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Abstract - A generalized weight-based particle simulation scheme suitable for simulat-

ing magnetized plasmas, where the zeroth-order inhomogeneity is important, is presented.

The scheme is an extension of the perturbative simulation schemes developed earlier for

particle-in-cell (PIC) simulations. The new scheme is designed to simulate both the per-

turbed distribution (δf ) and the full distribution (full-F ) within the same code. The devel-

opment is based on the concept of multiscale expansion, which separates the scale lengths of

the background inhomogeneity from those associated with the perturbed distributions. The

potential advantage for such an arrangement is to minimize the particle noise by using δf

in the linear stage stage of the simulation, while retaining the flexibility of a full-F capa-

bility in the fully nonlinear stage of the development when signals associated with plasma

turbulence are at a much higher level than those from the intrinsic particle noise.

I. Introduction to Multiscale Gyrokinetics - Since the development of the weight-based

perturbative simulation schemes [1, 2], gyrokinetic particle simulation has contributed greatly in

understanding tokamak transport in realistic tokamak discharges. The discovery of the existence

of ion temperature gradient (ITG) streamers and their eventual breakup by turbulence [3], and the

relationship between global zonal flows and the nonlinear saturation of ITG turbulence [4] are

the two early examples. The simulations on the ion momentum transport [5] and on the electron

thermal transport [6], both carried out on the state-of-the-art massively parallel computers, are the

most recent success stories. However, there has been a concern that these so-called perturbative

(δf ) scheme may not be able to handle the simulations in the fully developed turbulence in long

time simulations, where particle weights associated with δf may become too large and/or the full-

F scheme may be needed, for example, to account for sources and sinks. The present paper, based

on our understanding, represents the first attempt to address this issue by using the multiscale

expansion to smoothly connect δf and full-F simulation regimes.

The governing gyrokinetic equations in the small gyroradius limit of k2
⊥ρ

2
i � 1 in the slab limit
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are [7–9]:
dF

dt
≡ ∂F

∂t
+ v‖

∂F

∂x‖
+ vE×B ·

∂F

∂x
+

q

m
E‖
∂F

∂v‖
= 0 (1)

and

(ρs/λD)2∇2
⊥φ = −4πe(ni − ne), (2)

where ρi ≡ vt/Ωi is the ion gyroradius, vE×B ≡ cE × b̂/B is the gyrocenter drift due to the

perturbed electric field, E = E⊥ + E‖ = −∂φ/∂x, ‖ and ⊥ refer to the directions in relation

to the external magnetic field B, respectively, ρs ≡
√
τρi τ ≡ Te/Ti, λD is the electron Debye

length and b̂ ≡ B/B is the unit vector. This set of equations can be solved using the traditional

PIC method by loading the distribution function, F (x,v, t), inhomogeneously in the configuration

space and following the particle trajectories by [7] ,

dx

dt
= v‖b̂ + vE×B (3)

and
dv‖
dt

= − q

m

∂φ

∂x‖
. (4)

However, numerical noise could cause problems in the low density region in the simulation. One

way to avoid the problem is by invoking the multiscale expansion of

∂

dx
→ ∂

dεx
+

∂

dx
,

where ε is a smallness parameter representing the variation of the background inhomogeneity, Eq.

(1) then becomes
dF

dt
= vE×B · κF, (5)

and κ ≡ −(dlnF/dεx)x̂ represents the background inhomogeneity in density and temperature

in the x direction. The advantage of this equation is that we can load the simulation particles

homogeneously, since the background drive is separated out. This equation is the same as Eq.

(24) in the paper by Lee in 1987 [8], where the author pointed out that this equation became an

inhomogeneous equation in phase space and, as such, the standard particle simulation could not

be used. Instead, an approximate method for particle pushing based on

dx

dt
= v‖b̂ + vE×B −

c

B
κ× b̂φ

along with Eq. (4) to solve for Eq. (5) was developed [8]. The method is not completely satisfac-

tory because of the compressibility issue in phase space [1] (see also the Appendix of the present

paper). But, that was before the concept of weighted particles had been introduced.
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II. Particle-In-Cell (PIC) Simulation Schemes using Weighted Particles - Using weight-

based simulation scheme to solve the full-F multiscale equation, Eq. (5), directly is certainly

feasible, but we will postpone its discussion for a later paper. Instead, we will start from a simpli-

fied, but related, equation. For

F = F0 + δf, (6)

where either δf � F0 or δf 6= δf(εx), from Eq. (5), we get

dF

dt
= vE×B · κF0. (7)

