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Analyzes of plasma behavior often begin with a description of the ideal magnetohydrodynamic
equilibrium, this being the simplest model capable of approximating macroscopic force balance.
Ideal force balance is when the pressure gradient is supported by the Lorentz force, ∇p = j × B. We
discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We
argue that the solutions are pathological and not suitable for numerical calculations. If the pressure
and magnetic field are continuous, the only non-trivial solutions have an uncountable infinity of
discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small
length scales in the structure of the field, and the consequence of ideal force balance that the pressure
is constant along the field-lines, B · ∇p = 0. A simple method to ameliorate the singularities is to
include a small but finite perpendicular diffusion. A self-consistent set of equilibrium equations is
described and some algorithmic approaches aimed at solving these equations are discussed.

I. INTRODUCTION

A numerical calculation of the equilibrium magnetic
field is usually the first step in analyzing plasma behav-
ior. This is a comparatively simple task for a perfectly
axisymmetric tokamak (or any system with a continuous
symmetry), as the symmetry guarantees that a nested,
continuous family of flux surfaces exists, i.e. the mag-
netic field is integrable. This is a result of the fact that a
toroidal magnetic field is analogous to a time-dependent,
one degree of freedom Hamiltonian system [1], and by
Noether’s theorem [2], which states that a Hamiltonian
with an ignorable coordinate possess an invariant of the
motion. By exploiting axisymmetry, the ideal equilib-
rium equation, ∇p = j × B, can be reduced to the Grad-
Shafranov equation and equilibrium solutions can gener-
ally be found numerically.

Perturbations to an axisymmetric system, either from
internal plasma motions or coil alignment errors, lead
to the formation of magnetic islands, chaotic field-lines
and the destruction of flux surfaces. However, from the
Kolmogorov-Arnold-Moser (KAM) theorem [3, 4, 5, 6, 7,
8, 9] we know that (under certain conditions) for a Hamil-
tonian system slightly perturbed from an integrable case,
the strongly irrational flux surfaces are likely to survive.
We can expect that a realistic tokamak, therefore, will
possess a finite-measure of KAM surfaces in addition to
the islands and chaotic volumes. This is fortunate, as it
is primarily the existence of flux surfaces that results in
plasma confinement: if a small perturbation to an inte-
grable system resulted in the immediate destruction of
all flux surfaces, then one could not expect a realistic
tokamak to provide confinement.

Indeed, under some conditions, applied resonant mag-
netic perturbations (RMP) can advantageously be used to
suppress edge-localized instabilities, the so-called ELMs
[10]. It is plausible to expect that such perturbations
will result in the formation of magnetic islands at the
rational surfaces, and the overlap of these islands will
cause chaotic fields, particularly near the plasma edge.

Some understanding of the impact of applied magnetic
perturbations may be gleaned, at least in the low pres-
sure case, by superimposing the equilibrium and error
fields. The degree of magnetic chaos can then be deter-
mined by field line tracing. Such an approach however
cannot account for the self-consistent plasma response.
To what extent the field becomes chaotic (or whether
ideal plasma flows will respond by shielding out the error
fields [11, 12]) remains unclear. The importance of com-
puting non-axisymmetric equilibria with chaotic fields is
emphasized by noting that it is likely that ITER will em-
ploy RMP methods to suppress ELMs.

Stellarators are intrinsically non-axisymmetric, and
thus generally possess non-integrable fields. Stellarators
are designed to have “good-flux-surfaces” as much as pos-
sible [13, 14, 15, 16], but despite one’s best efforts, with-
out a continuous symmetry, perfectly integrable fields
cannot be achieved. Also, computational evidence sug-
gests [17] that as the plasma pressure increases, stellara-
tor fields become increasingly chaotic. To understand
the impact magnetic islands and chaotic fields have on
plasma confinement, for both realistic tokamaks and stel-
larators, a computational algorithm that solves for the
plasma equilibrium in the presence of islands and chaotic
fields, and a significant volume of robust KAM surfaces,
is required.

A given magnetic field may be a con-
tinuous, smooth function of space, so that
B(x + δx) = B(x) + ∇B · δx + O(δx2), but it also
may be “chaotic”. The term chaotic is really a descrip-
tion of the magnetic field-lines, i.e. the phase space of
the magnetic field. The behavior of the field-lines of
a chaotic field depends sensitively on position — not
just in the sense that nearby trajectories may separate
exponentially at a rate given by the Lyapunov exponent,
the so-called butterfly-effect, but also in the sense that
irregular, ‘chaotic’ trajectories lie arbitrarily close to
regular trajectories and invariant flux surfaces.

A chaotic magnetic field has a fractal phase space
structure. The fractal structure arises when an integrable
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field is generally perturbed, as the rational flux surfaces
and irrational flux surfaces break apart quite differently.
Quoting Grad [18], “What is pathological is the question
that is asked, viz., what is the position of a magnetic field-
line after infinitely many circuits?”. Some field-lines trace
out structures which are infinitely complex, such as the
unstable manifold and the irregular trajectories which
seem to come arbitrarily close to every point in a fractal
volume. Interspersed between these irregular field-lines
are periodic orbits; arbitrarily small, high-order island
chains; and irrational field-lines, which may or may not
trace out smooth flux surfaces.

Ideal force balance has the consequence that
B · ∇p = 0, so that the pressure is constant along the in-
finite length of every field-line. The structure of the pres-
sure is exactly tied to the structure of the magnetic field.
This paper shall argue that for a chaotic magnetic field, a
continuous, non-trivial pressure that satisfies B · ∇p = 0
must also be fractal.

