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Abstract

Modification of a deuterium beam distribution in the presence of low amplitude Toroidal

Alfvèn (TAE) eigenmodes and Reversed Shear Alfvèn (RSAE) eigenmodes in a toroidal magnetic

confinement device is examined. Comparison with experimental data shows that multiple

low amplitude modes can account for significant modification of high energy beam particle

distributions. It is found that there is a stochastic threshold for beam transport, and that the

experimental amplitudes are only slightly above this threshold. The modes produce a substantial

central flattening of the beam distribution.
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I. INTRODUCTION

Energetic ion populations often drive Alfvén waves unstable in toroidal magnetic confine-

ment devices [1] and similar instabilities may be driven by alpha particles or high-energy

beam ions in ITER [2]. A goal of current research is to predict and control fast-ion transport

in ITER and other future devices.

Deuterium beam ions in DIII-D plasmas drive many toroidicity-induced Alfvén eigen-

modes (TAE) and reversed shear Alfvén eigenmodes (RSAE) unstable [3]. The mode struc-

ture is measured with electron cyclotron emission (ECE) and beam-emission spectroscopy

(BES) diagnostics. Comparisons of the ECE measurements with the linear eigenfunctions

calculated by the MHD code NOVA show excellent agreement in the mode shape [3] and

temporal evolution [4][5]. Saturated mode amplitudes are derived by scaling the predic-

tion of a synthetic ECE diagnostic applied to NOVA calculated eigenfunctions. The same

scaling factor gives quantitative agreement with the electron density fluctuations measured

by BES [3]. The resultant beam-ion transport is measured by five independent techniques

[6, 7], including spatially-resolved fast-ion D-alpha (FIDA) spectroscopy. The data imply

strong central flattening of the fast-ion profile during the early phase of the discharge when

many Alfvén modes are unstable [6, 7]. In plasmas without appreciable MHD activity, the

FIDA profiles agree well [8] with the profiles predicted by the NUBEAM module [9] of the

TRANSP code but, in the presence of the strong TAE and RSAE activity, the profile in the

inner half of the plasma is much flatter than classically expected [6, 7].

To test the assumption that the Alfvén modes cause the additional fast-ion transport, in

previous works [6, 7], we inserted NOVA calculated eigenfunctions that were experimentally

validated by ECE measurements into the guiding center code ORBIT [10] and calculated the

expected fast-ion transport but found values too small to account for the profile modification.

A similar approach was successfully applied to observations of fast-ion transport by fishbones

in the Poloidal Divertor Experiment [11] and tearing modes in numerous toroidal devices

[12–15]. There have been many previous numerical studies of fast-ion transport by Alfvén

eigenmodes [16–22] but, in all cases, appreciable fast-ion transport occurred when the mode

amplitude was δB/B ∼ 10−3. We have discovered [23] that the system possesses a stochastic

threshold, and that the experimental values are only slightly above it, making simulations

very sensitive to mode amplitudes and other small effects. In particular, the omission of
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the electric potential associated with the magnetic perturbations, but including all observed

modes and harmonics as well as the neoclassical transport through pitch angle scattering,

leads to beam transport more than an order of magnitude too small to explain the observed

profile flattening.

II. RESONANCE

Only through resonance with a perturbation is a significant modification of the particle

distribution possible, since the mode amplitudes are known to be very small, with δB/B '

2 × 10−4. We are interested in passing particle resonance. It is fairly easy to assess the

effect of a particular mode on the particle distribution by examining a Poincaré plot for

a particular choice of either co-moving or counter-moving particles, which we refer to as a

kinetic Poincaré plot to distinguish it from a plot of the magnetic field. Points are plotted

in the poloidal cross section whenever nζ−ωnt = 2πk with k integer, where ζ is the toroidal

particle coordinate, and ωn is the mode frequency. The toroidal motion then gives successive

Poincaré points, with ∆ζ = ωt∆t satisfying

nωt − ωn = 2π/∆t. (1)

where ωt is the toroidal transit frequency. For there to be a periodic fixed point in the

poloidal angle θ with period m′ we also require ∆θ = 2πl/m′ with l integer. But neglecting

particle drift we also have ∆θ = ωt∆t/q, with q the magnetic field helicity, giving

[n−m′/ql]ωt = ωn, q =
m′/l

n− ωn/ωt

, (2)

this last equation determining the location of the resonance. A resonance appears whenever

there exist integers m′, l such that this relation can be satisfied. Since the Alfvèn frequency

is generally large, only rapidly moving particles are capable of participating, and important

interaction occurs only for high energy heating particles or for fusion products such as alpha

particles. Note that for co-moving passing particles (ωt > 0) and n > 0, increasing the mode

frequency ωn increases the q value of the resonance, and increasing energy or pitch ( and

thus ωt ) decreases the q value of the resonance. These islands exist in real space and in the

energy variable.

