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Response to Comment on ”On higher-order corrections to gyrokinetic

Vlasov-Poisson equations in the long wavelength limit [Phys. Plasmas 16,

044506 (2009)]”

W. W. Lee, and R. A. Kolesnikov†

Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

† Present Address: Los Alamos National Laboratory, Las Alamos, NM 87544

We show in this Response that the nonlinear Poisson’s equation in our original paper

derived from the drift kinetic approach can be verified by using the nonlinear gyrokinetic

Poisson’s equation of Dubin et al. [Phys. Fluids 26, 3524 (1983)]. This nonlinear contri-

bution in φ2 is indeed of the order of k4
⊥ in the long wavelength limit and remains finite

for zero ion temperature, in contrast to the nonlinear term by Parra and Catto [Plasma Phys.

Control. Fusion 50, 065014 (2008)], which is of the order of k2
⊥ and diverges for Ti → 0.

For comparison, the leading term for the gyrokinetic Poisson’s equation in this limit is of

the order of k2
⊥φ,

This is in response to the Comment on our recent paper [1], in which we questioned the cor-

rectness of the nonlinear term in the gyrokinetic Poisson’s equation by Parra and Catto [2]. Since

these are long wavelength modes with k⊥ρi ∼ o(ε) and k⊥L ∼ o(1), we have adopted the drift

kinetic approach in the paper, where, ρi is the ion gyroradius, L is the scale length of the back-

ground inhomogeneity and ε is a smallness parameter. Our conclusion was that the higher order

perturbation terms, related to the electrostatic potential φ2 in the gyrokinetic Poisson’s equation,

are of the order of k4
⊥ρ4

i rather than the order of k2
⊥ρ2

i , as claimed by Parra and Catto [2]. Since the

leading linear φ term is of the order of k2
⊥ρ2

i , these nonlinear terms should have higher order effects

on turbulent and neoclassical transport in tokamaks with k⊥L ∼ o(1). Our original derivation was

carried out without requiring the use of a Maxwellian background nor the amplitude ordering of

the perturbation. Most of all, this conclusion was obtained without utilizing any of the gyrokinetic

equations [3, 4], since the problem at hand was drift kinetic in nature, i.e., k⊥ρi # 1.

We believe that the focus of the present exchange should be on the correctness of the nonlinear

term in Eq. (10) in Ref. [1] rather than on the origin of the nonlinear term of Eq. (55) in Ref. [2],

although it is puzzling that the nonlinear term in question remains finite in the limit of Ti → 0
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in our formulation, whereas theirs, in Eq. (55) of Ref. [2] as well as in Eq. (7) of the Comment,

become singular in that limit. We will show in this Response that our nonlinear equation, Eq. (10)

in Ref. [1], can indeed be obtained from the nonlinear Poisson’s equation of Dubin et al. [4], i.e.,

∇2φ

4πe
= −

∫ 〈[

Fi +
e

mi
(φ− φ̄)

∂Fi

∂µ
− e2

m2
i

1

2
〈(φ− φ̄)2〉ϕ

∂2Fi

∂µ2

]

δ(R− x + ρ)dRdv‖dµ

〉

ϕ

+ ne,

(1)

where Fi(R, µ, v‖, t) is the gyrocenter distribution, x = R+ρ, µ ≡ v2
⊥/2, x represents the particle

coordinates, R denotes the gyrocenter coordinates, ρ ≡ v⊥/Ωi is the ion gyroradius, v2 = v2
⊥+v2

‖ ,

µ ≡ v2
⊥/2, 〈· · ·〉ϕ is the gyrophase averaging,

φ̄(R) = 〈φ(x)〉ϕ =
∑

k

φ(k)J0(k⊥v⊥/Ωi)exp(ik · R),

and ne is the electron guiding center density. To simplify the calculation, we can assume that

∂Fi/∂µ ≈ −FMi/v2
ti and ∂2Fi/∂µ2 ≈ FMi/v4

ti for a Maxwellian Fi, where v2
ti = Ti/mi. From

(φ− φ̄) =
∑

k

φ(k)[1− J0(k⊥v⊥/Ωi) exp (ik · ρ)] exp (ik · x), (2)

we obtain

〈(φ− φ̄)〉ϕ =
∑

k

φ(k)[1− J2
0 (k⊥v⊥/Ωi)] exp (ik · x) (3)

and

〈(φ− φ̄)2〉ϕ =
∑

k=k′+k′′
φ(k′)φ(k′′)[1− J2

0 (k′
⊥v⊥/Ωi)− J2

0 (k′′
⊥v⊥/Ωi)

+J0(k
′
⊥v⊥/Ωi)J0(k

′′
⊥v⊥/Ωi)J0(k⊥v⊥/Ωi)] exp (ik · x). (4)

