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Abstract. Some remarks are made about the use of modern statistical formalism in the calculation
of the zonal-flow growth rate and the backreaction of zonal flows on drift waves.
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INTRODUCTION

It is a great pleasure and significant honor to participate in this much-deserved celebra-
tion of the research career of Prof. Predhiman Kaw. Through my own career, Predhiman
has been an important role model, and it is truly impressive how his research on di-
verse topics has influenced in a very substantial way the fields of both basic and applied
plasma and fusion research.

When I first arrived at the Princeton Plasma Physics Laboratory (PPPL) in 1971
to begin my graduate training, Predhiman was already something of a mythic figure.
He had first come to PPPL in 1967 (see Fig. 1) as a brilliant post-doc with already
several tens of published papers under his belt. He left in 1971 (now as a Lecturer with
Rank of Assistant Professor) to become an Associate Professor (soon to be promoted to
Professor) at Ahmedabad’s Physical Research Laboratory, but returned to Princeton as a
Principal Research Physicist (the top rank) and Lecturer with Rank of Professor in 1975,
just in time to participate in my Final Public Oral Exam (the last hurdle in defending my
dissertation before receiving my PhD). My research focused on the theory of convective
cells in 2D, strongly magnetized, thermal equilibrium plasmas, and it required making a
fundamental distinction between classical and “anomalous” transport coefficients. (One
cannot say “turbulent” coefficients here because the convective-cell transport was being
studied in the special case of thermal equilibrium.) At one point I was vague about which
kind of coefficient I was referring to, and I can still clearly remember Predhiman asking,
“Now is that the classical coefficient or the anomalous cefficient?” I guessed that it was
the anomalous one, and that must have sounded correct since Predhiman and his fellow
examiners ultimately agreed that I had passed the exam.

I have continued to work on aspects of anomalous transport throughout my career, and
have always been on the lookout for contributions from Predhiman and his colleagues
on that and related topics. In the last decade an important area of interest for the field at
large has been the implications of zonal flows for the theory and practical consequences
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FIGURE 1. Predhiman Kaw at the Princeton Plasma Physics Laboratory. Left: circa 1967 (around the
time he first came to PPPL. Right: in 1975 (when he served as a member of the Examining Committee for
the Final Public Oral PhD Exam of J. A. Krommes).

of microturbulence in fusion plasmas. Not surprisingly, Predhiman and his coworkers
have been right there with incisive contributions that nicely blend the complementary
approaches of physical intuition, numerical simulation, and systematic analysis. Here
are just a few examples drawn from a much larger list:

• Kaw, Singh, and Diamond, “Coherent nonlinear structures of drift wave turbulence
modulated by zonal flows”[1];

• Bisai, Das, Deshpande, Jha, Kaw, Sen, and Singh, “Formation of a density blob and
its dynamics in the edge and the scrape-off layer of a tokamak plasma”[2];

• Singh, Tangri, Kaw, and Guzdar, “Coupled drift-wave–zonal flow model of turbu-
lent transport in the tokamak edge”[3].

In the remainder of this paper I am going to discuss some fundamental aspects of the
drift-wave–zonal-flow paradigm. Most of the work I will describe is not new, but there
remain confusions in the literature and in general it is important to think about these
problems with an adequate and sufficiently broad perspective. Perhaps these remarks
will help. In particular, I consider the question, “Does the ‘new’ drift-wave–zonal-
flow paradigm totally invalidate all of the earlier voluminous literature on drift-wave
turbulence?” The answer is no if one formulates the turbulence problem in a sufficiently
general way. By using ideas of statistical turbulence theory and renormalization, one
can demonstrate a nice continuity to past research, resolve some paradoxes, and also
obtain a methodology for situations where intuition fails. Techniques from Hamiltonian
field theory are also useful. I will comment (very briefly) on these interrelated threads,
beginning in the next section with some discussion of the underlying formalism of
nonlinear gyrokinetics.
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BACKGROUND: NONLINEAR GYROKINETICS

