiently by distant coils are retained. For
each of the retained singular values a coil set is derived
from the respective current potentials. The coil currents
associated with these coils are then varied to find equilib-
ria in the neighborhood of the target plasma which have
similar physics properties as those of the originally opti-
mized plasma. We apply this method to find a new set of
modular coils for NCSX at a plasma-coil separation far
greater than the present design (0.21 units of the major
radius versus 0.14 units). Coils at this separation would
otherwise be extremely difficult to find.

In section V we give a summary and outline possible
future studies.

II. ALGORITHM FOR THE BOUNDARY
PERTURBATION METHOD

The normal component of magnetic fields on the last
closed magnetic surface (LCMS), ~b · n̂ , may be expanded
with respect to a basis set:

~b · n̂ =
∑
m,n

wΦm,nfm,n(θ, φ) (2)

where m and n are poloidal and toroidal mode numbers,
θ and φ are poloidal and toroidal angles, w is an arbitrary
weight and fm,n are orthonormal functions satisfying

∫
wfm,nfm′,n′da = δmm′,nn′ (3)

Here, da is the area element and δmm′,nn′ is the Kro-
necker delta. According to Maxwell’s equations, all
sources of magnetic fields outside the plasma may be
represented by current densities associated with a scalar
potential function κ on an arbitrary chosen surface [3],

J = ∇κ× n̂ (4)

The current potential, κ may be similarly expanded with
respect to a basis set gm,n(θ, φ),

κ =
∑
m,n

Im,ngm,n(θ, φ) (5)

For a given LCMS geometry and the geometry of the
current carrying surface, a mutual inductance matrix [M ]
which relates the current potential on the current carry-
ing surface to the normal fields on LCMS may be con-
structed using the Biot-Savart law
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~b · n̂ = (∇× ~A) · n̂ (6)

~A(~x) =
µ0

4π

∫
J(~x′)
| ~x− ~x′ |

· da′ (7)

Here ~x and ~x′are positions on the LCMS and on the cur-
rent carrying surface, respectively. Introducing a mag-
netic field perturbation

δ~b · n̂ =
∑
m,n

wδbm,nfm,n(θ, φ) (8)

and a column vector, [~b · n̂]plasma , for the normal field
harmonics due to the plasma current on LCMS, the mag-
netic fields required to support the perturbed equilibrium
can be obtained from κ , which satisfies

[M ] · [I] = −[~b · n̂]plasma + [δb · n̂] (9)

By varying the field perturbation mode by mode, solv-
ing the free-boundary equilibrium for the force balance
and evaluating the properties of the resulting equilib-
rium, we obtain a sensitivity matrix, [R], whose rows
are changes in different types of physical response F and
whose columns are perturbations of different modes:

[R] · [δ~b · n̂/ | ~b |] = [δF/F ] (10)

Despite the simplicity of the concept and the straight-
forwardness of the method, we need to be very careful
doing calculations at every step in practice in order to
distinguish numerical errors from the true effects of small
perturbations. A code, BNPERT, has been written for
this purpose which uses parallel multi-processing to effi-
ciently evaluate plasma responses to perturbations of dif-
ferent modes. The equilibrium is obtained using VMEC
[8] in the present version. The current potential, κ, was
calculated on a surface in a coordinate system defined
by the normalized poloidal angle u and toroidal angles v
(u = θ/2π, v = Npφ/2π, Np is the number of field peri-
ods and 0 ≤ u, v < 1). The unit square was divided into
64 by 64 grid points. The normal magnetic fields were
typically represented by a double Fourier series with 10
poloidal modes and 10 toroidal modes. For perturba-
tions that preserve stellarator symmetry and periodicity
the Fourier series takes on the form of sine functions.
Perturbations in the external magnetic field were stud-
ied for the poloidal and toroidal modes m and n in the
range of 0 ≤ m ≤ 9 and −5 ≤ n ≤ 5. In calculating
the magnetic fields needed by VMEC, the current po-
tential was represented by 60 filamentary coils for each
field period derived by dividing the plane of the normal-
ized poloidal and toroidal angles into 256 by 256 meshes.
The magnetic fields encompassing the plasma region were
evaluated by the Biot-Savart law in 201 radial and 201

