
Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory

PPPL-

Pamela Hampton
Text Box
PPPL-

Princeton Plasma Physics Laboratory
Report Disclaimers

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or any third party’s use or the results of such use of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer

Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors.

PPPL Report Availability

Princeton Plasma Physics Laboratory:

 http://www.pppl.gov/techreports.cfm

Office of Scientific and Technical Information (OSTI):

http://www.osti.gov/bridge

Related Links:

U.S. Department of Energy

Office of Scientific and Technical Information

Fusion Links

UTILIZING ZFS FOR THE STORAGE OF
ACQUIRED DATA*

C. Pugh, P. Henderson, K. Silber, T. Carroll, K. Ying

In n formation Technology Divisio
Princeton Plasma Physics Laboratory (PPPL)

Princeton, NJ
cpugh@pppl.gov

Abstract— Every day, the amount of data that is acquired from
plasma experiments grows dramatically. It has become difficult
for systems administrators to keep up with the growing demand
for hard drive storage space. In the past, project storage has
been supplied using UNIX filesystem (ufs) partitions. In order to
increase the size of the disks using this system, users were
required to discontinue use of the disk, so the existing data could
be transferred to a disk of larger capacity or begin use of a
completely new and separate disk, thus creating a segmentation
of data storage.

With the application of ZFS pools, the data capacity
woes are over. ZFS provides simple administration that
eliminates the need to unmount to resize, or transfer data to a
larger disk. With a storage limit of 16 Exabytes (1018), ZFS
provides immense scalability. Utilizing ZFS as the new project
disk file system, users and administrators can eliminate time
wasted waiting for data to transfer from one hard drive to
another, and also enables more efficient use of disk space, as
system administrators need only allocate what is presently
required.

This paper will discuss the application and benefits of using
ZFS as an alternative to traditional data access and storage in the
fusion environment.

*Work Supported by U.S. DOE Contract No. DE-AC02-
CH0911466

Keywords-ZFS, data acquisition, storage, UNIX,

I. INTRODUCTION
 In the beginning, system administrators created
partitions and volumes. They saw the data storage capabilities
and thought, this is good enough and they settled. Then came
the revolutionary new file system called, ZFS and the system
administrator saw the ease in which either large or small
amounts of data could be efficiently stored, with minimal
administration costs, maximal disk utilization, and the peace of
mind for data integrity. Initially named the “Zettabyte File
system,” but now an orphaned acronym, ZFS is a relatively
new file system that was designed by a team from Sun
Microsystems [1]. This team broke away from what was
commonly expected of file systems, and created a better
system, from the ground up. Their new design features a
seemingly limitless file system, which can be administered on
the fly. With the ability to add space to a pool with one simple

command, no longer does a system administrator have to guess
how large a project will grow. No longer does a project have to
be interrupted in order to grow a partition, or move data to a
larger partition.

II. FINDING A SOLUTION
 The administrators at Princeton Plasma Physics
Laboratory (PPPL) were struggling with meeting the demands
of ever growing acquired project data. Under their current
system of exporting a UNIX file system (ufs) partition via
Network File System protocol (NFS), any project at the lab
could request a partition for the storage of acquired project data
which could be automatically mounted on our internal “portal”
and cluster nodes. Included in their request would be an
estimate of the amount of data they planned to use. Quite
often, many projects that were estimated to be “small” ended
up growing exponentially in size. Even if a project on a shared
partition exceeded their quota, under the previous system, they
still had the ability to write to their disk if it had space left.
This was because the quotas that were implemented were “soft
quotas,” meaning only a written warning was issued. Soft
quotas were the only option, as hard quotas could only be
implemented on a complete file system and applied to groups
or users. Since theoretically, there was more space left on the
partition, the project could consume the rest of the disk,
causing other projects on the same partition to also run out of
disk space. Projects would then have to either be moved to
another larger partition (up to 500GB), or begin writing to a
new partition. This created a segmented array of project disks.
Some projects would have four or more project areas (e.g.
gyro.1, gyro.2, gyro.3) and would have to set up links to keep
their data organized. The administrators did not find it
acceptable to serve out larger partitions, for fear of wasting
valuable disk real estate, and concern for the size of backups.

