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A method for approximately solving magnetic differential equations is described. The approach
is to include a small diffusion term to the equation, which regularizes the linear operator to be
inverted. The extra term allows a “source-correction” term to be defined, which is generally required
in order to satisfy the solvability conditions. The approach is described in the context of computing
the pressure and parallel currents in the iterative approach for computing magnetohydrodynamic
equilibria.

Introduction: A magnetic differential equation [1] is an
equation of the form

B · ∇f = s, (1)

where B is a given magnetic field, s is an arbitrarily pre-
scribed source term, and f is a single valued function
that is to be determined. This equation describes how
f changes while traversing along a field line. Toroidal
magnetic fields are analogous to 1 1

2
dimensional Hamil-

tonian systems [2] and consequently, in the absence of
a continuous symmetry, are generally chaotic [3]. This
paper shall suggest numerically tractable techniques for
solving this equation to arbitrary accuracy.

Equations of this type arise in several contexts in
plasma physics. The electric field that satisfies Ohm’s
law, E + v × B = η j, for a given steady-state magnetic
field, so that E = −∇φ, is given by B · ∇φ = −η j · B. In
the solution to the ideal magnetohydrodynamic (MHD)
equilibrium equation, ∇p = j × B, magnetic differen-
tial equations arise for the pressure, B · ∇p = 0, and
the parallel current, B · ∇σ = −∇ ·

(

B ×∇p/B2
)

, where

σ = j · B/B2 and we have assumed ∇ · j = 0. We will dis-
cuss these latter two equations in more detail below.

Several problems arise when solving equations of this
type. The first problem is that, in toroidal geometry, if f
is to be single valued then the source term must satisfy
certain solvability conditions [4]: if one were to integrate
Eq.(1) along a closed field line (i.e. a periodic orbit), we
must have

∮

s dl/B = 0. This condition generally will not
be satisfied for arbitrary s. A robust method for solving
Eq.(1) should not be sensitive to small violations of the
solvability conditions. In the approach adopted below, a
“source-correction” term, δs, will be computed so that
s+ δs does satisfy the solvability conditions.

The second, related problem is that the B ·∇ is patho-
logically singular when the field is chaotic. Magnetic dif-
ferential equations are singular on periodic orbits, and
periodic orbits densely populate chaotic fields. One could
imagine an approach that explicity located periodic or-
bits, and either included a term to cancel

∮

s dl/B = 0,
or avoided the periodic orbits altogether. However, it is
not always easy to locate periodic orbits in chaotic fields,
and regularizing and inverting the B ·∇ operator by this
approach is tantamount to resolving the infinitely com-

plicated, fractal structure of the magnetic field [5]. This
is no easy task, and is unlikely to lead to a reliable nu-
merical algorithm.

The third problem is that the solution is arbitrary to
within a function that is constant along a field line: if f
is a solution then so is f̄ = f + α for any α that satisfies
B · ∇α = 0. In the case of integrable fields, where every
field line lies on a toroidal surface (i.e. a flux-surface) and
the flux-surfaces themselves are continuously nested, the
integration constant may be an arbitrary surface func-
tion, α = α(s) where s labels flux-surfaces. In the chaotic
regions however, where the field lines associated with the
unstable manifolds of the unstable periodic orbits seem
to wander about randomly; and where there may exist
some surviving irrational flux surfaces (so called KAM-
surfaces) and cantori [6]; and where there may exist small
island chains about the stable periodic orbits [7], it is not
at all obvious how one can choose a non-trivial integra-
tion function so that f will be continuous.

Regularized operator: The approach adopted here is to
include a non-singular, linear operator to the left hand
side of Eq.(1). Consider the advection-diffusion equation,

B · ∇f +D∇ · ∇⊥f = s, (2)

where D is assumed to be a small constant and
∇⊥f ≡ ∇f − bb · ∇f . Provided D 6= 0, the opera-
tor L ≡ B · ∇ +D∇ · ∇⊥ is non-singular and Lf = s is
readily inverted. An intuitive understanding of why this
is so is to note that the ∇ · ∇⊥ operator contains higher
order derivatives than B · ∇ . Wherever f tends to be
singular, the higher order derivatives, and thus the reg-
ular diffusion process, will dominate.

As with all differential equations, to obtain a unique
solution we must supplement Eq.(2) with boundary con-
ditions. Integrating Eq.(2) over some volume V , with
boundary ∂V , we obtain

∮

∂V

(f B +D∇⊥f) · da =

∫

V

s dv, (3)

where da is the normal area element. Suitable boundary
conditions are problem dependent.