On the other hand, we can also use Eq. (1) of dF/dt = 0 to obtain the time evolution of the

perturbed distribution as
dδf

dt
= vE×B · κF0 −

q

m
E‖
∂F0

∂v‖
. (8)

These two time evolution equations are similar but have different numerical properties. Based

on the procedures first suggested by Dimits and Lee [1] and Parker and Lee [2], the perturbed

distribution in Eq. (8) can be evaluated by

δf = wF, (9)

where
dw

dt
= (1− w)vE×B · κ− (1− w)

q

m
E‖

1

F0

∂F0

∂v‖
, (10)

and the background inhomogeneity of

F (t = 0) = F0(x) = n0(x)

√
m

2πT0(x)
exp

[
−

mv2
‖

2T0(x)

]
, (11)

gives

κ ≡ κnx̂−
(

1−
v2
‖

v2
t

)
κT
2

x̂, (12)

with κn ≡ −dlnn0/dx and κT ≡ −dlnT0/dx, and ∂F0/∂v‖ = −(m/T0)v‖F0. As one can see,

at t = 0, w is small, since the perturbed potential, φ, is small and, consequently, δf is small

and quiet, while F is noisy as described by the Fluctuation-Dissipation Theorem (FDT) for a

gyrokinetic plasma [8, 10].

We should remark here that F in Eq. (7) still contains the zeroth-order inhomogeneities as given

by n0 and T0 in Eq. (11), so does δf via Eq. (9). Thus, we can still load particle inhomogeneously

as prescribed by Eq. (11) in the simulation without double counting for the inhomogeneities in
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Eq. (8). However, the noise property at the low density end of the simulation may become a

problem, where less number of simulation particles would be used. To mitigate this problem, the

zeroth-order homogeneous loading proposed by Parker and Lee [2] to minimize the noise problem

has been widely used. Let us now re-visit this property by again introducing the new phase space

distribution G(x, v‖, t) which is homogeneous in the configuration space and Maxwellian in the

velocity space, at t = 0, such that,
dG

dt
= 0. (13)

Now, let us define

p ≡ F

G
(14)

and

w ≡ δf

G
, (15)

where, as before, F = F0 + δf and F0 is the zeroth-order distribution. Taking the convective

derivative, d/dt, of Eqs. (14) and (15) and substituting with Eqs. (7), (8) and (13), we obtain

dp

dt
= (p− w)vE×B · κ (16)

and
dw

dt
= (p− w)

(
vE×B · κ +

q

T
E‖v‖

)
. (17)

By setting p = 1 in Eq. (17), we recover Eq. (10) of the original one-weight scheme [2]. On

the other hand, letting (p − w) → p′ in Eqs. (16) and (17) to obtain dp′/dt, we then recover

the two-weight scheme of Hu and Krommes [11]. Invoking the discrete Klimontovich-Dupree

representation for the total distribution of a system with N particles at time t as

G(x, v‖, t) =
N∑
j=1

δ[x− xj(t)]δ[v‖ − v‖j(t)], (18)

we can then represent the distribution functions of interest as

F (x, v‖, t) =
N∑
j=1

pj(t)δ[x− xj(t)]δ[v‖ − v‖j(t)], (19)

δf(x, v‖, t) =
N∑
j=1

wj(t)δ[x− xj(t)]δ[v‖ − v‖j(t)], (20)

where the time evolution of particles, x(t) and v‖(t), and their weights are given by Eq. (3), (4),

(16) and (17), respectively. Together with Eq. (2), we have a complete system of equations. As
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for the initial conditions, we can let p = F0(x)/〈F0(x)〉 ≈ 1 and w � 1, where 〈· · ·〉 is the spatial

average.

Let us now describe the procedures for calculating the number density in gyrokinetic Poisson’s

equation, Eq. (2). From

n = n0 + δn,

with

n(x, t) =
∫
Fdv‖ =

N∑
j=1

pj(t)δ[x− xj(t)]

and

δn(x, t) =
∫
δfdv‖ =

N∑
j=1

wj(t)δ[x− xj(t)],

the gyrokinetc Poisson’s equation can be evaluated numerically as

(ρs/λD)2∇2
⊥φ = −4πe[c(ni − ne) + (1− c)(δni − δne)]. (21)

Since pj ∼ o(1) and wj ∼ o(ε), where ε is a smallness parameter related to the perturbation,

δn is much quieter numerically than n. It, therefore, makes sense to set c = 0 in the simulation

at all times, which is essentially the reason behind the usual δf simulation [2]. On the other

hand, in the fully nonlinear stage, it has been shown consistently that the fluctuation level of

the ensuing turbulence is significantly above the thermal level in present-day tokamak transport

simulations, see, for example, Ref. [12]. Therefore, it is feasible to make c in Eq. (21) time-

dependent, for example, by setting c(t = 0) = 0, and changing, say, linearly and slowly to

c1(t = t1) = 1 at a certain point in time in the simulation. The criterion is such that the signal

of the resulting turbulence should always be much higher than the intrinsic noise due to discrete

particle effects [8, 10]. As shown earlier [13], the intrinsic noise level, after initial transient,

remains constant in time even in the present of microinstabilities. The proposed procedures are

different from that of Qin et al. for simulating beam plasmas [14], for which the multiscale

expansion was not used.