If one is to discuss the interactions of drift waves and zonal flows, one needs to know
what they are and what equations they obey. Since we will be concerned only with
low-frequency fluctuations with ω � ωci, the nonlinear gyrokinetic formalism is a good
place to start. The technical details have been thoroughly reviewed by Brizard and Hahm
[4] and an introductory tutorial is by Krommes [5]; here I will need only the basics. In a
constant magnetic field, the gyrokinetic equation is

∂F(XXX ,v‖,µ, t)

∂ t
+ v‖∇‖F +VVV E ·∇∇∇F +

q
m

E‖
∂F
∂v‖

= 0. (1)

I consider only the electrostatic approximation, so one requires the gyrokinetic Poisson
equation (written here in the quasineutral approximation)

−ρ2
s ∇̂2

⊥δΦ =
δnG

i

ni
−

δnG
e

ne
. (2)

Here Φ .
= eϕ/Te, the superscript G denotes a gyrocenter quantity, and ∇̂⊥ is an operator

(dependent on Ti) that reduces at Ti = 0 to the ordinary perpendicular Laplacian. The
right-hand side of (2) is the gyrocenter charge, which the left-hand side is the negative
of the ion polarization charge.

The simplest paradigm for the interaction of drift waves and zonal flows emerges
by considering the limit Ti = 0. That removes finite-Larmor-radius terms from (1) and
replaces ∇̂2

⊥ by ∇2
⊥. For modes with k‖ 6= 0, one may assume adiabatic electron response

δne/ne = δΦ provided that one ignores wave–particle interactions. Such response is
prohibited when k‖ = 0 because the electrons are in the fluid regime. Since the electron
polarization drift is very small, one may simply set the electron response to zero for
k‖ = 0 modes: δne/ne = α̂δΦ, where α̂ = 0 for k‖ = 0 and α̂ = 1 for k‖ 6= 0. The density
moment of the ion GKE for Ti = 0 leads to the continuity equation for ion gyrocenter
density:

∂tn
G
i +∇∇∇ · (uuuEEEnG

i )+∇‖(u‖nG
i ) = 0. (3)

For simplicity, I ignore the last term (related to ion sound waves). Write nG
i = 〈ni〉+δni

and assume a constant background density gradient with L−1
n

.
=−∂x ln〈ni〉. Finally, upon

replacing δnG
i by the remaining terms in the GK Poisson equation, one obtains the

generalized Hasegawa–Mima equation:

(α̂ −ρ2
s ∇2

⊥)
∂δni

∂ t
+ α̂V∗

∂δΦ
∂y

+uuuEEE ·∇∇∇[(α̂ −ρ2
s ∇2

⊥)δΦ] = 0. (4)

Advances and Current Challenges in the Theory of Zonal-Flow Generation June 4, 2010 3



q
k

p+

p−

−q

FIGURE 2. Drift-wave (kkk) sidebands (ppp+ and ppp−) couple to drive convective cells (qqq).

This is equivalent to the following two equations for the DW and the CC components:

(1−ρ2
s ∇2

⊥)
∂δnDW

i

∂ t
+V∗

∂δΦDW

∂y
+uuuDW

EEE ·∇∇∇???+uuuCC
EEE ·∇∇∇[(1− rs2∇2

⊥)δΦDW] = 0,

(5a)

∂tϖCC +uuuDW
EEE ·∇∇∇ϖDW + · · · = 0.

(5b)

That is, the convective cells are driven by DW–DW interactions, and the convective cells
advect (modulate) the DWs. This basic picture was emphasized by Diamond et al. [6].