After computing the solution to Eq.(2), we may iden-
tify the source-correction term, δs = −D∇ · ∇⊥f , and
we have effectively solved B · ∇f = s+ δs. By taking
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FIG. 1: Solutions, g(x) and h(x), and their derivatives, for
Eq.(2) with D = 10−4.

the limit D → 0, and assuming that ∇ · ∇⊥f remains
finite, we uncover the solution B · ∇f = s.

Note that the solutions to Eq.(1) are not required to be
smooth. Where the differential equation is singular the
mathematical solution admits a δ-function singularity. In
contrast, the solutions to Eq.(2), and also to Eq.(4) be-
low, are guaranteed to be continuous and smooth for non-
zero D. So, the regularization approach suggested here
automatically approximates the continuous solution to
Eq.(1), which we assume is the physically relevant solu-
tion in the context of MHD calculations.

To illustrate, consider a magnetic field in Carte-
sian coordinates, B0 = ∇× (x∇y − χ0∇z), where x
serves as the radial coordinate, and y, z are the
poloidal, toroidal angles. We choose a simple in-
tegrable field, χ0(x) = x2/2, to give a linear trans-
form profile, ι- ≡ χ′

0
= x. For the source term we use

s = smn(x) cos(my − nz). The solution to Eq.(1) is
ḡ(x) sin(my − nz), where ḡ = smn/( ι-m− n), which is
singular at ι- = n/m. This solution, and its derivative,
are shown as the dotted curves in Fig.1 and Fig.2.

We write the solution to Eq.(2) as
a sum of odd and even components,
f = g(x) sin(my − nz)+h(x) cos(my − nz), and obtain a
coupled pair of second-order, differential-equations for g
and h. To be explicit, we use m = 2 and n = 1 and take
smn(x) = 1. A finite difference method is used, with the
boundary condition that g = ḡ and h = 0 at x = 0 and
at x = 1. The solutions, g and h, and their derivatives,
are shown in Fig.1.

There is a subtlety here that needs to be recognized.
If the original source term satisfies the solvability condi-
tions, then the solution is well behaved and no source-

correction term is required. In this case, the term δs
vanishes as D approaches zero. If the source does not sat-
isfy the solvability conditions, then as D becomes smaller
the solution approaches a singular/pathological limit and
∇f grows without bound. In this case, δs remains finite
even as D → 0, but it is, in some sense, no larger than
required and localized to where the solvability constraint
is violated.

For more complicated geometry and fields, Eq.(2) may
be solved by a variety of numerical methods. For exam-
ple, a locally field aligned coordinate grid will accurately
resolve the B · ∇ operator [8]. We make no assumption
regarding the structure of the field, and the approach
is equally valid for integrable magnetic fields, partially
chaotic fields, and fields that are so chaotic they are ef-
fectively random. We do not need to resolve the fractal
structure of the chaotic field; it is only required to resolve
the structure of the solution, and provided D is non-zero,
the solution will be smooth.

Iterative algorithm for MHD equilibria: Magnetic
differential equations arise in the iterative solution
of the MHD equilibrium equations [9]. The ideal
force balance equation is j × B = ∇p. The itera-
tions proceed by identifying j⊥ = B ×∇p/B2. Writ-
ing j = σB + j⊥ and insisting that ∇ · j = 0 we obtain
a magnetic differential equation for the parallel current,
B · ∇σ = −∇ ·

(

B ×∇p/B2
)

. Assuming this equation
can be solved, the magnetic field is updated by inverting
∇× B = j. To be consistent with an ideal equilibrium,
the pressure is adjusted in order to satisfy B · ∇p = 0.
This closes the Picard-style iterative loop. Further de-
tails are given in [10, 11], and some effort has been
devoted to implementing this approach computationally
[12].

However, this iterative scheme depends on solving two
magnetic differential equations. These equations are sin-
gular, and the difficulties encountered in inverting these
equations described earlier result in such an algorithm be-
ing numerically ill-posed. This is related to the fact that
the solutions to ∇p = j×B are ill-defined when the fields
are chaotic. The only continuous pressure that is consis-
tent with B · ∇p = 0 for chaotic fields is something akin
to a devil’s staircase [5]: the pressure-gradient is either
discontinuous or zero. The same is true for the perpen-
dicular current, j⊥ ≡ B×∇p/B2, which does not have a
well defined, non-trivial divergence, and B ·∇σ = −∇·j⊥
cannot be solved.