However Eq. 2 was calculated neglecting the particle drift motion. In order to examine the

effect of resonance for arbitrary energy and pitch, as well as in a general equilibrium we use
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FIG. 1: Kinetic Poincaré plots for mode m/n = 9/3, showing energy dependence of the m′ = 10

resonances. Shown are the resonances for a 9/3 perturbation on particles of 25 keV and 24.5 keV .

a numerical method of displaying these resonances. Energy is not conserved since the mode

is time dependent, and for a mode of a single n value the perturbation of the Hamiltonian

includes ζ and t only in the form H(nζ − ωnt). Similarly, canonical toroidal momentum is

not conserved, and from Hamilton’s equations dPζ/dt = −∂ζH, and dE/dt = ∂tH and thus

for fixed n we find that ωnPζ − nE is constant in time.

To obtain a kinetic Poincaré plot the distribution must be initiated with a fixed value of

µ and ωPζ − nE = c. This plot shows islands indicating resonance of the particles with the

perturbation, and it includes all nonlinear couplings, deviation of the orbits from a single

flux surface due to drift, and particle precession rates. In Fig. 1 are shown kinetic Poincaré

plots for different modes in an equilibrium with the reversed shear q profile of the DIIID

equilibrium studied, to illustrate the islands produced by modes with δBr/B of order 10−4.

Energies and pitch are chosen to reflect values near the peak of a DIII-D deuterium ion beam

distribution, with values of µB/E approximately equal to 0.6. The large displacement in

ψp versus θ of approximate cos(θ) form is the drift motion of the co-injected beam. Fig.

1 demonstrates the resonance position shift of an m′ = 10 island chain due to a change in

energy, decreasing the energy increases the q value, and for this radius the surface moves

outward. This resonance was produced by a single harmonic with m = 9, and n = 3.
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FIG. 2: Kinetic Poincaré plots for mode m/n = 9/2, showing the effect of the potential on 25 keV

beam particles for a 50 kHz mode.

Ion motion is further modified by the fact that the rapid mobility of the electrons makes

the electric field experienced by the ions parallel to the magnetic field equal to zero. Thus

in general it is necessary to add an electric potential Φ to cancel the parallel electric field

induced by d ~B/dt.

In Fig. 2, are shown kinetic Poincaré plots with and without the electric potential for a 50

kHz TAE mode and 25 keV deuterium ions, giving in the DIII-D equilibrium ω/ω0 = 3×10−3,

ρ/R = 10−2, with ω0 the cyclotron frequency, and ρ the cyclotron radius of the particle. The

effect of the potential can be neglected only for modes with ω/ω0 ¿ ρ/R. If these terms are

comparable the potential can have a significant effect on island size.

III. BEAM MODIFICATION

The initial beam profile was obtained from a TRANSP calculation of the distribution

function [9], with energy ranging from 20 to 80 keV. TRANSP produces a list of 105 to 106

particles characterizing the deuterium beam, giving the velocity and position of all particles

at a particular time. There are beam particles present with lower energy than this, but we

are interested in the effect of the modes on high energy particles only, so the distribution is
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truncated at 20 keV. The energy distribution is shown in Fig. 3, along with the distributions

in poloidal flux and in pitch, with the pitch expressed in terms of the magnetic moment µ

and energy E. The pitch is λ = v‖/v = ±
√

1 − µB/E, with v the velocity. The distribution

is almost entirely co-passing, and significantly peaked around µB0/E = 0.6, with B0 the on-

axis field strength. The distribution in energy has a dominant contribution at E ' 25KeV .

The flux distribution simply gives the number of particles in equal size zones of poloidal

flux; it is approximately proportional to the particle density.

A large spectrum of TAE and RSAE modes was observed to be present with amplitudes

in the range of δB/B ≈ 10−4, as determined by density and temperature fluctuation mea-

surements. The spectrum of modes we use in the simulation is given by NOVA, with the

amplitudes of the various modes fixed by comparison with temperature fluctuation measure-

ments. An example of the comparison of a NOVA calculated eigenmode with ECE data is

shown in figure 4(a) for a f = 78 kHz TAE, where the perturbed electron temperature (δTe)

is plotted vs. the normalized square root of toroidal flux (ρ)[5]. For comparison with ECE

measurements, a synthetic diagnostic as described in reference [3] was used to process the

NOVA predicted temperature perturbation. The actual poloidal harmonic content/structure

comprising the TAE is shown in figure 4(b), where it is seen that at least 10 harmonics con-

tribute significantly, something typical of the global TAEs discussed here. By scaling the

NOVA prediction using a single constant to match the ECE data [figure 4(a)] the amplitude

of the perturbation wavefields is obtained. The inferred amplitude is shown in figure 4(c)

as a function of major radius (R) along the device midplane, where the radial magnetic

field perturbation (δBr) is scaled to the local magnetic field strength B. For the majority

FIG. 3: Initial Beam distribution in energy, pitch, and flux surface.
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FIG. 4: (color online) (a) Synthetic ECE diagnostic prediction (solid) using NOVA calculated

f = 78 kHz global TAE overlayed with ECE measurements (diamonds). NOVA prediction scaled

by single constant to match ECE data. (b) Poloidal harmonics comprising TAE from panel (a).