Let us now illustrate these procedures by simulating one-dimensional drift waves, which was

studied earlier by Parker and Lee [2]. In this type of simulation, there is no spatial variation

along the x (radial) direction. Thus, there is no actual diffusion along this direction, although the

particle weights will evolve in time. As such, there is no nonlinear E × B trapping [15] nor the

nonlinearly-generated zonal flows [4] in the simulation. The only nonlinear saturation mechanism

is the nonlinear velocity space trapping [2], which is usually near the phase velocity of the wave
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of interest with ω/k‖ � vte and δf/F � 1. These are rather numerically-demanding simulations

and many of the major simulation codes in the magnetic fusion community don’t include this

piece of important nonlinear physics. Using the same parameters as the earlier work [2], i.e.,

kyρs = 0.75, κnρs = 0.2, Te/Ti = 1, mi/me = 1837, θ = 0.01, Ly/ρs = 8, Ngrid = 16,

Nsteps = 4096, and Ωi∆t = 0.35, where the external magnetic field is given by

b̂ = b̂z + θŷ,

the density inhomogeneity κn is in the x direction [see Eq. (12)], v‖ is along the b̂ direction and

the self-consistent fields associated Eqs. (1) and (2) are now given by E × b̂ = Eyx̂, E‖ = θEy

and Ey = −∂φ/∂y, we have carried out the simulations of the most basic type of drift instabilities

as follows.

First, the simulations via a one-dimensional code [16] written in MATLAB for Np = 1000

particles running on an Intel MAC laptop are shown in Fig. 1, where the left panel (L) shows the

results using the one-weight scheme of Parker and Lee [2] [i.e., Eq. (17 ) with p = 1] and the right

panel (R) gives those using the two-weight scheme of Hu and Krommes [11] [i.e., Eqs. (16) and

(17) with (p−w)→ p′]. For both cases, c = 0 is used for the gyrokinetic Poisson’s equation, Eq.

(21), at all times, with w = 10−4 and p = 1 at t = 0 as the initail conditions. As expected, these

two sets of results are very similar to each other. The linear frequency, the linear growth rate and

the nonlinear saturation level of ωL/Ωi ≈ 0.1, γL/Ωi ≈ 0.01 and |eφ/Te|NL ≈ 0.9%, respectively,

are also very similar to those given in Ref. [2]. We should again emphasize here that the saturation

of the drift waves in the simulation is due to the nonlinear wave-particle interaction through the

velocity space nonlinearity term of E‖(∂δf/∂x‖) in Eq. (1). The average particle weight at the

end of the simulation using the one-weight scheme [2] is about
√∑Np

j=1w
2
j/Np ≈ 1.7%.

To test the δf to full-F transition, we have carried out the simulations by using Eqs. (16) and

(17) with c(t = 0) = 0 in Eq. (21), which then evolve linearly to c(t = t1) = 1 along with the

initial conditions of w = 10−4 and p = 1 at t = 0, and

t1 = lNsteps∆t (22)

in Eq. (21). By turning on the full-F simulation slowly, for example, the results for l = 12

with 10, 000 particles are shown in the left panel of Fig. 2, where there is an 8.3% of full-F

particle contribution at the end of the simulation. The results for l = 10 with 100, 000 particles,

where there is an 10% of full-F particle contribution at the end, are given at the right panel of
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FIG. 1: One-weight δf (L) and two-weight δf (R) simulation results using 1K particles for Ωi∆t = 0.35

Fig. 2. As we can see, both of these results are very similar to those using the δf schemes

in Fig. 1, in terms of the frequency, growth rate and saturation level. Thus, we can use more

full-F particles when there are more particles in the simulation. However, when more full-F

particles are used in the simulation, the saturation amplitude has been observed to grow larger in

later times. On the other hand, by halving the time step of the simulation to ∆t = 0.175, we

are able to turn on the full-F response faster as shown in the left panel of Fig. 3 with l = 5

for 100, 000 particles, where there are 20% of full-F particles at the end of the simulation. To

verify the relationship between a larger number of simulation particles and a higher percentage

of full-F particles, we have also used the code on the Linux cluster at PPPL. The results for

the δf to full-F scheme with 1, 000, 000 particles using Eqs. (16) and (17), and Eq. (21) with
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FIG. 2: Simulation for the δf + full-F scheme with (L) l = 12 using 10Kparticles and (R) l = 10 using