We shall slightly modify this iterative scheme in or-
der to remove the problems associated with inverting
these two equations, and thus obtain an algorithm that is
both numerically tractable and transparent, and that will
hopefully allow MHD equilibria to be constructed faith-
fully even for arbitrarily chaotic fields. Consider first the
solution to B · ∇p = 0. The solvability conditions for this
equation are trivially satisfied; however, for chaotic fields
(which have structure on all length scales) the only non-
trivial, continuous solutions have an uncountable infinity
of discontinuities in ∇p [5]. This pathological structure
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FIG. 2: Solution, g(x), and its derivative, for Eq.(4) with
D = 10−4.

can be removed by introducing small, non-ideal terms.
Recognizing that, realistically, the transport of the

pressure along the magnetic field is not infinitely fast;
that the pressure will relax in both directions along the
magnetic field, and so the parallel transport should be
modeled by a second-order differential equation; and that
particle collisions, finite-Larmor radius effects, etc. will
result in some small perpendicular transport, a reason-
able alternative to B · ∇p = 0 is the anisotropic-diffusion
equation,

∇ ·
(

∇‖p+D∇⊥p
)

= Q, (4)

where ∇‖p ≡ bb · ∇p and ∇⊥p ≡ ∇p−∇‖p, and Q is a
source term which may be used to drive non-trivial solu-
tions. Non-trivial solutions may also be forced by inho-
mogeneous boundary conditions. As D becomes smaller,
the pressure adapts mores closely to any flux-surfaces
that may exist, and even to the cantori [8], but for non-
zero D magnetic islands smaller than a critical island
width, ∆w = O(D)1/4, are inconsequential [13], and the
pressure is smooth, even for chaotic fields.

Solutions to the anisotropic-diffusion equation may
serve as approximate solutions to magnetic differen-
tial equations. Shown in Fig.2 are the solutions to
Eq.(4) for the integrable field considered earlier. To
approximate the solutions to Eq.(1) using Eq.(4), we
must take Q = B · ∇

(

s/B2
)

, and it is sufficient to write
f = g(x) sin(my − nz).

In fact, for slightly perturbed fields, Eq.(1) can be
transformed to an equation that is similar in form to
Eq.(4). Consider a magnetic field given by B = B0 + δB.
The outstanding effect of the perturbation is to intro-
duce a radial derivative, so that B · ∇ ≈ B0 · ∇ + δBx∂x.
Now consider applying this operator once more to Eq.(1),

(B · ∇)(B · ∇f) = B · ∇s. (5)

Realizing that for δ = 0 the solution is singular, and so
the highest order radial derivative of f will dominate, and
by discarding small terms, this may be approximated by

(B0 · ∇) (B0 · ∇) f + (δBx)2∂2

xxf = B0 · ∇s, (6)

which, after a suitable averaging operation, is essentially
an anisotropic-diffusion equation, and is non-singular.

While this is not a rigorous proof, it suggests that the
effect of a small radial field, (δBx)2∂2

xxf , is to induce a
small diffusion of f across the unperturbed flux-surfaces.
If one assumes that the perturbed field lines are stochas-
tic, and then assumes that the degree of stochastic-
ity is sufficient so that the radial deviation of the field
lines is effectively random, a quasilinear expression for
the radial diffusion coefficient could be derived [14, 15].
If one replaces the radial diffusion term, (δBx)2∂2

xxf ,
with −η2f , then the usual resonance broadening heuris-
tic is obtained, fm,n = ( ι-m− n)sm,n/

[

( ι-m− n)2 + η2
]

,
where we have employed a Fourier representation for f
and s, and used B0 · ∇ ≡ ( ι-m− n).

Including a perturbed radial field appears to have elim-
inated the singularity; however, Eq.(5) is no less, and
no more, singular than Eq.(1). The resonance broaden-
ing described by Eq.(6) has been achieved by somewhat
vaguely discarding small terms (arguing that the per-
turbation terms are small and that the field is almost
integrable) and/or by averaging (arguing that the per-
turbation is sufficient to cause strong field line chaos).
This is equivalent to altering the linear operator that
acts upon f . It is not obvious how well solutions to
Eq.(6) will approximate solutions to Eq.(1) for arbitrar-
ily chaotic fields. The singularities in the B · ∇ have
not been removed by the introduction of perturbed ra-
dial or chaotic fields. The singularities are associated
with the existence of periodic orbits, and periodic orbits
are guaranteed to survive perturbation (for any system
with shear) by the Poincaré -Birkhoff theorem [3]. Mag-
netic differential equations are guaranteed to be singular
for toroidal magnetic fields, regardless of the degree of
chaos.