DISPARATE-SCALE EXPANSION AND THE
CONVECTIVE-CELL GROWTH RATE

Two basic methodologies have been used to discuss CC and ZF generation: modulational
instability, and statistical turbulence theory. Both begin with the basic wave-number triad
interactions depicted in Figure 2, Here the triangle relation kkk + ppp + qqq = 000 is a conse-
quence of the quadratic nonlinearity of the gyrokinetic equation. For modulational in-
stability, the amplitudes of the fundamental drift wave (kkk) and its sidebands (ppp+ and ppp−)
are held fixed while the evolution of mode qqq is calculated. This approximation holds only
for short times and does not conserve energy. Alternatively, one can postulate a steady
state of turbulence and consider the predictions of standard Markovian statistical clo-
sure, including the self-consistent back-reaction of the CCs on the DWs. That theory
does conserve total energy, so it is the sensible one to use in discussing a turbulent soup
of DWs and ZFs.

In general, Markovian statistical closure of a scalar amplitude equation leads (under
the assumption of homogeneous statistics) to a spectral evolution equation of the form

∂tCkkk +2ReηkkkCkkk = 2Fkkk. (6)

Here ηkkk
.
= iΩkkk − γkkk + ηnl

kkk , Ωkkk is the real frequency, γkkk is the linear growth rate, ηnl
kkk is a

complex nonlinear damping rate, and Fkkk is the variance of internal nonlinear noise. This
equation can be written for arbitrary wavevector, including the qqq of the convective cells.
By definition, the CC growth rate is γqqq

.
= −Reηqqq. More specifically, the CC growth rate
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due to interactions with the DWs is γqqq = −Reηnl
qqq , where only the triad interactions that

couple qqq to drift waves are included in the calculation of ηnl
qqq . In general, that calculation

is nontrivial for arbitrary kkk and qqq.
Analytical progress can be made by introducing the assumption of disparate scales,

i.e., one takes ε .
= q/k � 1 and expands ηnl

qqq in ε . That expansion was performed by
Krommes and Kim [7] for the generalized Hasegawa–Mima equation. The calculation
is quite tedious because ηnl

qqq involves a sum over all kkk’s and ppp’s that sum to a fixed qqq.
The fact that kkk and ppp do not rotate around the same center means that unusually shaped
integration domains are involved [see Fig. 6 of Krommes and Kim [7]], so the calculation
becomes quite tedious. Nevertheless, in the end one is led to a definite result:

γnl
qqq = −2q4

q2 ∑
kkk

k2
y kx

k4 θqqq,kkk,−kkk q̂ ·
∂Nkkk

∂kkk
, (7)

where the x direction is parallel to q̂, θkkk,ppp,qqq is an appropriate triad interaction time (more
about that later),

Nkkk
.
=

1
2

k4〈|δϕkkk|
2〉, (8)

and k2 .
= âaakkk + k2. (âaakkk = 1 for the DWs. âaaqqq = 0 for ZFs and is unity for other long-

wavelength fluctuations like streamers.) This result has a clear physical interpretation,
as will be discussed in the next section. Moreover, one can also use the expansion to
calculate the effects of the CCs on the DWs; a Fokker–Planck equation in kkk space results,
although space precludes describing the details here.

The discussion thus far has been conceptually straightforward: one assumes that the
CCs are long wavelength relative to the DWs and calculates the consequences. But
there is a crucial and enormously instructive connection between the disparate-scale
calculation and the well-known statistical theory of eddy viscosity given by Kraichnan
[8]. Working with homogeneous and isotropic turbulence, Kraichnan partitioned kkk space
into resolved or explicit modes (k ≤ km for some constant km) and unresolved modes
(k > km). He then defined “an effective eddy viscosity acting on modes of wavenumber k
due to dynamical interaction with wavenumbers > km . . . by

ν(k | km) = −T (k | km)/[2k2E(k)], k < km.” (9)

Here T (k | km) is the energy transfer into wave number k due to triads such that k < km
and p and/or q > km. This definition is totally general, and for arbitrary wave numbers the
value of ν(k | km) depends on both the ηkkk and Fkkk terms. However, for k � km Kraichnan
showed that ν(k | km) is determined dominantly by ηkkk, and he calculated ν(k | km) to
leading order in ε for both 3D and 2D turbulence. In both cases, ν approaches a constant
in that limit; it is negative in 2D.