axial grid points on 32 toroidal planes for each field pe-
riod. VMEC calculations were carried out typically with
11 poloidal modes and 8 toroidal modes and with 49 flux
surfaces. Our experience indicates that linear responses
may be studied for perturbations as small as ∼ 0.01%. In
our evaluation of the plasma properties, we included the
response of the external kink, ballooning, Mercier and
resistive interchange modes, the effective helical ripples,
plasma beta, aspect ratio, rotational transform, global
magnetic shear, residues in the magnetic spectrum as
well as the areas of secondary ripple wells along a cho-
sen field line segment. In the analysis of plasma stabil-
ity to the kink modes for stellarators having field peri-
ods Np, Fourier harmonics due to perturbations with a
toroidal mode number n are coupled to n + kNp (k an
integer). As a result, there are Np/2+1 families of mode
perturbations for even Np and (Np-1)/2+1 families for
odd Np. In particular, for Np=3 there are two families
of mode perturbations, N=0 and N=1, and we have in-
cluded them both in the study of the plasma response
in the next section. Using the magnetic coordinates the
width of magnetic island caused by the perturbation on
a mode rational surface corresponding to the rotational
transform, ι = n/m, in units of toroidal flux enclosed by
the plasma, was assessed by

δs = 4 ·

√
(
~b · ∇s
~b · ∇φ

)m,n ·
1
mι′

(11)

where s is the normalized toroidal flux labelling the sur-
faces, φ is the toroidal angle and the prime denotes the
derivative with respect to s. The normal component of
the magnetic field in the evaluation was calculated using
filamentary coils to represent the perturbed current po-
tential. It does not include the resistive effects or effects
due to the plasma pressure and current. Using PIES code
[9] to make a more complete assessment of islands caused
by magnetic perturbations remains a possibility but the
computational time is prohibitive with the present ver-
sion of the code.

For the kink mode, the response was evaluated using
TERPSICHORE [10]. Because configurations of inter-
est are normally near marginal stability, the plasma re-
sponse may not be linear even though the perturbation
is small. To ensure the linearity in response we included
an extra driving factor for the current and pressure, typi-
cally ∼ 3−5%, to destabilize plasmas just away from the
marginal stability. The ballooning modes were evaluated
using COBRA [11] on two field lines approximately pass-
ing through the outboard mid-plane at toroidal angles
corresponding to the beginning of a field period and at
the half period. The total area under which the modes
were unstable was calculated and used as a metric. The
Mercier and resistive interchange were evaluated by JMC
[12]. Helical ripples were calculated by NEO [13] at five
surfaces at radii corresponding to 10, 30, 50, 70 and 90%
of the normalized toroidal flux. On each surface, the
poloidal and toroidal angles were divided into 512 by
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FIG. 1: (Color online) Four cross sections of NCSX at 4%β
in equally spaced toroidal angles over half period. The four
cross sections correspond to the normalized toroidal angles
v = Npφ/2π = 0.0, 0.17, 0.33 and 0.5, respectively. For each
cross section, the normalized poloidal angles u = θ/2π are
shown in equal increment of 0.125 starting from u = 0 as a
filled black circle and going counter-clockwise. The machine
axis is to the left.

512 grids and the equilibrium was mapped to the Boozer
magnetic coordinates [14] with the number of the poloidal
modes chosen to be six times the number of modes used
in VMEC and the number of the toroidal modes twice as
many. There were 512 test particles with 512 steps used
in the field line integration for each field period and at
least 2048 periods were used in the integration in NEO
calculations. Finally, the rotational transform calculated
by VMEC was linearly interpolated to identify rational
surfaces.

The linearity of plasma response can be checked by
simply reversing the sign of a perturbation. However,
the method is not restricted to just small linear pertur-
bations. In addition, the perturbation can be periodicity-
breaking or in violation of the stellarator symmetry, but
both sine and cosine functions have to be used for the
complete magnetic field representation and calculations
become much more time-consuming.