From a numerical perspective, Eq.(4) has several ad-
vantages over Eq.(6). Eq.(6) would not regularize the
singularities when the field is integrable, whereas the
resonance broadening in Eq.(4) is explicit and transpar-
ent, and independent of the degree of chaos. To exploit
Eq.(6) numerically it is required to represent the given
field as a small perturbation to a “nearby”-integrable
field, as this determines the magnitude of δ, but there
is some arbitrariness in the choice of nearby-integrable
field across which f is assumed to be diffusing: if the
nearby-integrable field is chosen poorly, a rather pecu-
liar diffusion process could result. It would seem that
the best method of ensuring that the diffusion perpen-
dicular to the coordinate surfaces was consistent with a
small diffusion perpendicular to the field would be to use
coordinates adapted to the surviving invariant magnetic
surfaces and cantori, i.e. chaotic-coordinates [16]; indeed,
the construction of chaotic-coordinates allows Eq.(4) to
be solved analytically: assuming that p takes the form
p = p(ψ), where ψ labels the coordinate surfaces, and ig-
noring the source for simplicity, the solution to Eq.(4) is
given by p′ ∝ (ϕ+DG)−1, where ϕ is the squared field-
line flux across the coordinate surfaces and G is an aver-
age metric quantity [16].

The second magnetic differential equation that arises



4

is for the parallel current. Either to ensure that the solv-
ability conditions are satisfied, or to allow small pressure
gradients along the magnetic field, which would be the
case if Eq.(4) is used, we must include additional terms to
the force balance equation [17]. Generally, we can write

j × B = ∇p+ u⊥ × B + λB. (7)

The λB term in Eq.(7) does not contribute to perpendic-
ular force balance. If the pressure satisfies Eq.(4), then
this term is small, λ ∼ D. The parallel current is given
by the magnetic differential equation

B · ∇σ = −∇ ·
(

B ×∇p/B2
)

−∇ · u⊥. (8)

We may solve this, and compute the additional perpen-
dicular current, u⊥, by solving instead the regularized
equation,

B · ∇σ +D∇ · ∇⊥σ = −∇ ·
(

B ×∇p/B2
)

, (9)

and then identify D∇ · ∇⊥σ = ∇ · u⊥. This may be in-
tegrated to obtain u⊥ = D∇⊥σ. There is an arbitrary
integration term, ∇× h, but this may be set to zero. The
operator that acts on σ in Eq.(9) is no longer singular,
and this removes the δ-function solution to the parallel
current that would otherwise generally be present [18].

As for the boundary conditions that are required
to supplement Eq.(9), consider for example a region
bounded by two irrational flux-surfaces (so-called KAM
surfaces), on which B · n = 0, where n is normal to
the boundary surfaces. It is sufficient to supply
Dirichlet boundary conditions, and σ on the computa-
tional boundary may be specified arbitrarily. A nat-
ural choice is constructed as follows. On the irra-
tional surfaces the operator B · ∇ is non-singular, and
B · ∇σ = −∇ ·

(

B ×∇p/B2
)

is readily inverted to solve
for σ, for example by constructing straight-field line co-
ordinates [19, 20]. The boundary condition may be taken
as this solution plus any constant.

Comments: We have presented a method that (i) al-
lows the solutions of magnetic differential equations to
be approximated arbitrarily closely; (ii) self-consistently
provides a small, source-correction term where it is re-
quired; and (iii) can be employed for general magnetic
fields without making any assumptions regarding the
chaotic structure of the field.

TheD∇·∇⊥ term is a smoothing operator, with a scale
length controlled by D. This term resolves the singular-
ities that would otherwise occur. Though the inclusion
of this term is somewhat arbitrary, the resultant source-
correction term should not be thought of as artificial.
For example, if j⊥ = B ×∇p/B2 is not consistent with
∇ · j = 0, then there must be some additional force that
drives a perpendicular current. To the extent that this
additional force is small and localized, the final result is
likely to be somewhat insensitive to the precise details,
as long as the singular structure is removed.

Any number of smoothing operators could be added,
and the form of the operator will determine the form
of the additional force. Conceivably, one could choose an
operator that mimics the effect of a small plasma velocity,
for example. As shown in Fig.1, the advection-diffusion
equation couples functions of different symmetry: while
this may be acceptable for modeling non up-down sym-
metric devices, the additional force in this case would
violate stellarator symmetry. The anisotropic-diffusion
equation in contrast preserves any symmetry that may
be present.

As D becomes smaller and the regularization term be-
comes weaker, the parallel currents etc. will become in-
creasingly localized and so the numerical resolution re-
quired to resolve these structures will increase. An oper-
ator with higher derivatives would have the effect of fur-
ther localizing, for a given D, the source-correction term
to regions where the solvability constraint was violated,
but again this would come at the expense of requiring
enhanced numerical resolution to resolve the increasingly
localized structures. In any case, provided D is small, the
source correction term arising from the D∇·∇⊥ term will
be both small and localized.

We have suggested a modified iterative procedure for
calculating MHD equilibrium solutions. By regularizing
the magnetic differential equations arising for the pres-
sure and parallel current, the fractal, singular structure
of the equilibrium solutions are removed. By taking D
to be small, we hope in future to compute a non-trivial,
nearly-ideal equilibrium with arbitrarily chaotic fields.
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