In order to cope with this endless battle, the systems
administrators began researching new solutions. Among the
considerations for a solution were changing to a Logical
Volume Manager (LVM), utilizing the new ZFS, or continuing
to use the ufs while in inefficiently dishing out increasingly
larger amounts of disk space. When the system administrators
saw that even using LVM required unmounting the project disk
in order to resize, it became clear this was not an acceptable
solution.

III. ABOUT ZFS
According to their research, the systems

administrators found that the ZFS way of life would be the
most ideal route. As the very first 128-bit filesystem, ZFS
could provide seemingly limitless scalability. Some
theoretical limits can help to put this into perspective. You
could have 248 files in any individual file system, 16 exabyte
(1018) file systems, 16 exabyte files, 3x1023 petabyte storage
pools, 248 files in a directory, 264 devices in a storage pool, 264
storage pools per system, 264 file systems per storage pool. [2]

Figure 1. Simplistic diagram of ZFS pooled storage

With a completely unique set of simple commands,
any administrator could quickly learn how to effectively
administer the new data set. As illustrated in figure 1, ZFS
utilizes pooled storage, where a disk or series of disks are
added to a “pool” where the size of the pool is the sum of the
sizes of the disks added. Since each nested file system can
access the pooled storage, you can work creatively to ensure
that disk real estate is efficiently allocated. The pools can be
created with a few different options. Shown in examples
below, the whole disk is used, with no software data
redundancy. Since the SAN device PPPL uses had hardware
RAID-5, the administrators feel RAID-5 is sufficient to ensure
the data integrity. Other options to implement with ZFS are
traditional mirroring, and the new RAID-Z. RAID-Z is similar
to RAID-5 however, it avoids the RAID-5 “write hole” by
using a “copy-on-write” policy.

Figure 2. Copy-On-Write Transactions[5]

As seen in figure 2, this means that instead of
overwriting old data with the new, a new location is written to,
and then is the pointer to the old data is over written with a
pointer to the new data. In this manner, only full-strip writes
are performed, and therefore you either get all or nothing, for
example, in the case of a power outage. [5] Mirroring or RAID-
Z configurations also allow for unprecedented self-healing.
ZFS has a checksum attached to every file, and gradually
“scrubs” the data by traversing the metadata tree to read a copy
of every block as shown in figure 3. If the scrub finds an error,
it repairs the file with the clean redundant copy. By
checksumming end to end in this fashion, ZFS detects “silent”
data corruption such as bit rot, phantom writes, misdirected
read or write, parity or driver errors. Bit rot can be detected on
any file system, as this is the gradual decay of storage media,
and is commonly checked for with SMART enabled disks.
Phantom writes are where the write is dropped. Misdirected
reads or writes happens when the disk accesses the wrong
block. DMA parity errors between the array and server
memory or from the driver are avoided since the checksum
validates the data inside the array. Driver errors happen when
the data winds up in wrong buffer inside the kernel. An
accidental overwrite could occur when swapping to a live file
system. In the case of non parity configuration, if an error is
found, it will require administrator intervention, such as
restoring from back up.

Figure 3. ZFS self validating metadata tree

 Another useful feature of ZFS is its ability to
transparently compress a file system. Fast cameras that collect
data can use around 1GB per shot. When you multiply this by
three cameras and thousands of shots over the lifetime of a
project, the numbers can sure add up! Transferring, accessing
or storing files this large can pose a tiresome challenge. With
ZFS compression, the file size can be reduced by 2-3 times,
depending on the algorithm used. The available compression
algorithms are lzjb, gzip, gzip-N. As with most of the features
of ZFS, compression can be toggled dynamically, on a per-file
system basis. If you simply need to archive data for future use,
compression is certainly the way to go. In fact, by using
compression thoughtfully, one can improve a common
bottleneck, the disk I/O. [3] Of course, with compression you
sacrifice some performance, however with the server that was
chosen for implementation, cpu performance is not an issue. If
you are intending on running a cpu intensive program, such as
camera diagnostics however, compression may not be the best
idea, performance wise. Experiment before you deploy.