III. EFFECTS OF MAGNETIC FIELD
PERTURBATIONS IN NCSX

In this section, we present results from a study in which
magnetic field perturbations were introduced to the ref-
erence NCSX plasma [15]. The general characteristics of
the unperturbed NCSX are summarized in figure 1: the
four cross sections of the plasma equally spaced in half-
period, and in figure 2: the rotational transform. The
configuration has three field periods and has an aspect
ratio 4.5. It is stable to the external kink modes and is
nearly stable to the ballooning modes at 4% β according
to the ideal, linear MHD analysis. The configuration is
quasi-axisymmetric and the magnitudes of effective heli-
cal ripples are generally ≤ 1%.

The sensitivity of the N=1 kink stability to different
modes of perturbation, one Fourier mode at a time, is
shown in figure 3. The sensitivity of the island width,

FIG. 2: (Color online) The rotational transform of NCSX as
function of normalized toroidal flux s (∼ r2/a2). The dotted
line is the rotational transform due to plasma shaping; the
solid line is the toal transform including the contribution from
plasma current at 4% β.

excluding the plasma response, on the mode rational sur-
face corresponding to m = 5, n = 1 is given in figure 4.
The significance of the mode perturbation is clearly seen
for those corresponding to the rational values (and the
side bands) in the rotational transform. Similar charac-
teristic is observed for the sensitivity of the ballooning
stability as illustrated in figure 5. NCSX was specifi-
cally optimized for the kink stability by adjusting the
boundary geometry. The optimization process brought
the configuration to the boundary of marginal stability
so that it is very sensitive to certain perturbations in the
external magnetic fields. The evaluation of the plasma
response has implicitly assumed the existence of nested
flux surfaces in the entire plasma volume. At mode ra-
tional surfaces, parallel currents will develop under this
assumption to prevent the opening of magnetic islands.
The magnetic field perturbations in resonance with these
rational modes tend to result in the local amplification
with significant effects.

In figure 6 we show the sensitivity of the effective heli-
cal ripple on the flux surface at r/a ∼ 0.7. The response
spectrum is broad and the important effects tend to be
from lower order modes. The sensitivity characteristic is
clearly different from that for the MHD stability. Finally,
in figure 7 we show the sensitivity of the aspect ratio to
illustrate yet another different characteristic of the mode
sensitivity. For the aspect ratio (and also the beta), the
singularly most important mode of perturbation is the
axisymmetric m = 1 and n = 0 mode, but the sensitivity
is much weaker compared to that for the MHD stability.

The response matrix [R] may be decomposed, using the
method of singular value decomposition (SVD), into two
‘input’ and ‘output’ matrices, [V ] and [U ], and a matrix
[W ] containing singular values, i.e.,

[R] = [U ] · [W ] · [V ]T (12)

Column vectors in [V ] and [U ] are orthonormal. Pertur-
bation distributions corresponding to large singular val-
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FIG. 3: (Color online) Sensitivity of the N=1 kink mode to
external field perturbation for NCSX. The perturbation is rep-
resented as a Fourier series

∑
m,n

δbmn · sin(mu+ nv) in the

normalized poloidal angle u and toroidal angle v. The ab-
scissa is the perturbation mode sequence grouped in poloidal
mode numbers m = 0, 9 and for each poloidal mode number
grouped in toroidal mode numbers n = −5, 5 except for m = 0
where n = 0, 5. The ordinate is the sensitivity response de-
fined as per unit change in response per unit change in the

external field, δF/F/δbmn/ | ~b |. Here the unit change in re-
sponse is the change in the N=1 kink eigenvalue. In arriving
at the figure, each δbmn on the plasma surface was perturbed
independently one at a time and the resulting free-boundary
equilibrium was evaluated. Modes of significant sensitivity
are highlighted and shown in mode pair (m,n), where m is
the poloidal mode number and n is the toroidal mode number.
For definitions of u and v, see figure 1.

FIG. 4: (Color online) Sensitivity of the size of the magnetic
island at the rational surface ι = 1/5 to the external pertur-
bation for NCSX. See figure 3 for details.

ues in [W ], which are respective column vectors of [V ],
are the ones that the plasma is most sensitive to. The
different types of response may also be combined into a
total response function. Let [σ] be a column vector con-
taining weights given to various responses, such as those
used to form the overall penalty function in arriving at
the optimized configuration, then [R]T · [σ] is a column
vector containing the relative importance of each pertur-
bation mode in δ~b · n̂ on the plasma surface. The singular
value decomposition of [R]T · [σ] yields one non-zero sin-
gular value and the corresponding vector in the input
matrix represents the perturbation distribution that the
configuration is most sensitive to in its overall effect on

FIG. 5: (Color online) Sensitivity of the ballooning mode sta-
bility to the external perturbation for NCSX. See figure 3 for
details. The high Fourier mode numbers in the sensitivity are
associated with ballooning modes near the plasma edge.