Brief reflection now shows that the disparate-scale calculation of the CC growth rate
is actually effectively identical to Kraichnan’s leading-order calculation of the eddy-
damping rate in 2D, except for a sign change: γqqq = −q2ν . Effectively, the DWs (short
scale in our approximation) are unresolved modes from the point of view of the CCs.
In the end, the only essential technical difference is that Krommes and Kim allowed for
an anisotropic DW spectrum whereas Kraichnan invoked the (major) simplification of
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isotropic unresolved modes. There does exist an important physical difference between
the evolution of drift waves and of 2D neutral fluids: in the drift-wave problem, adiabatic
electron response is responsible for the factor of 1 in the DW term k2 .

= 1+k2. Thus the
mode-coupling coefficients differ for the two problems. However, if the closure theory
is formulated in terms of the quantity k2 .

= âaa+ k2, it is easy to reduce the general result
of the DW–CC expansion to Kraichnan’s simply by setting âaa = 0 for all modes (and
assuming an isotropic spectrum so one can average over angle). Upon replacing the
kkk sum by a 2D integral, integrating over polar angle, and dividing by −q2 to turn growth
rate into eddy viscosity, one obtains the 2D Navier–Stokes eddy viscosity

νNS(q | kmin) =
π
4

∫ ∞

kmin
dk θq,k,k

dk2U
dk

, (10)

where Ekkk
.
= 1

2(2π/L)2U(k). This agrees completely with Eq. (4.6) of Kraichnan [8].
I will return to Kraichnan’s analysis after discussing in the next section the wave-

kinetic algorithm that is motivated by the disparate-scale expansion just described.

WAVE KINETICS AND CASIMIR INVARIANTS

Diamond et al. [6] proposed that the ZF generation problem be addressed by the use of
wave kinetic methods borrowed and generalized from the well-known problem of ray
propagation in weakly inhomogeneous random media. This important insight is essen-
tially correct. However, just what wave kinetic equation to use is unclear. In generalizing
from standard linear wave theory, several questions arise: (i) What is the appropriate ac-
tion density? (ii) What role, if any, does the linear drift-wave frequency play in this
intrinsically nonlinear problem? (iii) How does one introduce the triad interaction time
(which does not arise in linear theory at all)? Ultimately, such questions can only be
definitively answered by deriving a wave kinetic algorithm from fundamental principles,
i.e., by performing the disparate-scale expansion as described above. For example, the
form of (7) strongly suggests that the appropriate action density is the Nkkk defined in (8).
Note that this quantity is not the linear drift-wave action density, which is proportional to
the derivative of the dielectric function with respect to frequency and therefore involves
a ky; neither is it the energy invariant Ekkk

.
= 1

2(1+k2)〈|δϕkkk|
2〉 divided by the linear mode

frequency. Why, therefore, does this particular quantity appear? Smolyakov and Dia-
mond [9] proved that Nkkk is conserved by the generalized Hasegawa–Mima equation
under modulation by the CCs; however, their method did not lead to physical under-
standing. A more general proof was given by Krommes and Kolesnikov [10] in terms
of a (functional) Hamiltonian description of EEE ×BBB advection. They showed that within
the disparate-scale expansion the relevant action is a Casimir invariant (a quantity con-
served because of the structure of the Poisson bracket that generates the nonlinearity,
independent of the form of the Hamiltonian functional), for which a general formula
was provided. It is probably the case that further insights will follow by a closer exami-
nation of the physical significance of Casimir invariants.