This paper raises various objections to computational
algorithms that seek solutions to ideal force balance,
∇p = j × B, with continuous pressure and chaotic fields.
In Sec. II, we review the derivation of ideal force bal-
ance from a minimization principle, but discard this as
a practical numerical approach for treating chaotic fields
as ideal variations do not allow the topology of the field
to change. In Sec. III, the solubility conditions on mag-
netic differential equations are reviewed and applied to
chaotic fields. In Sec. IV, the fractal structure of the
phase-space of chaotic fields is reviewed. As the struc-
ture of the pressure is tied to the structure of the field
we conclude, in Sec. V, that a non-trivial, continuous
pressure has an uncountable infinity of discontinuities in
the pressure gradient, and so therefore must the current.
Thus, ∇p = j × B cannot serve as a coherent mathemati-
cal foundation for a computational algorithm. The prob-
lems caused by the pathological structure of the solution
are not easy to remedy by ad-hoc adjustments to an it-
erative algorithm and lead to convergence problems, as
discussed briefly in Sec. VI, Finally, in Sec. VII, we sug-
gest that it is preferable instead to seek solutions to a
well-posed non-ideal equilibrium model, and in Sec. VIII
we discuss various algorithmic approaches aimed at solv-
ing for such an equilibrium.

II. ENERGY MINIMIZATION

Equilibria of conservative dynamical systems are sta-
tionary points of an energy functional. The plasma po-
tential energy is [19]

W =

∫

V

(

p

γ − 1
+
B2

2

)

dV, (1)

where B is the magnetic field and the pressure, p, is a
scalar function of position. Ideal equilibria are states
that extremize this functional with respect to ideal vari-
ations in the pressure and fields. If we use Faraday’s

law and the ideal Ohm’s law, the plasma displacement,
δξ, is related to variations in the magnetic field via
δB = ∇× (δξ × B). Such variations preserve the topol-
ogy of the field [20, 21]. The first order variation in W
is

δW =

∫

V

(∇p− j × B) · δξ dV, (2)

where j = ∇× B is the plasma current and we have used
the boundary condition that the magnetic field is tangen-
tial to a fixed plasma boundary, B · dS|δV = 0. Plasma
states that extremize the energy functional, subject to
arbitrary ideal variations in the plasma position, must
satisfy the Euler-Lagrange equation, ∇p = j × B.

An arbitrary magnetic field may be written

B = ∇× (ψ∇θ − χ∇ζ), (3)

where (ψ, θ, ζ) is some coordinate system and χ(ψ, θ, ζ)
is the field-line Hamiltonian. This representation fol-
lows from writing B = ∇× A, using gauge freedom to
write A = Aθ∇θ +Aζ∇ζ, and then identifying ψ = Aθ
and χ = −Aζ . The equations defining a field line are

given by Hamilton’s equations: θ̇ = ∂ψχ and ψ̇ = −∂θχ,
where θ,ψ are analogous to the position and canonical
momentum, and the ‘dot’ denotes derivative with respect
to the ‘time’ coordinate, ζ.

If χ depends only on ψ, χ = χ0(ψ), then ψ is invariant
along the field line. The field is called integrable, and θ, ζ
are straight field-line coordinates. The flux surfaces coin-
cide with isosurfaces of ψ, and the angles θ and ζ describe
how the field-lines wrap around the flux surfaces. The
rotational-transform, ι-, (or transform for short) is gen-
erally defined as the average rate of increase of θ with re-
spect to ζ along a field-line, ι- ≡ lim∆ζ→∞ ∆θ/∆ζ. This
limit may not exist on irregular field-lines, but for the
integrable case we simply have ι- = ∂ψχ.

The magnetic field is completely determined by χ and
the coordinate functions ψ, θ and ζ. The latter may be
specified inversely: R = R(ψ, θ, ζ), φ = −ζ and Z =
Z(ψ, θ, ζ), where (R,φ, Z) are the standard cylindrical
coordinates (and some arbitrariness has been removed by
the restricted choice of toroidal angle). We may vary the
shape of the magnetic field, by varying the coordinate
transformation, and preserve the topology of the field.
In such a manner we may minimize the plasma energy
subject to the constraint of fixed topology. This is the
approach adopted by the VMEC code [22, 23, 24] (with
the exception that VMEC allows the poloidal angle to
vary in order to condense the Fourier spectrum of the
coordinate transformation [25, 26]).

Chaotic fields may also be written in the form
described by Eq. (3), but the field-line Hamiltonian
must now be allowed to depend on the angles,
χ = χ0(ψ) +

∑

mn χmn(ψ) exp(imθ − inζ). The most
enigmatic characteristic of a chaotic magnetic field is its
topology but, with this general form for the Hamilto-
nian and arbitrary χmn, the topology cannot be simply
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determined. If one were to proceed via a minimization
algorithm, then, quoting Kruskal & Kulsrud [19], “we
must choose the initial magnetic field to have precisely
those topological properties possessed by equilibria of in-
terest”. It seems impossible that we could a priori know
the chaotic structure of the solution that we are searching
for, and a computational algorithm must let the topology
of the field change. Without a constraint on the topology
one cannot derive Eq. (2) from Eq. (1). Except for the
trivial solution, B = 0 and p = 0 [19], ideal force balance
with chaotic fields cannot be solved using a minimization
algorithm.

Rather than understanding ∇p = j × B to be an Euler-
Lagrange equation arising from an energy minimization
principle, this equation may be understood as statement
that an equilibrium is obtained when the pressure gra-
dient is supported by the Lorentz force. Presumably,
a numerical solution could be found iteratively. The
HINT code [17, 27], and its successor the HINT2 code
[28], and the PIES [29, 30, 31] code, seek solutions to
∇p = j × B without constraints on the topology of the
field. The HINT algorithm is based on a relaxation ap-
proach [32], whereas the PIES algorithm is based on an
iterative scheme [33] using magnetic coordinates [34].

III. MAGNETIC DIFFERENTIAL EQUATIONS

Many of the mathematical problems of ideal MHD can
be traced back to equations of the form B · ∇r = s, which
are called magnetic differential equations [19]. If we in-
tegrate this equation along a magnetic field-line that, af-
ter some distance, returns to the starting point (i.e. a
periodic orbit), then for r to be single valued, s must
satisfy the solubility condition

∮

s dl/|B| = 0 [35], where
∫

dl/|B| is the integral along a field-line and is the inverse
operator to B · ∇. Any numerical method for solving this
equation will fail unless the solubility conditions on s are
satisfied.