FIG. 6: (Color online) Sensitivity of the effective helical ripple
to the external field perturbation at r/a = 0.5 for NCSX. See
figure 3 for details.

the quality of the configuration.
In practice, however, it is more instructive to exam-

ine the characteristics of perturbation distributions sep-
arately for the important physics attributes of a configu-
ration of interest. In figures 8 and 9 we show, for NCSX,
the distributions of magnetic perturbations to which the
N=1 external kink mode and the effective helical ripple
at r/a ∼ 0.7 are most sensitive. The two distributions
are nearly orthogonal. It is interesting to note that for

FIG. 7: (Color online) Sensitivity of the plasma aspect ratio
to the external field perturbation for NCSX. See figure 3 for
details.
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FIG. 8: (Color online) Perturbation distribution to which the N=1 kink stability is most sensitive in NCSX shown as function
of the normalized poloidal angle u in five equally spaced toroidal angles over half a period (frame a) and in normalized toroidal
and poloidal coordinates (frame b) on the LCMS. For (a) curves with color red (solid), green (dash), blue (short dash), magenta
(dot) and light blue (dash-dot) correspond to v = 0.0, 0.125, 0.25, 0.375 and 0.5, respectively. For definitions of u and v, see
figure 1.

FIG. 9: (Color online) Perturbation distribution to which the effective helical ripple at r/a ∼ 0.7 of NCSX is most sensitive
shown as function of the normalized poidal angle u in five equally spaced toroidal angles over half a period (frame a) and in
normalized toroidal and poloidal coordinates (frame b) on the LCMS. See caption of figure 8 for the color scheme for (a).

both the kink mode and the effective helical ripples the
distributions show the sensitivity of plasma response to
field errors mostly in outboard regions. For these distri-
butions a perturbation of the external fields of 1% leads
to a factor ∼ 30 increase in the calculated eigenvalue or
∼ 5.5 in the growth rate of the kink mode and a factor
of ∼ 1.5 increase in the effective helical ripple. For the
kink stability, the most sensitive regions are those just off
the outboard mid-plane near the crescent shaped section
and those near the bottom tip of the cross section about

two-third of the way toroidally between the crescent and
the bullet shaped sections (the third cross section from
the left in figure 1). For the effective ripple, the most
sensitive regions are those also just off the mid-plane of
the crescent shaped section as well as those near the out-
board tip of the cross section close to the half-period
bullet section. Of course, the stellarator symmetry ap-
plies to the other half-period. For NCSX the nominal
magnetic strength is ∼ 1.2 T so that perturbations in
the range of tens of gauss would have significant effects
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on the MHD stability of the configuration.
The most sensitive magnetic field perturbations for the

kink stability shown in figure 8(b) change signs in a lin-
ear distance about 0.7a, with a the average plasma minor
radius. This indicates that corrections of the most sen-
sitive magnetic perturbations affecting the kink stability
are feasible for coils located at distances comparable to
or smaller than the plasma minor radius a. For the effec-
tive ripple, the separation of the most sensitive regions
with opposite signs is on the order of a. The control
of magnetic perturbations for quasi-axisymmetry is less
constrained.