To complete the derivation of the wave kinetic equation, one needs to know how drift-
wave packets propagate under convective-cell modulation. As in linear wave theory, a

Advances and Current Challenges in the Theory of Zonal-Flow Generation June 4, 2010 6



certain frequency plays the role of a Hamiltonian conserved under the motion. That is
not the linear wave frequency, however, but rather is the nonlinear advection frequency
(of the drift waves by the CCs)

Ω̃ .
= kkk ·ṼVV

CC
E,qqq. (11)

One then has the random ray equations

dXXX
dt

=
∂Ω
∂kkk

, (12a)

dkkk
dt

= −
∂Ω
∂XXX

. (12b)

In particular, the last equation describes the process of random refraction — the same
phenomenon responsible for the twinkling of starlight.

The change in wave number under the random long-wavelength modulation changes
the spectral energy distribution of the drift waves (while conserving the Casimir invari-
ant). Because in a self-consistent theory total energy is conserved by the collection of
drift waves and CCs, energy leaving the drift waves shows up as CC energy. Thus the CC
growth rate can be calculated from the drift-wave energetics, which in turn are governed
by the wave kinetic equation. That can be constructed from the random ray equations,
and is

∂Ñkkk

∂ t
−{Ω̃,Ñkkk} = 0, (13)

where

{Ω̃,Ñkkk}
.
=

∂ Ω̃
∂XXX

·
∂Ñkkk

∂kkk
−

∂ Ω̃
∂kkk

·
∂Ñkkk

∂XXX
. (14)

From (13) one can construct the evolution equation for the energy Ekkk
.
= Nkkk/k2:

∂ Ẽkkk

∂ t
−{Ω̃, Ẽkkk} = 2γ̃(1)

Ẽkkk, (15)

where
γ̃(1) .

=
1
2{Ω̃, ln(k2)}. (16)

The γ̃(1) term describes the random change of drift-wave energy content due to the
modulation. (γ̃(1) is of first order in the fluctuations because Ω̃ ∝ ṼVV

CC
E .) The term

γ̃(1)
Ẽkkk averages to zero when calculated with the unmodulated drift-wave energy, but

contributes coherently at second order, i.e., when the first-order change to Ẽkkk due to the
modulation is included. That is most conveniently calculated from (13), which because
the background is taken to be spatially homogeneous reduces to

∂Ñ
(1)

kkk

∂ t
=

∂ Ω̃(1)

∂XXX
·

∂Ñ
(0)

kkk

∂kkk
. (17)

We must integrate this equation in time to find Ñ
(1)

kkk , construct Ẽ
(1)

kkk , then average the
right-hand side of (15) to find the coherent energy loss from the drift waves. In doing
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so, the time integral of a correlation function between CC and DW quantities appears,
and this must be somehow approximated. It is at this point that a purely heuristic theory
of wave kinetics fails. The algorithm can be completed consistently only by making
it compatible with systematic statistical closure. In Markovian closure, the effective
interaction time is the triad interaction time θ . Following Krommes and Kim [7], I thus
assert that it is algorithmically correct to replace ∂ Ñkkk/∂ t by θ−1Ñkkk. The remainder of
the calculations are straightforward, and they lead to formula (7).

A formula similar to (7) was written by the authors of [1], the difference (in the present
context) being that the triad interaction time was replaced by the function

R
.
=

1
Ωqqq −qqq · vvvgr + iγkkk

, (18)