A defining property of irregular field-lines is that they
come arbitrarily close to any point in a given (fractal) vol-
ume, including the starting point. Let us choose a point,
x0, in an irregular region, and measure distance along
a field-line with l. Let li, i = 1, 2, . . . label the infinitely
many, seemingly random, distances along the field-line
at which the field-line returns to within δ of the initial
point, |x(li) − x0| < δ. For r to be continuous then, for
arbitrarily small ε, there must exist a δ such that

∫ li

s dl/B < ε. (4)

For a solution to this equation to exist, this infinite set
of solubility conditions must be satisfied by each of the
infinitely many irregular field-lines present in any chaotic
volume.

Ideal force balance has the direct consequence that the
pressure is constant along a field-line, B · ∇p = 0. The
integrability condition in this case is trivially satisfied.

Another magnetic differential equations arises for the
parallel current. By writing the current as j = σB + j⊥
and insisting that ∇ · j = 0, the parallel current must
satisfy B · ∇σ = −∇ · j⊥. An expression for the per-
pendicular current may be obtained from force balance,
j⊥ = B ×∇p/B2. For an arbitrary pressure gradient, the
solubility condition on ∇ · j⊥ may not be satisfied. The
following discussion concentrates primarily on the prop-
erties of the solutions to these two magnetic differential
equations when the field is chaotic. Unless stated oth-
erwise, we will assume that the pressure is a continuous
function of space.

Consider first an integrable field, with continuously
nested rational and irrational surfaces that fill space.
Each irrational field-line comes arbitrarily close to ev-
ery point on its flux surface (i.e. an irrational flux sur-
face is the closure of an irrational field-line). To satisfy
B · ∇p = 0, with p being continuous, we must require
that the pressure is constant on each irrational surface.
A rational flux surface is a family of distinct periodic
orbits. As it stands, the equation B · ∇p = 0 allows for
each of these periodic orbits to maintain a distinct value
of the pressure; however, each rational surface may be ap-
proximated arbitrarily closely by irrational surfaces. For
continuity, the pressure must be constant on each rational
surface. For integrable fields, the pressure is an arbitrary
surface function, p = p(s), were s labels flux surfaces. In-
deed, this arbitrary function (and a function describing
the current or transform profiles, and the shape of the
plasma boundary for example) is required as a bound-
ary condition to the differential equations described by
∇p = j × B, which reduces to the Grad-Shafranov equa-
tion for axisymmetric systems.

The solution for the parallel current, even for in-
tegrable systems, is not straightforward. In straight-
field-line coordinates, the B · ∇ operator becomes√
g−1( ι-∂θ + ∂ζ), and on Fourier decomposing the par-

allel current, σ =
∑

mn σmn exp(imθ − inζ) we obtain

σmn =
i
(√
g∇ · j⊥

)

mn

κmn
+ δ(mι- − n), (5)

where κmn = mι- − n. For integrable fields the Dirac
delta-function current, δ(mι- − n), is generally required
to provide a field that cancels out resonant error fields
at the rational surface that would otherwise result in
the creation of magnetic islands [36, 37], and has been
invoked to explain island-healing phenomena [38]. The
Pfirsch-Schlüter current, i

(√
g∇ · j⊥

)

mn
/κmn, is singu-

lar where ι- = n/m. The singularity may be removed
by locally flattening the pressure profile at the rational
surfaces. Flattening the pressure at the rational sur-
faces is exactly what the introduction of chaotic fields
entails. However, as we describe below, the introduc-
tion of chaotic fields introduces more problems than what
might naively be anticipated.

One approach [39] for treating the effect of chaotic
fields is to exploit an analogy between the magnetic dif-
ferential equation and the Liouville equation for mag-
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netic field lines [40]. Expanding upon an idea presented
by Reiman et al. [41], Krommes & Reiman [39] sug-
gest that by using methods of statistical averaging, that
the chaotic field lines (at the macroscopic level) can be
described by a diffusion equation, which effectively re-
moves the Pfirsch-Schlüter singularity by introducing a
resonance broadening term:

σmn =
iκmn

(√
g∇ · j⊥

)

mn

κ2
mn + η2

mn

, (6)

where ηmn is a smoothing parameter related to the mag-
netic diffusion coefficient.

IV. THE FRACTAL STRUCTURE OF CHAOS

Perturbations to an axisymmetric system, or intrin-
sic three-dimensional effects, destroy flux surfaces and
lead to the formation of magnetic islands (and thus
chaotic field-lines) if the topology of the field is not con-
strained. From the Kolmogorov-Arnold-Moser (KAM)
theorem [3, 4, 5, 6, 7, 8, 9] we know that for a magnetic
field slightly perturbed from an integrable case, only tori
with sufficiently irrational transform will survive, where
ι- is sufficiently irrational if it is poorly approximated by
rationals and satisfies a Diophantine condition: there ex-
ists an r > 0 and k ≥ 2 such that, for all integers p and
q, | ι- − p/q| > r/qk. By the same argument as above, the
pressure must be constant on these irrational, KAM sur-
faces.

For a generally chaotic field, there is no region of space
foliated with flux surfaces! Quoting Greene [42], “there
is a stochastic region in the immediate vicinity of ev-
ery chain of periodic orbits”. For an arbitrarily per-
turbed field, magnetic islands and irregular field-lines will
emerge at the infinitely many rational surfaces that exist
between any pair of KAM surfaces. These chaotic vol-
umes are not covered by a single magnetic field-line, but
rather are filled by infinitely many (i) unstable manifolds
[43] and irregular field-lines that come arbitrarily close to
any point within a fractal volume, (ii) stable and unsta-
ble periodic orbits [9, 44], and (iii) cantori [45, 46, 47, 48].
Embedded in these ergodic regions, there may exist an
infinite “honeycomb” of local regions of stability, namely
the elliptic surfaces about the stable periodic orbits [49]
(and around these islands there may exist secondary is-
lands with their own elliptic surfaces and resonances ad
infinitum).

The equation B · ∇p = 0 allows the pressure on each
field-line to be distinct. However, as the irregular field-
lines within the ergodic sea may come arbitrarily close
to each other, we must conclude that unless the pressure
on each of these field-lines is identical, infinite pressure
gradients will be created. The only continuous solution
is that the pressure is constant between the KAM sur-
faces. (This is convenient, as the singularity in Eq. (5) is
removed by setting pressure gradient to zero across the
rational regions.)