(c) Calculated radial component of magnetic field fluctuation along device midplane (vs. major

radius) using amplitude obtained from comparison with ECE data[5].

of experiments on DIII-D, typical AE amplitudes obtained in this manner are found to be

δBr/B < 10−3.

The frequency dependence of the spectrum of modes included in the simulation is shown

in Fig. 5. Only the RSAE modes have significant frequency variation over the range of time

considered, the TAE modes are fairly constant in frequency.

Resonance islands produce transport in two ways. If nearby islands overlap as first

described by Chirikov, stochastic transport results. However, even in the absense of this,

islands produce additional particle displacement from their nominal drift surface, and in the

presence of collisions this gives a diffusion term with a step size given by the island width.

To examine the question of chaotic transport we launch a distribution of 2000 particles all

on the same drift surface, initially all with a single value of energy and pitch at the outer

midplane, but distributed randomly toroidally. We choose a distribution characteristic of
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FIG. 5: Time dependence of the modes in the spectrum

the beam, with a pitch of λ = 0.6 and an energy of 25 keV . In Fig. 6 is shown the final

particle positions after 7 msec in the presence of the modes used in the simulation, with

magnitude dB/B ' 1.2 × 10−4, (a), and dB/B ' 1.6 × 10−4, (b) but no collisions.

It is clear from this figure that the density level of the small scale islands in the simula-

tion allows for global stochastic transport, with a stochastic threshold 1.2×10−4 < dB/B <

1.6× 10−4. In the interval between these numbers there is a gradual increase in the number

of particles found outside the original drift surface after 7 msec, but it is clear that even at

dB/B = 1.4× 10−4 the last KAM surface has been broken, and that a very long simulation

would produce a flat distribution. Even for larger amplitudes the particle excursions are

limited radially, indicating that the stochastic domain exists only in the core of the device,

explaining the flattening of the beam distribution in the core, but the absence of changes

further out in the distribution. Modes have significant amplitude only in the plasma core.

The stochastic threshold very near the experimental amplitudes explains the failure of pre-

vious attempts to describe this profile flattening. A small reduction in the efficacy of the

modes, or in the number of harmonics, moves the system below stochastic threshold, and

the resulting particle redistribution is due solely to the slow collisional transport between

island chains.

To test the effect of the frequency variation, runs were performed with and without the
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FIG. 6: Particle distribution after 7 msec, all launched at the outer midplane with pitch λ = 0.6

with random toroidal angle in the presence of the full spectrum of modes, but with no collisions.

Amplitudes of dB/B ' 1.2 × 10−4, (a), and dB/B ' 1.6 × 10−4, (b)

FIG. 7: Beam modification due to modes, including beam slowing down and continuous injection,

with time shown in msec. Shown also are experimental data points from reference [6].
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variation shown in Fig. 5, showing no noticable effect in this case. With a small number

of large amplitude modes frequency sweeping can be important, but in the present case it

is the induced stochasticity that drives profile change, and this is not strongly affected by

mode sweeping.

To examine the final steady state of the beam profile in the presence of the modes, we

include the slowing down operator, and each time a particle drops in energy below 20 Kev

we replace it using a list of particles provided by TRANSP giving the beam injection. The

steady state beam profile is not like the final distribution shown in Fig. 3, it has a very

different energy distribution. This operation results in a total replacement of the beam

population in the time of the simulation. Shown in Fig. 7 is the modification of the beam

profile under continuous action of the mode spectrum. Clearly a steady state distribution is

obtained in approximately 50 msec. Note that the number of particles in the simulation is

constant. The relatively small increase in density at large radius compared to the significant

decrease on axis reflects the much larger volume at large radius. Shown also are experimental

points from reference [6].

Note that the mode amplitudes observed in the experiment reflect the values present after

the beam profile has been flattened. It is very possible that before the beam is flattened

the modes are more strongly driven to a larger amplitude, and that the flattening occurs

in a time much shorter than 50 msec. Repeating this experiment without the modes, with

only the scattering and slowing down operators results in more than an order of magnitude

decrease in the profile modification.

IV. CONCLUSION

In conclusion, we find that the modification of the beam profile in DIII-D from that

predicted by TRANSP can be explained by the effect of the spectrum of low amplitude modes

observed to be present in the discharge. Previous simulations failed because of neglect of

the associated electric potential, important at frequencies high enough so that ω/ω0 ∼ ρ/R.

The transport possesses a stochastic threshold, so it is very sensitive to small changes in

mode content and amplitude. The fact that a sufficient number of perturbations can lead to

stochastic transport in a Hamiltonian system is of course not new, it has been known since the

proof of the KAM theorem and demonstrations with many models, and has also explicitely
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been demonstrated for TAE modes[25, 26]. The surprising result of these simulations is

that even for the low amplitude modes present in the experiment the phase space of the

trajectories is found to be stochastic, allowing slow but large scale modification of the

distribution.
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