where Ωqqq is an eigenvalue of the long-wavelength motion. This formula, which also
appears in various other references that employ a heuristic wave kinetic algorithm, is
problematical in several respects, as discussed by Krommes and Kim in [7]. (The authors
of [1] were apparently unaware of that reference.) An issue regarding the group-velocity
term is too subtle to reiterate here; see Sec. III C of [7]; in any event, Kaw etal. discarded
Ωqqq −qqq · vvvgr in their discussion of large-scale instability. But more importantly, a proper
theory must be invariant to random Galilean transformations, and (18) is not. In the
systematic derivation of γqqq from Markovian closure theory, random Galilean invariance
is ensured by using Kraichnan’s Test Field Model (TFM)[11, 8] or something similar
to calculate the relevant θ . When that is done, the resulting theory has the following
properties[8]. “If the effective shear actingon the small scales represented by U(k)
in [Eq. (10)] is dominated by wavenumbers � k, then θqkk is found from the TFM
equations to be approximately the eddy-circulation time or the correlation time of the
large-scale straining motion, whichever is shorter. On the other hand, if the shear and
rotation acting on motions of wavenumber k are due primarily to interactions that are
local in wavenumber, or scale size, then θqkk is the order of the eddy-circulation time or
correlation time of the motions of scale 1/k.” (To conform with the present notation, k
and q were interchanged in the previous quotation.) These properties do not follow from
the appearance of γkkk in (18).

TRUNCATED GYROKINETICS AND LONG-WAVELENGTH
FLOWS

Since this paper focuses on zonal-flow generation, I would like to describe very briefly,
without presenting technical details, on one of the current topics of interest, namely the
relevance of truncated gyrokinetics to long-wavelength flow generation (of relevance to
momentum transport and plasma rotation). This issue has been raised in a series of recent
papers by Parra and Catto. They correctly point out that since gyrokinetics is developed
as an asymptotic expansion, it must be somehow truncated before it is practically used in,
say, a computer simulation. They are concerned that standard truncations do not properly
conserve momentum, for example by introducing spurious momentum sources.
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In fact, several kinds of approximations are involved in the usual practical implemen-
tations of gyrokinetics. Most fundamental is what can be called the “gyrokinetic clo-
sure.” As described, for example, in the tutorial article by Krommes [5], the derivation of
gyrokinetics begins merely with a series of variable transformations. No physics content
is lost in that process; information is just packaged in a possibly unusual way. But ulti-
mately information about high-frequency physics is deliberately removed in order to ob-
tain a new nonlinear dynamical system that describes only low-frequency motions. This
is done by replacing, in the representation of charge or current, a gyrophase-dependent
distribution function by its gyrophase average. For collisionless physics, this is com-
pletely justifiable, as shown by Dubin et al. [12]. When collisions are important, this is
an approximation that misrepresents some collisional effects (which might be important
in neoclassical theory, for example). Here I will be concerned only with collisionless
gyrokinetics.

Even after the gyrokinetic closure is made, there remains the issue of properly trun-
cating the asymptotic development of the transformation between particle coordinates
and gyrocenter coordinates. Truncations must be done in two places: in the gyrokinetic
equation, through the expressions for the gyrocenter drifts; and in Maxwell’s equations,
via the pullback transformation that expresses charge or current in terms of the gyroki-
netic distribution. An important question is how to make those truncations consistent.
Parra and Catto apparently consider nth-order truncations in which n is the same (e.g.,
n = 2) in both the gyrokinetic equation and the Maxwell equations. This can be shown-
Parra and Catto [13] to lead to a spurious momentum source in the evolution equation
for zonal flow. However, Brizard [14] has shown that gyrokinetics can be obtained from
a variational formulation. Given an appropriate gyrokinetic action functional, variation
with respect to the distribution function generates the kinetic equation, while variation
with respect to the potential(s) generates the gyrokinetic Maxwell equations. The im-
portant point here is that if a potential ϕ (consider electrostatics for simplicity) is of the
order of ε , where ε is the gyrokinetic expansion parameter, then variation of a nonlinear
functional of ϕ lowers its order by 1. For example, δϕn/δϕ = O(εn−1). Thus, if the
drifts in the kinetic equations are truncated to O(εn), then the pullback transformation
in the gyrokinetic Maxwell equations must be truncated to O(εn−1). I assert that this
removes difficulties with spurious momentum sources. Scott [15] has explicitly demon-
strated momentum conservation for a version of gyrokinetics with n = 2.

DISCUSSION
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