The KAM surfaces separate chaotic volumes, but not
all KAM surfaces are created equal. Irrational surfaces
that are furthest from low order islands are typically the
least deformed by low-order resonant perturbations, and
consequently are the most robust, in that they survive to
comparatively higher levels of chaos [42]. Furthermore,
in these particularly irrational regions the phase space
density of KAM surfaces is highest.

The KAM surfaces are fragile, in the sense that as the
degree of chaos increases the KAM surfaces become in-
creasingly deformed. A surface is called critical when it is
continuous but no longer smooth, and an infinitesimally
small increase in the chaos will cause the closure of an ir-
rational field-line to disintegrate into invariant, irrational
Cantor sets, called cantori [45, 46, 47, 48]. Though the
cantori are sets of measure zero, cantori have an impor-
tant impact as they can form extremely effective partial
barriers to field-line transport [50], and field-lines may
spend an arbitrarily long time near the cantori (i.e. can-
tori are ‘sticky’ [51, 52, 53]). The existence of KAM sur-
faces, near-critical cantori and magnetic islands violates
the assumptions underpinning random walk treatments
of field-lines.

As one approaches the irregular region near an un-
stable periodic orbit, the phase space density of KAM
surfaces becomes sparser. The KAM surface that lies
adjacent to an irregular region associated with an island
chain is called a boundary surface [54], and these surfaces
are critical. As a given boundary surface is destroyed by
an increase in the degree of chaos, the next closest KAM
surface may be a finite distance from the original, so that
the location of the closest KAM surface to a given island
chain is not a continuous function of perturbation [55].

As the perturbation and chaos increases, the topology
of the field breaks up in a rather unpredictable, fractal
manner: not-so-irrational KAM surfaces are destroyed
leaving behind near-critical cantori; stable periodic orbits
bifurcate and become unstable, and additional periodic
orbits are born; and field-line transport through gaps in
the super-critical cantori increases. Randomly following
field-lines in a chaotic region is almost guaranteed to give
unreliable results, unless perhaps a large number of field-
lines is followed for an extremely long distance: for exam-
ple, in a numerical experiment by Meiss [56] it was shown
that about 1010 iterates are required for an irregular tra-
jectory to uniformly cover the chaotic region. Following
field-lines for this distance is not practical in an iterative
scheme.

A common approach is to approximate the effect of
chaotic trajectories by assuming a magnetic field-line dif-
fusion [57, 58]. Such an assumption may be justified for
strongly chaotic fields; however, given that realistic toka-
maks and stellarators will likely possess a finite measure
of invariant surfaces, one may ask if such an assumption
is always reliable. Field-lines that lie on KAM surfaces
obviously do not diffuse radially, and neither do the pe-
riodic orbits, the cantori, nor the field-lines within the
local regions of stability. As the perturbation increases,
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the stable periodic orbits become unstable and the local
regions of stability ultimately vanish, but even after the
destruction of the KAM surfaces the existence of cantori
has a profound impact on magnetic field line transport.
The cantori also restrict anisotropic transport in chaotic
fields [59], where cross field transport is modeled by a
small perpendicular diffusion; so much so that the tem-
perature profile across a chaotic field is effectively solved
by transforming to “chaotic-coordinates”, in which the
coordinate surfaces are adapted to the cantori and peri-
odic orbits [60].

The approximation that magnetic field-lines diffuse is
only reliable in the strongly chaotic case (so called hy-
perbolic chaos) when all the local regions of stability are
destroyed, and all the KAM surfaces are well and truly
destroyed. A similar conclusion was reached by Rosen-
bluth et al. [40] who showed that “if resonances do not
overlap, then flux surfaces are destroyed in a local re-
gion; when resonances overlap strongly, a Brownian mo-
tion of field-lines occurs”. A robust computational algo-
rithm should be capable of treating completely integrable
fields, nearly-integrable fields (in which a few small is-
lands may be present), near-critical fields (in which most
irrational surfaces are destroyed but some KAM surfaces
survive), as well as strongly chaotic fields, without as-
suming a Brownian motion of field lines (and preferably
without the requirement of inverting singular operators
associated with magnetic differential equations).

V. A NON-TRIVIAL PRESSURE

Let us attempt to construct a non-trivial, continuous
pressure that is consistent with the fractal structure of
the chaotic field. We may imagine a radial coordinate,
s, with level surfaces that coincide with the KAM sur-
faces. For simplicity of discussion, we restrict attention
to systems with a monotonic transform profile so that we
may label KAM surfaces by their transform. For a given
magnetic field, let S be the subset of the real numbers,
S ⊂ R, for which s ∈ S if and only if a KAM surface
with transform ι- = s exists. On each KAM surface, we
may impose a pressure gradient, and across the islands
and chaotic volumes we require the pressure gradient to
be zero. The pressure gradient, p′(s), may be written
p′(s) = IS(s)P (s), where IS(s) = 1 if s ∈ S and zero oth-
erwise, and P (s) is some arbitrary function which, for
continuity of the pressure, we must assume is bounded.
Note that because a small island chain (with generally
a chaotic separatrix) will form where the transform is
rational, IS(s) is zero for a small region about rational
s = p/q.

Immediately we are in trouble. For an arbitrary
chaotic magnetic field, there is no method by which the
set S may be determined. An essential characteristic
of S is that this set has finite measure, by which we
may understand that this set has an uncountable infin-
ity of elements. Numerical techniques, such as Greene’s

residue criterion [42, 61], may be applied to determine if
a single KAM surface with given irrational transform ex-
ists, and one could imagine an algorithm that successively
searched for, and constructed [62], irrational surfaces ad
infinitum.

To identify and construct a KAM surface that is arbi-
trarily close to destruction requires an arbitrarily large
computational effort, as near-critical KAM surfaces and
slightly super-critical cantori are difficult to distinguish.
Furthermore, one could determine at most only a count-
able infinity of KAM surfaces, which remains a set of
measure zero. If S is approximated by a set of measure
zero, which presumably it must be if one employs a dis-
crete numerical grid, then integrating p′(s) to obtain p(s)
can only result in the trivial function, p(s) = const. To
our knowledge, determination of the set S for a given
chaotic system remains an outstanding problem (though
there is some interesting work comparing the critical
function to the Brjuno function [63]).

