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Geometry dependence of stellarator turbulence
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Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent trans-
port in a broad family of stellarator designs, to understand the geometry-dependence of

the microturbulence. By using a set of flux tubes on a given flux surface, we construct a
picture of the 2D structure of the microturbulence over that surface, and relate this to rel-

evant geometric quantities, such as the curvature, local shear, and effective potential in the
Schrödinger-like equation governing linear drift modes.
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The concept of “transport–optimized stellarators” (for an overview see e.g. Ref. 1)

aims at mitigating the neoclassical (nc) losses to the point where anomalous trans-

port becomes dominant over most of the plasma column. Attention is now turning to

understanding the effects of 3D geometry on microturbulence,2–7 aided by nonlinear

gyrokinetic codes valid for 3D. Supported by the scant, albeit promising, existing find-

ings in this area, we attempt to identify key geometrical factors which contribute to the

development and, subsequently, control of turbulent transport levels.

In this Letter, we employ the GENE/GIST code package8,9 and systematically

apply its unique capability of determining turbulence properties for a 3D VMEC

equilibrium10 to a wide representative family of optimized stellarator designs (plus

one reference axisymmetric system), to understand the geometry dependence of ion-

temperature-gradient (ITG) turbulence.

Existing 3D nonlinear gk codes are “flux tube” codes,11 yielding a picture of the

turbulence along a particular field line, a 1D structure. To better relate such results to

the full geometry, we follow a novel procedure, in order to construct the 2D structure of

the turbulence over a flux-surface by combining results for a set of such field lines on

that flux surface, and relate this structure to relevant geometric quantities, including the

curvature, local shear, and effective potential Vef(z) in the Schrödinger-like equation

governing linear drift modes.

The global volume of a torus is conveniently parametrized by flux coordinates x =

(ψ, θ, ζ), with 2πψ the toroidal flux within a flux surface, and θ and ζ the poloidal and

toroidal azimuths, chosen so that the magnetic field may be written B = ∇α × ∇ψp,

with 2πψp(ψ) the poloidal flux, α ≡ ζ − qθ, and q(ψ) ≡ ι−1 the tokamak safety

factor. In its local mode of operation, GENE simulates plasma turbulence in a field-

line following coordinate system (x, y, z) within a flux tube surrounding a specified
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field line, with z = θ the coordinate along a field line, x ≡ r − r0, with r(ψ) ≡

(2ψ/Ba)
1/2 a minor radial variable with units of length, r0 the value of r on the chosen

flux surface, Ba a normalizing magnetic field strength, and y ≡ −r0ι0α the in-surface

Clebsch coordinate with units of length, satisfying B = Ba∇x×∇y. z runs for 1 full

poloidal transit, and periodic boundary conditions are imposed in all 3 directions. The

simulations discussed here all compute collisionless electrostatic turbulence, assuming

adiabatic electrons, with parameters a/Ln ≡ −a∂rn/n = 0, a/LT i ≡ −a∂rTi/Ti =

3, r0/a ' 0.7, τ ≡ Te/Ti = 1, ρs/Ly = .05/2π, and Lx = Ly, with Lx,y the box size

in the x and y directions, a the value of r at the edge, ρs ≡ cs/Ωi, cs ≡ (Te/Mi)
1/2 the

sound speed, and Ωi the ion gyrofrequency. Nx × Ny ×Nz = 64 × 96 × (96 or 128)

grid points were employed in the x, y, and z directions, and Nv‖ ×Nµ = 32× 8 points

in velocity space.

We study a family of configurations including a representative from each of the 3

principal approaches to nc transport optimization1, NCSX12, a 3 field-period (N = 3)

quasi-axisymmetric (QA) design, HSX13, an N = 4 quasi-helically-symmetric (QH)

design, and W7X14, an N = 5 quasi-isodynamic/quasi-omnigenous (QI/QO) design.

We also simulate NCSX sym, a fully axisymmetric (2D) equilibrium obtained from

the NCSX geometry by dropping all the nonaxisymmetric Fourier components.