100K particles for Ωi∆t = 0.35, where l is defined in Eq. (22)
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FIG. 3: Simulation results for the δf + full-F scheme with (L) l = 5 using 100K particles and (R) l = 2

using 1M particles for Ωi∆t = 0.175

l = 2 are given by the right panel of Fig. 3, where there are 50% full-F particles at the end of

the run. The increase in the nonlinear fluctuation level due to numerical noise toward the end

of the simulation is evident. The problem results from the feebleness of the nonlinear saturation

from particle trapping, associated with the nonlinear E‖∂δf/∂v‖ term in Eq. (1) and can only

be resolved by very high resolutions in the velocity space, compounded by the presence of the

high frequency electrostatic shear-Alfven normal modes, ωH [≡ (k‖/k⊥)
√
mi/meΩi)] [8, 17]. It is

interesting to point out that this nonlinear trapping effect has been ignored in many of the fusion

simulation codes, especially the Eulerian codes using the local approximation. This is partly due

to the fact that, in realistic tokamak simulations [3–6], the nonlinear effects due to E×B trapping

and the nonlinearly generated zonal flows (m = 0, n = 0), accompanied by energy cascade to the

longer wavelength modes [3–6], are believed to be much more dominant in the nonlinear stage

of the simulation. However, in the collisionless steady state, the velocity space nonlinearity is the

essential ingredient for entropy balance [18]. Thus, it should not be ignored in the simulation.

But, we can do anything about the ωH modes and the associated noise in the nonlinear stage.

As we know, there are two ways to deal with the ωH noise in the simulation. One is the δf

scheme [2] and the other is the split-weight scheme [19]. Both are perturbative schemes and the

latter eliminates the ωH modes from the simulation entirely. The proposed δf to full F scheme

takes advantage of the unique feature that the problem of particle noise is most severe at the begin-

ning of the simulation, and is mitigated considerably in the nonlinear stage when the fluctuation
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FIG. 4: δf to full-F simulations for l = 1 with 100K particles with the parameter (L) α = 1 and (R) α = 2

in the modified gyrokinetic Poisson’s equation, Eq. (23), for Ωi∆t = 0.175

amplitudes of the instability are much higher than those generated by the intrinsic noise. The va-

lidity of the present scheme also related to the findings by Jenkins and Lee [13] which show that

the saturation amplitude is independent of the intrinsic particle noise and the level for the intrin-

sic noise, given by the fluctuation-dissipation theorem for an equilibrium plasmas, does not grow

with the instability. However, the noise problem still persists in the nonlinear stage as shown here

unless we use even more particles and/or smaller time steps.

One possibility to mitigate this noise problem is to borrow the idea from the split-weight

scheme [19] through the modification of the gyrokinetic Poisson’s equation, Eq. (21), by sub-

tract the adiabatic response on both sides of the equation so as to minimize the impact of ωH

modes, i.e.,

(ρ2
s∇2 − αc)eφ

Te
= −c(ni − ne) + (1− c)(δni − δne)

n0

− αceφ
Te
, (23)

where α is a constant. Simulations have been carried out for the δf to full-F scheme with 100, 000

particles using Eqs. (16) and (17), starting with c(t = 0) = 0 and changing linearly to c(t = t1) =

1 in Eq. (23), where t1 is specified by Eq. (22). For the usual initial conditions for p and w at

t = 0, α = 1 and l = 1, i.e., there are 100% full-F particles at the end of the simulation, the

results are shown in the left panel of Fig. 4. As one can see, the frequency and the saturation

amplitude are correct, but the fluctuation starts to grow again shortly after the saturation. For the

case of α = 2, as shown in the right panel of Fig. 4, the oscillation amplitude remains constant

after saturation. Although the overall magnitude is slightly lower in comparison with those in Fig.

1, we nevertheless believe that these are very encouraging results. For both of these simulations,

only one iteration was used at each time step in solving Eq. (23), starting first with φ = 0 on the
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right hand side.

Finally, for comparison purposes, we have also carried out full-F simulations with 100, 000 and

1, 000, 000 particles using Eqs. (16) and (17) with c = 1 in Eq. (21) and p = 1 at t = 0. As

expected, in agreement with previous findings [16], the instabilities never saturated although the

frequency seemed more reasonable with more particles. The time evolutions resembled those at

the end of the simulations given by Figs. 3(R) and 4(L).