There is no bounded function P (s) that gives a non-
trivial, continuous pressure gradient. For any rational
p/q, we have IS(p/q) = 0, and so p′(p/q) = 0. To have
a non-trivial pressure, the function p′(s) must be non-
zero on a set with finite measure. Consider some irra-
tional ι- ∈ S, where P ( ι-) and therefore p′( ι-) are non-zero.
To show that p′ is not continuous at ι-, we may take a
sequence of rationals, pn/qn, that converges to the ir-
rational: pn/qn → ι- as n→ ∞. A suitable sequence is
provided by the convergents derived from the continued
fraction representation [64]. We have p′(pn/qn) = 0 for
all n, and so p′(pn/qn) → 0 as n→ ∞, but we have as-
sumed that p′( ι-) is non-zero. Thus, to give a non-trivial
pressure, the pressure gradient, ∇p, must have an un-
countable infinity of discontinuities. So, therefore, does
the perpendicular current, j⊥ = B ×∇p/B2.

In irregular regions we have concluded that p = const.
is the only continuous solution to B · ∇p = 0. We thus
have j⊥ = 0, which in turn gives B · ∇σ = 0 and so the
parallel current must also be constant in the irregular
regions. In the irregular volumes, the field must be a
linear, force-free field, i.e. a Beltrami field j = σB. To
obtain a non-trivial, continuous pressure, we must en-
force a non-zero, finite pressure gradient on an infinite
collection of KAM surfaces. However, ∇p is not continu-
ous at the irrational surfaces, so neither is j⊥, and ∇ · j⊥
is not defined. The operator B · ∇ is not singular on the
irrational surfaces, but the solution to B · ∇σ = −∇ · j⊥
is not defined.

Let us assume that a non-trivial, non-continuous pres-
sure gradient has been presented and that this function
has been integrated to provide the pressure, p(s). Having
a gradient with an uncountable infinity of discontinuities,
we may conclude that the scale length, L, of the pressure
is zero (except where the pressure is constant). As any
diligent student of numerical methods is aware, a discrete
approximation to a system of equations is only reliable
when the scale length, h, of the numerical resolution is
smaller than the scale length of the solution; that is, to
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adequately approximate a function we must have h ≤ L.
A standard finite-difference or finite-element approxima-
tion to p(s), even with a countably infinite grid, cannot
resolve the structure of the solution to the extent that
its gradient ∇p will be accurate. Thus, as it stands, non-
trivial solutions to ∇p = j × B are pathological when the
fields are chaotic.

Let us imagine that a chaotic equilibrium has been
constructed by an iterative algorithm and consider the
properties of the solution. The solution to a system of
differential equations is defined by the boundary condi-
tions imposed, which are typically provided at the outset.
For determining ideal MHD equilibria, the pressure (and
either the current or transform) is required to supple-
ment ∇p = j × B. In the integrable case, as flux surfaces
foliate space and thus may serve as coordinate surfaces,
an arbitrary function p(s) may be specified.

In the case of chaotic fields, however, the structure of
the pressure (a boundary condition) is intimately tied to
the structure of the magnetic field (the solution to the
differential equation), but the structure of the solution
magnetic field is not initially known. Just as the topol-
ogy of the equilibrium magnetic field cannot be known a
priori, neither can the pressure. We are in the curious
position of having to construct a valid boundary condi-
tion simultaneously with constructing the solution.

How do we understand the stability of such an equilib-
rium? There is no energy functional as there is no topo-
logical constraint, and there is no well defined boundary
condition. The best statement that one could make re-
garding stability would merely be a property of one’s al-
gorithm rather than any physically motivated concept of
stability. (Recall that Newton’s method will just as easily
converge to an unstable solution to system of equations
as it will to a stable solution.) Perhaps we can under-
stand stability by turning on the time evolution under
the equations of resistive MHD, which does not constrain
the topology of the field. For this it would seem that we
would need to construct the equilibrium as a resistive
steady state, but a resistive steady state does not satisfy
∇p = j × B for finite resistivity.

VI. A CHAOS FILTER

To eliminate the discontinuities in the pressure gradi-
ent we have two choices. We may approximate the set S
with something non-fractal, or we must allow B · ∇p 6= 0.
Approximating S with a non-fractal set is equivalent to
replacing the chaotic magnetic field by a field with fi-
nite volumes foliated by flux surfaces, on which a smooth
pressure profile may be imposed, which are perhaps sep-
arated by a few “non-ignorable” islands and associated
regions of chaos, across which the pressure must be con-
stant. We may write, for example, B̄ = F [B] where F is
some filtering operation that takes the true chaotic field,
B, and returns an approximation, B̄, with the small scale
structures removed. Such a field could then be used to

define a piecewise smooth pressure profile consistent with
B̄ · ∇p = 0, which in turn could be used to solve for the
parallel current from B̄ · ∇σ = −∇ · j⊥, as the uncount-
ably infinite set of discontinuities caused by the fractal
structure of the chaotic field is removed.

We raise the following objections. By filtering out
the chaos, we are to some extent abandoning our orig-
inal goal: to construct an MHD equilibrium allowing
for chaotic fields. Recall that it was the introduction
of magnetic islands (and the associated pressure flatten-
ing) at the rational surfaces that eliminated the singular-
ity in the Pfirsch-Schlüter current. If the islands at the
high-order rational surfaces are removed and replaced by
nested flux surfaces, then the Pfirsch-Schlüter singulari-
ties at these rational surfaces will re-emerge. The equilib-
rium becomes schizophrenic: we have one magnetic field
that satisfies ∇p = j × B and is generally chaotic, and we
have another magnetic field that satisfies B̄ · ∇p = 0. To
filter out the small scale structure, one must introduce a
length scale below which the fine scale structure of the
field can be ignored; however, there is no length scale in
∇p = j × B, so the introduction of a length scale must
be justified by some other means.