For the long wavelength modes of interest with k *= 0, they become

〈(φ− φ̄)〉ϕ ≈ −
1

2

v2
⊥

Ω2
i

∇2
⊥φ(x) (5)

and

〈(φ− φ̄)2〉ϕ ≈
1

4

v4
⊥

Ω4
i

∇2
⊥φ(x)∇2

⊥φ(x), (6)

respectively, where J0(k⊥v⊥/Ωi) = J0(k′
⊥v⊥/Ωi)J0(k′′

⊥v⊥/Ωi) is used. The resulting nonlinear

gyrokinetic Poisson equation takes the form of

∇2φ +
ω2

pi

Ω2
i

∇2
⊥φ

[

1− ρ2
i∇2

⊥
eφ

Ti

]

= −4πe(ni − ne), (7)

where ni =
∫

Fidv‖dµ is the ion (guiding center) density, ρi ≡ vti/Ωi is the ion thermal gyroradius,

ωpi(≡
√

4πn0e2/mi) is the ion plasma frequency, Ωi is ion cyctron frequency, and n0 is the average
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number density. Thus, the nonlinear term is the same as that of Eq. (10) in Ref. [1] and the

conclusion remains the same - it is higher order in k⊥ρi and, therefore, is small, but finite for

Ti → 0.

On the other hand, the linearized gyrokinetic Poisson equation, i.e, Eq. (1) without the nonlin-

ear term, and the gyrokinetic equation with linearized fields [3, 4],

∂F

∂t
+

[
v‖ +

c

B2
Ē⊥ ×B

]
· ∂F

∂R
+

q

m
Ē‖ · ∂F

∂v
= 0, (8)

where Ē = −∂φ̄(R)/∂R, give rise to a system that conserves total energy (kinetic energy and

field energy) [4], i.e.,
〈

mi

2

∫
v2Fidv +

me

2

∫
v2Fedv +

1

2

e2

mi

∫ ∂

∂µ
〈(φ− φ̄)2〉ϕFdv

〉

x

= const.. (9)

Substituting the relationship of

〈(φ− φ̄)2〉ϕ =
∑

k′
φ(k′)φ∗(k′)[1− J2

0 (k′
⊥v⊥/Ωi)] ≈

1

2

v2
⊥

Ω2
i

|∇⊥φ(x)|2,

from Eq. (4), for the k = k′+k” = 0 modes, and carrying out the velocity space integration using

a Maxwellian background, we then obtain the usual energy conservation, where the field energy,

the last term on the LHS of Eq. (9), takes the form of

noTi

2

∑

k

(1− Γ0)

∣∣∣∣∣
eφ(k)

Ti

∣∣∣∣∣

2

≈ n0Te

2
ρ2

s

∣∣∣∣∣∇⊥
eφ

Te

∣∣∣∣∣

2

, (10)

with Γ0[≡ Io(b)exp(−b)], b = k2
⊥ρ2

i and ρs ≡
√

Te/Tiρi. This is in agreement with the conserva-

tion property given by Eq. (28) of Ref. [4], and, for k⊥ρ2
i # 1, we then recover Eq. (8) in Ref. [1]

for the energy conservation. It should be noted here that the term 〈(φ− φ̄)2〉ϕ appears in both Eqs.

(1) and (9), [similarly, in Eqs. (6) and (7) of the present Comment], but results as (∇2
⊥φ)2 and

|∇⊥φ|2 in Eqs. (7) and (10), respectively.

In conclusion, the statement by Lee and Kolesnikov in Ref. [1], that nonlinear φ2 terms in the

gyrokinetic Poisson’s equation are of the order of k4
⊥, based on the drift kinetic approach, is valid,

as verified by the new derivation given here using the nonlinear gyrokinetic Poisson’s equation of

Dubin et al. [4]. Hopefully, this Response would resolve the interesting, yet controversial, issue

originally brought up by Parra and Catto [2]. Most importantly, our derivations in Ref. [1] as well

as those given here have shown that the commonly used gyrokinetic Poisson’s equation [3, 4], by

keeping only the linear polarization density term, is valid for the global simulations of k⊥ρi ∼ o(ε)
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and k⊥L ∼ o(1). In the event that the nonlinear φ2 term become important, it should be of the

form given by Eq. (10) in Ref. [1] or Eq. (7) of this Response, which is of the order of k4
⊥φ2, rather

than that given by Eq. (55) in Ref. [2] or Eq. (7) of the Comment, which is of the order of k2
⊥φ2.

Since the lowest order polarization density term is of the order of k2
⊥φ in the original gyrokinetic

Poisson’s equation, the effects of our nonlinear term [1] on the modes with large φ but small k⊥

are significantly different from theirs [2].

One of us (WWL) would like to thank Dr. John Krommes and Dr. Roscoe White at PPPL and

Ms. Lu Wang, presently visiting PPPL from Peking University, for useful discussions.
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