Storage Pool

ZFS ZFS ZFS

ZFS ZFS

Address Address

Checksum Checksum

Address Address

Checksum Checksum

Data Data

IV. IMPLEMENTATION
In order to implement the ZFS solution the team of

administrators decided to purchase new Sun Servers with
Solaris 10, which included the ZFS software. Three Sun
Microsystems Sun Fire X4240’s were purchased, with an
optional Qlogic Corp qla2432 fiber card. The X4240 offers
high performance AMD Quad Core cpus and high memory
capabilities. [4] These servers were then connected via fiber to
the existing Storage Area Network (SAN) device. A series of
commands were used to verify the connectivity to the SAN.
The first command shows the information about the card
attached to the server.

fcinfo hba-port

This information can be used to properly set up the zones on
the SAN device. Once the zones were set up properly, the
server was checked to verify connectivity to the SAN by
issuing the command:

 # luxadm –e port

This verified that the SAN and the server had communication.
Once this was established, the Solaris Multipathing software
was enabled by issuing the command:

stmsboot –e

When all steps in setting up the server and SAN were
complete, disks could be presented to the new server from the
SAN. Traditionally, the administrators would use shared
500GB partitions for project disks. However, it was decided
that with the abundance of inexpensive disk space available
today, 1 to 2 TB disks would be added to the pools.

V. EXAMPLE USE OF ZFS
Once you have your environment set up, the creation

of ZFS pools, or zpools is simple. One can think of a zpool as
a virtual disk, as the size of the pool is the sum of the sizes of
the disks attached. The command to both create a new pool,
“exampool” and add disks, “c1t2d0” and “c1t3d0” to the pool
is as follows:

zpool create exampool c1t2d0 c1t3d0

This command automatically creates the mount point
/exampool and mounts the pool there. The mount point can be
changed if that is what you require. Once the pool is created, a
file system needs to be established.

 #zfs create exampool/fusion

Now, /exampool/fusion is not only a new directory,
but it is its own file system that can use whatever disk space is
available in the pool it which it is contained. Since each file
system can contain other “nested” file systems, it is ideal to
give each user, group or project their own file system. The

child file systems will inherit options, such as quotas,
compression, reservations or ACL’s from the parent filesystem.
For example, a group could have the need for a new project
disk for archiving data, and running camera diagnostics:

 #zfs create exampool/fusion/archive
 #zfs create exampool/fusion/CameraDiags

Since /exampool/fusion/archive will be used for archiving data,
it is a good idea to turn on file compression. However,
compression will not be implemented on the CameraDiag file
system, since this requires high performance. Compression can
be dynamically set, like every other option. However, realize
that if you have data on the disk before you enable
compression, the data will not automatically become
compressed. The data would have to be moved off, then back
on in order to become compressed.

 #zfs set compression=gzip exampool/fusion/archive

Each nested file system belonging to “exampool” can by
default, enjoy all the space that is contained in the pool. If
however, you would like to ensure that a project only uses a
certain amount of disk space, you can implement a quota that
affects all file systems in the /exampool/fusion file system:

 #zfs set quota=1TB exampool/fusion

Quite the opposite of quotas, if you would like to ensure that a
certain amount of disk space is always available, you can set
aside a reservation for the file system: The amount of space
referred to by CameraDiags will reflect the size of the
reservation. Therefore, you cannot set a reservation to a size
greater than what is available in the pool.

 #zfs set reservation=50GB exampool/fusion/CameraDiag

The filesystem, including all the data in the nested file systems
in /exampool/fusion is now limited to using only 1TB of the
pool. Remember though, this can be changed dynamically at
any time, by reissuing the above command. Quotas can be
used to have an idea of how much space a project expects to
use, so that pools can be created with the scale of the projects
in mind. Also remember, that if the pool begins running short
on available space, more disks can be easily added to the pool:

 #zfs attach exampool c1t4d0 c2t1d0

Finally, if you did want to move data from one disk to another,
an easy option is to clone. Cloning is a writable copy of a
snapshot. They are quick to create, and use no additional space
when created as it is populated with the files of the original
system. Remember, this is a copy-on-write system.