IV. APPLICATION OF SENSITIVITY MATRIX
TO COIL DESIGNS

The sensitivity matrix from BNPERT calculations can
be incorporated into the design of primary coils to im-
prove their characteristics. In coil designs, one attempts
to minimize the normal fields on the boundary surface
of the intended target plasma. The residues from the
RMS minimization in the traditional procedure due to
the limited number of Fourier modes to represent the
current potential for the coils are usually on the order of
a few percent, much larger than the magnitude of pertur-
bations we have discussed. Nevertheless, coils designed
with such processes are often found acceptable either be-
cause the physics properties of the resulting plasma are
not degraded beyond the critical values or because fur-
ther optimization of the coils may be carried out to re-
cover the lost physics properties. In either case a neigh-
boring equilibrium of the target plasma is found which
has acceptable properties. The distribution of the resid-
ual errors is not known before the minimization and can-
not be controlled in the process. The efficiency of this
design process may be improved by taking advantage of
the sensitivity response that is obtained through the pro-
cess discussed in the previous sections. In particular, we
find two useful applications: (a) use the response matrix
to construct a basis for ~b · n̂, (b) use the matrix elements
to define an importance function (or weight) for ~b · n̂.

The sensitivity matrix may be used to define a set of
basis functions to represent normal magnetic fields on the
plasma boundary. In general, in the design of stellarator
coils, the objective is to find [I] that minimizes the flux
on the last closed magnetic surface in equation (9) except
that now [I] is constructed on a coil winding surface and
the perturbation term on the right hand side is zero. As
discussed in section II, equation (12), the response matrix
may be decomposed into two orthonormal matrices [V ],
[U ] and a matrix [W ] containing singular values. We
construct a new basis [h] defined by

[h] = [V ]T · [f ] (13)

The magnetic flux expanded using this basis is a con-
verging series with the ordering corresponding to the im-

FIG. 10: (Color online) Comparison of contours of current
potential on a winding surface uniformly displaced from the
boundary of the NCSX baseline plasma by 0.14 units of the
major radius. The contours are shown on the plane defined
by the normalized toroidal (abscissa) and poloidal (ordinate)
angles on the winding surface in one field period. The upper
frame (a) is the solution obtained from the NESCOIL code
with nine polodial modes and five toroidal modes for the cur-
rent potential and the lower frame (b) is the solution using
the basis derived from the sensitivity matrix with seventy-
seven components. Shown on the right of each contour plot
are the cross sections of the plasma in four equally spaced
toroidal angles over half a period constructed by VMEC in
the free-boundary mode using the current potential given on
the left.

portance of the plasma response to various modes of per-
turbations. Using a subset of [V ] , retaining only those
with large singular values, we find coils that are less noisy
but that the plasmas derived from them retain the impor-
tant physics characteristics. In figure 10 we compare coil
contours on a winding surface obtained from using a sub-
set of [V ] to those derived from using the NESCOIL solu-
tion. NESCOIL [3] is a commonly used tool in designing
stellarator coils but the algorithm it uses does not distin-
guish the relative importance of different modes of the
normal magnetic fields. The subset used in this example
included seventy-seven modes for the sensitivity response
of the plasma aspect ratio, beta, rotational transform,
effective helical ripples and stability to the kink and bal-
looning modes. The quality of quasi-axisymmetry and
the characteristics of MHD stability of the new configu-
ration remain essentially the same as the base configura-
tion.

We note that if the size of [I] is greater than the size of
[h] there is a so-called null space that would allow one to
modify coil characteristics without changing the impor-
tant normal magnetic fields on the plasma surface. In
Ref. [16] the use of a resistance matrix has been pro-
posed to minimize the power consumption and to bias
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the current distribution on the coil winding surface.
The different types of response may also be combined

into a total response function as discussed in section III.
The column vector [R]T ·[σ] gives the relative importance
on the quality of the plasma for each mode in ~b · n̂ on the
plasma surface. In codes commonly used for designing
stellarator coils, such as NESCOIL or COILOPT [17],
all modes of ~b · n̂ are considered to be equally important.
Using [R]T · [σ] as a weight function to put more empha-
sis on minimizing the residue magnetic fields that have
stronger adverse effects on the plasma properties of inter-
est should produce better and more efficient coils. After
all, the magnetic field distribution normal to the plasma
boundary surface with a large perturbed response must
be carefully controlled in designing coils.