IV. Conclusions

In the present paper, a generalized two-weight scheme for collisionless plasma is proposed,

which can be used to simulate microturbulence in tokamaks by first use the δf scheme to mini-

mize the numerical noise before gradually switching to the full-F scheme. The work was inspired

by several previous attempts on the subject and, particularly, by the thesis work of Jenkins [16].

The proposed procedures, either using Eq. (21) or Eq. (23), should result in considerable savings

in computing resources, especially the latter. Moreover, the latter is readily applicable to simu-

late ITG modes in tokamak plasmas, where adiabatic electron response is routinely assumed, by

solving the gyrokinetic Poisson equation of the form,

(ρ2
s∇2 − 1)

eφ

Te
= −cni + (1− c)δni

n0

, (24)

and by starting with c = 0 and ending with c = 1. Simulations of ITG modes with large weight are

nothing new. For example, the average particle weight of
√∑

w2/Np ≈ 28% has been observed

at the end of the δf simulation of turbulence transport on tokamak plasmas [12]. Applying this

generalized weight-based PIC scheme to tokamak plasmas with sources and sinks will be a logical

next step. On the other hand, a more self-consistent full-F scheme to account for the adiabatic

response similar to the split-weight scheme [19] may be needed. Collisional effects associated

with these schemes are another important research area. The two-weight scheme by Wang et

al. [20] could serve that purpose. We should also mention that weight-based numerical schemes

to solve the multiscale equation of the form of Eq. (5) directly with homogeneous loading is

presently under investigation and the results will be published elsewhere, which would give us

another viable alternative to carry out full-F simulations. In the future, the full-F simulation may

be important for the integrated modeling of microturbulence and MHD physics based on the global

PIC simulation of tokamak plasmas and there is no doubt that other similar PIC schemes will be

developed for that purpode. However, no matter what PIC methods one chooses, they should
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preserve the property of incompressibility of the phase space fluid for the full-F distribution as

given in the appendix.

Appendix - Particle-In-Cell Simulation of Incompressible Phase Space Fluid

Let us first start with the Vlasov equation for a collisionless unmagnetized plasmas, which can

be written as
dF

dt
≡ ∂F

∂t
+ v

∂F

∂x
+

q

m
E
∂F

∂v
= 0, (25)

where F (x, v, t) is the distribution function, which, in the Klimontovich-Dupree representation,

can be expressed as

F (x, v, t) =
N∑
j=1

δ[x− xj(t)]δ[v − vj(t)], (26)

where N is the number of particles in the system. Taking the time derivative of the distribution

function, we have

∂F

∂t
=

N∑
j=1

[
dxj
dt

∂

∂xj
+
dvj
dt

∂

∂vj

]
δ[x− xj(t)]δ[v − vj(t)],

which gives
∂F

∂t
=

N∑
j=1

[
vj

∂

∂xj
+

q

m
Ej

∂

∂vj

]
δ[x− xj(t)]δ[v − vj(t)],

since the equations of motion of the particles are

dxj
dt

= vj, (27)

dvj
dt

= v
q

m
Ej (28)

and Ej ≡ E(xj). In turn, we obtain,

∂F

∂t
=

N∑
j=1

[
∂

∂xj
vj +

q

m

∂

∂vj
Ej

]
δ[x− xj(t)]δ[v − vj(t)],

since neither vj is a function of xj nor Ej is a function of vj . From the relationship of

f(x)δ(x− a) = f(a)δ(x− a),

the time derivative of F takes the form of

∂F

∂t
=

N∑
j=1

[
∂

∂xj
v +

q

m

∂

∂vj
E(x)

]
δ[x− xj(t)]δ[v − vj(t)].
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From the Dirac form of the delta function,

δ(x) = limε→0
1

π

ε

x2 + ε2
,

it can be shown easily that
dδ(x− a)

dx
= −dδ(x− a)

da
.

We then obtain

∂F

∂t
= −

N∑
j=1

[
∂

∂x
v +

q

m

∂

∂v
E(x)

]
δ[x− xj(t)]δ[v − vj(t)].

Substituting the definition of F given by Eq. (26) into the above expression, we obtain

∂F

∂t
+

∂

∂x
(vF ) +

q

m

∂

∂v
(EF ) = 0,

which is the equation we solve when pushing particles. For a Hamiltonian system, we recover Eq.

(25). Thus, Eq. (25) describes an incompressible fluid in phase - the Vlasov Fluid. This property

of incompressibility should be satisfied in the simulation at all times.
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