In order to have a complete mathematical model of
MHD equilibria, an equation describing the filtering op-
eration, F , must be provided: to our knowledge, this has
not yet been presented, and so the small-scale filter must
instead be constructed using an algorithmic approach.
Algorithmic approaches are usually best avoided, as dif-
ferent researchers may devise different algorithms that
could lead to different results. This is particularly true
in this case considering that the fractal structure of the
field is difficult to characterize.

Consider a filtering approach based on constructing an
arbitrary discrete collection of KAM surfaces (perhaps se-
lected by their transform) and assuming a smooth inter-
polation. An infinitesimal increase in the chaos may lead
to the destruction of one or more of the selected KAM
surfaces, but unless the filtering operation is smooth, so
that small changes in B lead to small changes in B̄, we
may expect that an iterative algorithm will encounter
convergence problems. As flux surfaces become increas-
ingly deformed they presumably can support less pres-
sure, and as flux surfaces are destroyed they can support
no pressure, since irregular field-lines may pass through
gaps between the remnant irrational set (the cantorus).
Again, for stability of an iterative algorithm, one must
accommodate the fact that near critical KAM surfaces
(e.g. boundary surfaces) cannot be allowed to support
a finite pressure, so the filtering algorithm may need to
diagnose the structural stability of KAM surfaces (a diffi-
cult task in itself) in addition to merely determining the
existence of KAM surfaces.

One cannot expect reliable results if one “samples” the
structure of phase space on a fixed regular grid: If, for
example, we use a piecewise-linear approximation to rep-
resent a smooth function on a fixed regular grid, with
grid size h, then we can expect the associated error to be
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second order, O(h2); but in the case of chaotic fields, any
function tied to the topology of the field must be fractal.

The above objections are intended to illustrate the
problems that will be encountered if one chooses to pur-
sue an algorithmic approach to filtering out the small
scale structures of the field. Within ideal MHD, there
is no justification for ignoring the small scale structure
of the field. Certainly, the infinitesimal structures of the
field are not important if one considers finite-Larmor ra-
dius effects, or if some model of transport across the mag-
netic field is to be included. However, if one wishes to
remove the fractal nature of the solutions by appealing to
additional physics, then to provide a complete mathemat-
ical model of chaotic equilibrium (rather than presenting
an ad-hoc algorithm) then mathematical equations that
describe the additional physics must be included.

VII. ALTERNATIVES

The problems for MHD equilibria, as discussed above,
arise from the combination of (i) chaotic fields, (ii) con-
tinuous pressure and fields; and (iii) ideal force bal-
ance. We may avoid these problems if we (i) enforce
the constraint that the fields be integrable, even for non-
axisymmetric systems, such as in the perturbed equilib-
rium model [65]; (ii) allow for discontinuous pressure, e.g.
the stepped-pressure model [66]; or (iii) approximate an
ideal MHD equilibrium by introducing small, non-ideal
terms.

In the perturbed equilibrium model one may elimi-
nate the chaotic magnetic field in favor of an integrable
field, by exploiting the possibility in ideal MHD that
delta-function singular currents may exist at the rational
surfaces [65]. The singular currents may be computed
[11, 67, 68] so as to exactly cancel the perturbing “er-
ror fields” that drive islands and the associated chaos.
Expanding the variation in the plasma energy to second
order,

δW =

∫

V

(∇p− j × B) · δξ dV +
1

2

∫

V

F · δξ dV, (7)

where F = ∇δp− δj × B − j × δB, we may construct
the first-order correction required to bring an initial
field (with nested surfaces) that approximates an ideal
equilibrium closer to the true equilibrium field (with
nested surfaces). The Newton correction is given by
F · δξ = −(∇p− j × B). The matrix operator, F, is sin-
gular at the rationals, and the solution, δξ, is generally
discontinuous. However, the discontinuities now appear
at the rationals, which is at least a countable set. The
stability of the equilibrium is given by ideal stability the-
ory.

The stepped-pressure model allows for pressure gra-
dients across chaotic fields by realizing that the KAM
surfaces can support a pressure discontinuity, provided
that the divergence of the stress tensor vanishes [69].
The plasma volume is partitioned into a set of nested

annular regions which are separated by a finite number
of KAM surfaces. In each annulus, the plasma energy
is given by Eq. (1), and an equilibrium is obtained when
the plasma energy is minimized. The plasma energy is
minimized subject to the constraint of conserved helicity,
K ≡

∫

V
A · B dV , which is the “most-conserved” invari-

ant for plasmas in which reconnection is allowed [70].
The multi-volume, constrained energy functional, F , for
the stepped-pressure model [66] is given

F =
∑

i

(

Wi +
σi
2
Ki

)

, (8)

where the σi are Lagrange multipliers, and the index
i labels the volumes separated by the interfaces. The
stepped-pressure model is essentially a multi-volume,
Taylor-relaxed equilibrium [71]. (For full details of this
approach see Ref.[66]).

The Euler-Lagrange equation derived by minimizing
the energy functional, Eq. (8) by allowing variations in
the magnetic field is ∇× Bi = σiBi, so that between the
KAM-interfaces the magnetic field is a force-free, Bel-
trami field. The Euler-Lagrange equation derived by
allowing variations in the geometry of the interfaces is
[[p+B2/2]] = 0, where [[. . . ]] denotes the jump across
the KAM-interfaces, so that the total plasma pressure is
continuous. To give a non-trivial pressure profile, only a
finite set of interfaces are required. Some steps have been
taken toward implementing these ideas in an equilibrium
code [72], and the stability of such equilibria has been
studied in cylindrical geometry by Hole et al. [73, 74, 75].
These equilibria are discontinuous on a finite set, but the
number of interfaces, the pressure profile, and the trans-
form profile are selected a priori.

The third approach, on which we now concentrate, is
to allow small deviations from ideal MHD. The prob-
lems discussed in Sec. IV arise because there is no scale
length in MHD. The equation B · ∇p = 0 requires the
pressure to be constant along the “infinite-length” of the
field-line, despite the fact that the field-line may trace
out structures which are vanishingly small. Equivalently,
B · ∇p = 0 implies that the relaxation of the pressure
along the magnetic field is infinitely fast.