Using the sensitivity function as an importance weight-
ing for the normal field distribution on the plasma surface
also leads to a larger condition number – the ratio of the
largest to the smallest singular values when a matrix is
decomposed with SVD – for the mutual inductance ma-
trix [M ]. For example, in NCSX the condition number
with equal weighting of the perturbation response for the
N=1 kink stability and the helical ripple is an order of
magnitude larger than that without weighting. Since the
current distributions on the winding surface associated
with smaller singular values have lesser importance in
contributing to the solution, we may select a subset of
eigenvectors with the corresponding singular values ex-
ceeding only a certain threshold to define the coil geome-
try. Such a procedure reduces the complexity of coils and
is useful for finding distant but buildable coils, although
some of the important physics properties may be com-
promised in the process (because the distribution of the
residue errors cannot be controlled before the process is
complete, as discussed before). To recover the degraded
or lost properties as a result of using the reduced set of
singular values, we have developed a new procedure as
follows. The solution for the current potential for each
of the selected singular values is considered as a separate
set of coils. The currents in these coils are then varied
to find a plasma configuration satisfying all the targeted
physics properties using tools such as STELLOPT [18].
The optimized currents are used to construct a set of
re-scaled singular values and using them a new coil so-
lution is obtained. The plasma derived from this new
coil set should have identical properties as the one from
the optimization of the currents for the singular coils.
Mathematically, we introduce a set of scaling matrices
[Sk]whose entries are all zero except for the kth element
that has a scaling sk,

[Ik] = [V ] · [Sk] · [W ]−1 · [U ]T · [~b · n̂] (14)

and

[I] =
∑

k

[Ik] (15)

where [V ] and [U ] are input and output matrices when
[M ] is decomposed using SVD and [W ] is the diagonal

matrix containing singular values. The scaling factors sk

are initially unity for the singular values retained in an
analysis and zero for those discarded. The final values
are obtained from the configuration re-optimization.

As an illustration, we show in figure 11 coil patterns
for NCSX on a winding surface which is located at 0.21
units of the major radius away from the plasma LCMS.
Solutions derived using both the method of NESCOIL
and the method just described keeping about one-third
of the eigenvectors are given. Also, results for both with
and without optimization to rescale the singular values
are shown in this figure. The importance function in
this example was constructed with equal weighting for
the kink stability and the effective helical ripples. Coils
obtained from the SVD method are clearly less complex
as the modes with lesser importance have been filtered
out. Note that, for this case, the so-called coil aspect
ratio, the ratio of the average plasma major radius to
the distance separating the coil winding surface from the
plasma LCMS, is about 4.8. It is almost as low as the
plasma aspect ratio, which is 4.5. The low coil aspect
ratio is considered to be one of the most important mea-
sures for being able to design compact, cost-competitive
power reactors.

When the number of singular values retained is sys-
tematically varied and the current potential re-scaled to
optimize the plasma performance, one often finds that
there are many equilibria in the neighborhood of the tar-
get plasma that meet the most critically required criteria
such as the MHD stability or quasi-symmetry for a con-
figuration. The new method, thus, affords us an efficient
means to identify an initial coil set that already has most
of the desirable characteristics. Further optimization to-
ward less complex, more buildable geometries becomes
easier.

When a subset of the singular values is used in the
mutual inductance matrix (without re-scaling), the solu-
tion for the current potential will only be approximate
and the residue ~b · n̂ on LCMS may be large. In the
example given in figure 11(b) the average error over the
surface is about 2% and the maximum error is nearly 16%
of the local field strength. The equilibrium constructed
based on this field distribution will not be MHD stable
nor will it satisfy the quasi-symmetry criterion. When
the configuration is re-optimized, the re-scaled current
potential will yield another set of residues ~b · n̂ on the
original plasma surface. The magnitude of these residues
has been observed to be as large as that before the re-
optimization. Of course, the residues will vanish on the
LCMS of the re-optimized plasma which has a different
shape. The residues due to the re-scaled current poten-
tial on the original plasma surface give us an indication
of which field error distributions are not important since
the perturbed magnetic fields merely lead the plasma to
a new neighboring equilibrium which recovers most of the
properties of the reference plasma. We have analyzed the
distributions of such residues and found that the general
characteristics of the error field distribution look similar
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FIG. 11: (Color online) Coil contours on a current carry surface located at a distance of 0.21 units of the plasma major radius
for NCSX. Shown on the top row are cross sections of the plasma boundary and the coil winding surface at the beginning of a
period and at the half period. The current potential contours and the cross sections of the last closed magnetic surface of the
constructed free boundary equilibrium are given in the next two rows in orders of (a) NESCOIL solution, (b) with 35 singular
values retained in the mutual inductance, and (c) with 35 singular values retained in the mutual inductance whose values were
rescaled based on the optimization of the plasma properties. Both the NESCOIL solution shown in (a) and the optimized
solution with the reduced set of singular values shown in (c) recover the MHD stability and quasi-axisymmety properties of
the baseline NCSX at 4%β while the solution shown in (b) does not. For the current potential, there were 9 poloidal mode
and 5 toroidal modes used. The coil geometry is shown in a plane with the normalized toroidal angle v as the abscissa and the
normalized poloidal angle u as the ordinate on the winding surface. For definitions of u and v, see figure 1.