 #zfs snapshot exampool/fusion@090605
 #zfs clone exampool/fusion@090605 exampool/plasma

VI. KNOWN ISSUES
 When experimenting with and testing the
implementation of ZFS, the administrators at PPPL
encountered a few minor setbacks. The first issue encountered
was the project disks randomly unmounting, and/or not being
available for mounting for brief intermittent intervals. It was
found that this was caused because of excess traffic created by
the Name Server Caching Daemon (NSCD). Nscd is a daemon
that provides a cache for the most common name service
requests. It turned out that as the number of shares, hosts in the
access lists or number of clients increased, a serious bottle neck
occurs, thereby reducing the application performance. [7] The
problem was therefore solved by disabling the NSCD.

Another consideration is the management of the
performance of NFS with ZFS. NFS was developed with the
needs of file systems from 20 years ago. In the past, only a few
directories were shared out. With ZFS, the number of shared
exports can easily creep in to the double or even triple digits!
Since theoretically, ZFS can perform at the platter speed of
your hard drives, NFS becomes the limiting factor when it
comes to the performance of ZFS. This is why you will not
find performance evaluations of ZFS in this paper.
 Another observation was that ZFS has Access Control
List’s (ACL’s) turned on by default. Usually this does not
cause a problem, as the default settings are the same owner and
group detailed in the long listing of the file. However, this
ACL became a concern to some users at the lab. There was no
known way of turning off ACL’s on the server side, as the only
options were to clear out the ACL, but not remove it from the
file. The solution used was to disable ACL in the
automounting options (noacl).
 Finally, care should be exercised when forcing a
scrub. While a normal scrub happens gradually over time, it
seems by forcing a scrub, performance degrades, and the users
may notice this degradation. Therefore it is suggested that if a
forced scrub is desired, a cron job should be scheduled to
perform the scrub on an off-peak time.

VII. FINAL REMARKS
 Currently, ZFS has been ported for use not only on

Solaris 10, but also FreeBSD [8] and Mac OS X Server (Snow
Leopard 10.6) [9]. Due to licensing restrictions, ZFS is only
available on one Linux flavor, FUSE. In Jan 2009, a similar
file system called BTRFS was merged into the Linux kernel
2.6.29. [10]

The information included here is just a sampling of what
ZFS has to offer. These were the options and information that
were relevant to the implementation and administration at
PPPL. If you are interested in implementing this at your
institution, let this be an inspiration to your administrators.
ZFS is far from intimidating, and is simple to set up and
administer. Your organization will enjoy the benefits of a
dynamic file system, with limitless storage capabilities and the
reassurance of data integrity. If you would like to learn more,
the sites listed offer a wealth of knowledge to assist you on
your road to freedom.

REFERENCES
[1] Sun Microsystems, "ZFS FAQ at OpenSolaris.org",

http://opensolaris.org/os/community/zfs/faq/#whatstandfor
[2] A. Rich, “ZFS, Sun's Cutting-Edge File System,”

http://www.sun.com/bigadmin/features/articles/zfs_part1.scalable.jsp
[3] “Understanding ZFS compression,”

http://www.cuddletech.com/blog/pivot/entry.php?id=983
[4] Sun Microsystems “Sun Fire X4240 Server,”

http://www.sun.com/servers/x64/x4240
[5] J. Bodwick, B. Moore, “ZFS: the last word in file systems,”

http://www.sun.com/software/solaris/zfs_lc_preso.pdf
[6] C. Swearingen “Using ZFS: How to Solve Administration Problems

with ZFS”
http://www.sun.com/software/solaris/learning_center/linux_mag_zfs.pdf

[7] T. Haynes, D McCallum, “The Management of NFS Performance With
Solaris ZFS,” http://developers.sun.com/solaris/articles/nfs_zfs.html

[8] ZFS on Linux/FUSE: http://zfs-on-fuse.blogspot.com
[9] ZFS on Apple Mac: http://developer.apple.com/adcnews
[10] S. Kerner, “A Better File System for Linux?”

http://www.internetnews.com/dev-
news/article.php/3781676/A+Better+File+System+for+Linux.htm

The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract

with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory

P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751

e-mail: pppl_info@pppl.gov
Internet Address: http://www.pppl.gov

	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results

	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template

	report number: 4454
	Title: Utilizing ZFS for the Storage of Acquired Data
	Date: September, 2009
	authors: C. Pugh, P. Henderson, K. Silber, T. Carroll, K. Ying