Clearly, ideal MHD is an oversimplification of plasma
dynamics. Collisions and finite-Larmor-radius effects for
example, will affect a local smoothing of the pressure, and
this is exactly what is required to eliminate the singular-
ities and discontinuities. Any perpendicular transport
will naturally introduce a perpendicular scale length, be-
low which the magnetic islands and the fine scale struc-
ture of the chaotic magnetic field will be irrelevant. To
derive a complete and coherent mathematical model, we
must present an equation that approximates this effect.

Motivated by the study of anisotropic heat transport
in chaotic fields [59], we consider the case where the par-
allel transport is characterized by a large but finite par-
allel diffusion coefficient, κ‖, and is balanced by a small
but non-zero perpendicular relaxation, characterized by
κ⊥, so that κ‖ >> κ⊥. We must modify the force bal-
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ance equation to allow for pressure gradients along the
field, and so we include inertial and viscous forces arising
from a plasma velocity. To complete the system and pro-
vide a complete mathematical model, we must include an
equation that constrains the velocity, and so we combine
Faraday’s law and Ohm’s law. The equilibrium is con-
cisely defined by the steady state solution to the following
system of equations:

∂p

∂t
= ∇ ·

(

κ‖∇‖p+ κ⊥∇⊥p
)

+ S, (9)

ρ
∂v

∂t
= j × B −∇p− ρv · ∇v + µ∇ · ∇v, (10)

∂B

∂t
= ∇× (v × B − ηj) , (11)

The derivative along the field-line is ∇‖p = b b · ∇p,
where b = B/B, and the perpendicular derivative is
∇⊥p = ∇p−∇‖p. An inhomogeneous source term for
the pressure, S, drives non-trivial solutions. We may
set the homogeneous boundary condition that p = 0 on
some computational boundary and adjust the source so
that the computed pressure matches experimental obser-
vations. The viscosity, µ, the density, ρ, and the resis-
tivity, η, are (at least from a mathematical perspective)
arbitrary constants.

VIII. ALGORITHMS

There is of course nothing radical about approximat-
ing an ideal MHD equilibrium by a resistive steady state.
We have come to this conclusion by considering the im-
pact of chaotic fields on MHD equilibria, and requiring
that the pressure be continuous. The existence of solu-
tions of a similar model of dissipative plasma equilibria
has been investigated by Spada & Wobig [76]. A similar
system can be derived by taking appropriate limits from
the NIMROD [77, 78] and M3D [79] equations. A similar
model was suggested by Park et al. [32] and forms the
basis of the HINT code; however, Park et al. replaced
Eq. (9) with an artificial sound wave approach to drive
the solution towards B · ∇p = 0.

In the case of the HINT code, the equation B ·∇p = 0
is enforced iteratively according to

pnew =

∫ +L

−L

pold
B

Fdl
∫ +L

−L

1

B
dl

(12)

where L is the integration length along the magnetic field
line from an Eulerian grid point, and F is the weight
function:

F =

{

1 for L ≤ Lc
0 for L > Lc

(13)

where Lc is the connection length of the magnetic field
line from the starting Eulerian grid point to the bound-
ary. In this method, as is shown in Fig.6 of Ref. [80], the

pressure profile develops spikes where the magnetic field
is chaotic.

An earlier attempt [80, 81] to resolve this type of nu-
merical result employed a model of parallel transport
model, where the form of the weight function was taken
as

F =

{

1 for lmfp ≤ L ≤ Lc
0 for others

(14)

where lmfp is the mean free path along a magnetic field
line. As is shown in Fig.3 of Ref.[81], the pressure profile
in the chaotic magnetic field can dramatically change,
depending on the length of the field line tracing. This
numerical result indicates that the ideal relation, B·∇p =
0, is inconsistent with chaotic fields, because Eq. (12) just
acts as a nonlinear re-distribution of the initial pressure
profile parallel to the field, without any regard of the
variation of the pressure in the perpendicular direction.

An anisotropic diffusion equation for the pressure is
preferable. The effect of perpendicular pressure diffu-
sion is a smoothing operation, and magnetic islands (and
other structures of the chaotic field) that are smaller than
a critical island width, ∆w ∼ O(κ⊥/κ‖)

1/4, do not affect
the structure of the pressure [82]. A major motivation for
choosing Eq. (9), Eq. (10) and Eq. (11) as our equilibrium
model is that much of the computational architecture has
already been implemented in the HINT code. (Work on
extending the HINT code to use Eq. (9) has begun, and
we hope to present numerical results in a future article.)

The simplest approach to solve for the steady state is
to just follow the time-evolution, perhaps using kinetic-
energy quenching [32]. However, it may be possible to
accelerate convergence by solving Eq. (9) and Eq. (10) di-
rectly by setting ∂tp = 0 and ∂tv = 0. Eq. (9) is a linear
equation for the pressure, p, given the magnetic field,
B. The large anisotropy κ‖ >> κ⊥ demands that ac-
curate numerical techniques must be applied to ensure
that the strong parallel diffusion does not overwhelm the
weak perpendicular diffusion, but numerical methods for
solving this anisotropic diffusion equation have studied
by many authors (see for example Ref.[83] and references
therein).

Having solved the pressure for an arbitrary B, a resid-
ual force j × B −∇p will drive a plasma flow, as de-
scribed by Eq. (10), which may be interpreted as an equa-
tion for the plasma velocity. Writing vn+1 = vn + δv, a
linear equation for the first order correction, δv, is ob-
tained which, when embedded in an iterative scheme, will
accommodate the non-linear terms. (The steady state
solution of Eq. (11) is v × B − ηj = ∇Φ, and so to in-
vert this equation either for v or B, it seems that the
quantity ∇Φ must be provided.) To demonstrate con-
vergence with respect to iterations, n, one must confirm
that ||Bn+1 − Bn||/||Bn|| < ε, where ε is some desired
numerical tolerance and ||f || is some measure of the ‘size’
of f , e.g. ||f || =

∫

V
|f |dV .