before and after the re-optimization, as seen in figure 12.
In both cases, the largest residues are at a region just
off the in-board mid-plane near the half-period, bullet-
shaped cross section. In section III we showed that both
the kink stability and the effective ripple for NCSX are
most sensitive to perturbations in the outboard regions.
The large residue errors in the inboard regions for con-
figurations in figures 11 (b) and (c) are apparently not
that signifcant. This is the reason that it is possible to

re-optimize the configuration from (b) to (c) shown in
figure 11 to recover all the desirable properties. Indeed,
a Fourier analysis for the residue distribution indicates
that the largest contributing modes are m = 1, n = 1
and m = 2, n = 1, but neither is particularly important
for perturbing the key physics properties of NCSX. This
example clearly demonstrates the importance of under-
standing the plasma sensitivity to the distributions of
external magnetic field perturbations.
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FIG. 12: (Color online) Contours of residue magnetic fields normal to the LCMS of NCSX for cases b and c shown in figure 11,
case b: left frame; case c: right frame. The residue fields are normalized to the local field strengths and shown in a coordinate
system on the LCMS defined by the normalized poloidal angle u and toroidal angle v. For definitions of u and v, see figure 1.

Finally, the sensitivity matrix can be used directly in
the design of trim coils to correct field errors of small
magnitudes. Let [T ] be the matrix relating the change
in the plasma properties to the change in the trim coil
current. The magnitude of currents required to null out
the known error field is simply

[It] = −[T ]−1 · [R] · [δ~b · n̂/ | ~b |] (16)

V. SUMMARY AND CONCLUSIONS

A numerical method has been developed that ap-
plies small magnetic perturbations directly to the plasma
boundary to evaluate the plasma response to the pertur-
bations. The derived plasma response matrix gives the
sensitivity of an equilibrium to the external perturba-
tions and singles out error field distributions that need
to be carefully controlled. Using the information con-
tained in the response matrix one can design coils more
effectively so that more robust coils may be realized at a
distance farther from the plasma. In particular, by op-
timizing a selected set of singular values in the mutual
inductance matrix equilibria in the neighborhood of the
target plasma having similarly desirable physics proper-
ties can be identified that may be produced by coils with
less complexity. By using only a subset of the current
potential to optimize plasma properties, one is left with
additional rooms that can be used to further improve coil
characteristics.

The present work may be extended to study the am-
plification of the total magnetic field harmonics at the
plasma boundary, in addition to looking at the overall
physical response such as the MHD stability or quasi-
axisymmetry. The total ~b · n̂ at the plasma boundary
provides us important information useful for the plasma
control. While we have discussed the distributions of the

magnetic perturbations that the kink stability and effec-
tive ripples are most sensitive to for NCSX, it is possible
to construct distributions that are orthogonal to the most
sensitive ones to understand how fast the series converges
and how many important distributions need to be con-
trolled. Using SVD to filter out certain harmonic content
in the current potential has been shown to be able to re-
duce the complexity of coils. It will be useful to extend
the study to find out how the re-calibrated singular val-
ues relate to the distance separating the current carrying
surface from the plasma boundary and how the charac-
teristics of the distant coils change. Finally, if the num-
ber of parameters used to specify the geometry of coils
is greater than the number of parameters required to de-
scribed the desirable phyiscs characteristics of a plasma,
a null space exists. Finding the best use of the null space
to simplify coil topology remains an interesting and chal-
lenging subject.
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