We have avoided the numerical problem of invert-
ing the operator B · ∇. Have we satisfied the solubil-
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ity conditions for the magnetic differential equations?
The magnetic differential equation for the pressure has
been replaced by Eq. (9). Embedded in this equation
is the B · ∇ operator, but now the right hand side is
not independent of the solution; that is, we now have
B · ∇p = κ−1

‖ B2
∫

(S − κ⊥∇ · ∇p) dl/|B|. Rather than

treating the right hand side as an independent, pre-
scribed source, which may or may not solve the solubil-
ity conditions, the κ−1

‖ B2
∫

κ⊥∇ · ∇p dl/|B| term may be

thought of as a “source-correction” term that allows the
solubility conditions to be satisfied.

The current must still satisfy B · ∇σ = −∇ · j⊥.
Rather than first insisting that the perpendicular cur-
rent satisfy force balance, and then struggle to solve the
magnetic differential for the parallel current, we may
instead guarantee that the current be divergence free
by simply writing j = ∇× B. The parallel current is
given by σ = j · B/B2, and the perpendicular current by
j⊥ = j − σB. Any error in the force balance Eq. (10) is
accommodated by calculating the change in the velocity,
which in turn is used to update the magnetic field.

An alternative approach for solving a similar equilib-
rium model that allows for pressure gradients in chaotic
fields was suggested by Reiman et al. [41]. Rather
than employing Eq. (9) as the defining equation for the
pressure, the pressure is taken as a given, fixed input
quantity, on the understanding that this information will
be provided by experimental observations. The veloc-
ity terms in the perpendicular force balance are assumed
to be small compared to the pressure gradient force, so
that from Eq. (10) the perpendicular current may be ap-
proximated by j⊥ = B ×∇p/B2. The parallel current
is then determined by requiring that ∇ · j = 0 to give
a magnetic differential equation for the parallel current,
B · ∇σ = −∇ · j⊥. Modeling the effect of chaotic fields
by a weak field line diffusion, this magnetic differential
equation is statistically averaged, so that the solution is
given by Eq. (6). The magnetic field is then given by
∇× B = j.

We raise some concerns about this approach. First,
if j⊥ = B ×∇p/B2, but the pressure is not flattened
across the resonances and chaotic regions, there is no
guarantee that the solubility conditions for the equa-
tion B · ∇σ = −∇ · j⊥ will be satisfied: an arbitrary
j⊥ = B ×∇p/B2 is not consistent with ∇ · j = 0. For
the magnetic differential equation for the parallel current
to be solved, the extra “source-correction” terms in the
perpendicular current arising from the plasma velocity,
B × (ρv · ∇v + µ∇ · ∇v)/B2, must be included and be
determined so that the solubility conditions are satisfied.
Additionally, it is the solution, σ, of this magnetic differ-
ential equation that guarantees that ∇ · (σB + j⊥) = 0.
The statistically-averaged, coarse-grained solution, to the
extent that it deviates from the exact solution, would pre-
sumably violate this condition. If the divergence of the
current is non-zero, it is not clear how one can invert
the curl operator to solve for the magnetic field given the
current, ∇× B = j

Our second concern with this algorithm is that there
is no mechanism by which the structure of the magnetic
field influences the structure of the pressure. In strongly
magnetized plasmas, the transport parallel to the field
overwhelmingly dominates the perpendicular transport:
a strongly chaotic field presumably must affect the pres-
sure. If the anisotropic diffusion equation for the pres-
sure is valid, then the pressure gradient must be reduced
across the “rational regions” (i.e. islands and chaotic vol-
umes) with width greater than the critical island width
(and to the extent that the pressure gradient is reduced,
then the additional terms in the perpendicular force bal-
ance may become important). The KAM surfaces and
cantori have an important effect on both field-line and
anisotropic transport [59]. The pressure will deform and
adapt to the surviving KAM surfaces and cantori, and
the pressure gradient will be comparatively enhanced in
these “irrational” regions [60]. We may expect that the
enhanced pressure gradients will result in enhanced per-
pendicular currents, which in turn alter the structure
of the field. (Experimental observations of the pressure
profile will inherently contain experimental uncertainties,
and the effect of these uncertainties is magnified as it is
the pressure gradient that is required to compute force
balance.)

IX. FINAL COMMENTS

There is, of course, additional physics that could be
included in the equilibrium model described by Eq. (9),
Eq. (10) and Eq. (11). The pressure diffusion coefficients,
κ‖ and κ⊥, the viscosity, µ, the density, ρ and the resistiv-
ity, η, have been described above as arbitrary constants;
these terms should preferably be decided by physical con-
siderations, see for example Ref.[84], or could be chosen
to accelerate convergence [32]. (The effect of including
these additional terms is to smooth the singularities in
the pressure gradient and current and to regularize the
linear operators that need to be inverted.)

Nevertheless, the equilibrium equations represent a
complete mathematical model that is amenable to nu-
merical computation. In the previous section we de-
scribed a possible iterative algorithm for computing solu-
tions. However, the equilibrium model itself is indepen-
dent of the numerical algorithm one may use to obtain
a solution, and is similarly independent of any partic-
ular numerical discretization: one is free to use finite-
differences, finite-elements, or Fourier methods as one
wishes; the only discriminating factor being computa-
tional speed and accuracy. For any numerical approach,
a solution should be obtained that is independent of
numerical resolution, which in turn should be achieved
when the numerical resolution is sufficient to resolve all
structures of the solution.

We have argued that ∇p = j × B, with a continuous
pressure, only has solutions with an uncountable infin-
ity of singularities in both the pressure gradient and the
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current when the field is chaotic. Such solutions are not
suited to numerical approximation. By including non-
ideal terms we have eliminated the pathological singular-
ities and we have argued that the addition of these terms
is required for computational tractability. By including
an anisotropic diffusion equation for the pressure, we no
longer need to specify the pressure a priori as a bound-
ary condition, and the pressure adapts self-consistently
to the chaotic structure of the magnetic field. We have a
complete mathematical model that can consistently treat
pressure gradients in chaotic fields, and in future work we
hope to investigate the so-called soft-beta limit, where
transport is linked to the breaking of magnetic surfaces.
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