We construct a 2D picture of the time-averaged RMS turbulent potential amplitude

〈φ〉(θ, ζ|r0) over the flux surface at r = r0 from a set of M flux-tube GENE sim-

ulations. The simulations for tubes j = 0, 1, ..,M − 1 are evenly spaced over a half

field-period,Nα0 = 0, π/(M−1), .., π. Each simulation produces the turbulent ampli-

tude 〈φ〉(z|r0, Nα0). The value of 〈φ〉 in the other half field-period (tubes labeled j =

−1, ..,−(M−1) ) is obtained from the tubes in the simulated half-period via stellarator

symmetry, 〈φ〉(−θ,−ζ|r0) = 〈φ〉(θ, ζ|r0), or 〈φ〉(−z|r0,−Nα0) = 〈φ〉(z|r0, Nα0).
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The 2D strip for a single field period is then replicated N times to cover a complete

flux surface. The construction for any other relevant physical quantity is essentially

the same.

We begin in Figs. 1-3 by comparing 〈φ〉 and the radial curvature component K2 =

κ · ex whose negative part denotes the “bad curvature”16 (ex is the covariant basis

vector) for NCSX with that in its axisymmetrized counterpart NCSX sym. In Fig. 1a

is shown a 1D plot of 〈φ〉(z|r0, Nα0) for M = 3 flux tubes for NCSX, for Nα0 =

0 (blue), π/2 (green), and π (red), along with a single flux tube (dashed blue) for

NCSX sym (all tubes are equivalent in a 2D torus). Fig. 2a shows the 2D plot 〈φ〉(θ, ζ)

composed from these for NCSX sym, and Fig. 3a for NCSX, with red being large

values, blue low values. Figs. 1b, 2b, and 3b show the corresponding plots for K2. (The

not quite perfect axisymmetry in Figs. 2 and the larger triangular regions near the top

and bottom boundaries in Figs. 3 are artifacts of the MATLAB Delaunay triangulation

routine used to combine the values from the separate flux tubes.)

For NCSX sym, as expected, one sees that 〈φ〉 balloons toward the outboard side

(θ = 0), where K2 is worst (most negative). As one might also expect, 〈φ〉 and K2

for NCSX resemble those for NCSX sym, but modulated by the deviations of the QA

from true axisymmetry.

Shown in Figs. 4 are the 1D plots 〈φ〉 and K2 for W7X, whose toroidal amplitude

εt is comparable to its helical amplitude εh, characteristic of QO/QI systems. While

B and K2 have a variation on the more rapid helical scale length Lh, the helical wells

these produce in the mode equation’s effective potential Vef are insufficient to localize

an ITG mode, leaving the longer, toroidal well to provide the dominant localization.

A similar statement holds for HSX, whose magnetic field strengthB(x) is helically

symmetric to better than one part in 400, (εt � εh). Here, while one might expect the
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toroidal ballooning evident in NCSX and NCSX sym to be replaced by an analogous

ballooning within a helical ripple period, as for W7X, Lh is too narrow to localize

〈φ〉, as seen in Figs. 5, and as a result the turbulence in each tube still balloons toward

θ = 0, though not as much as for a tokamak or QA system. This surprising finding is

experimentally supported by HSX probe measurements.17

For each of these configurations, the region of maximum 〈φ〉 occurs where K2 is

most negative, which is around (θ,Nα0) ' (0, 0), i.e., on the outboard side around the

device “corners”. The variation of the resultant heat flux Qi(θ|Nα0) along a field line

qualitatively follows the variation of 〈φ〉. As might be expected, the tube-averaged flux

Q̄i(Nα0) = −n0χ̄i〈∇Ti0 ·∇x〉 or anomalous diffusivity χ̄i varies little (χ̄max/χ̄min '

1.1) for NCSX, where different flux tubes are physically similar, but varies widely

(χ̄max/χ̄min ' 3.2) for W7X, where different tubes have quite different profiles of B

and K2.

It has been observed3 that 〈φ〉(θ) for ITG turbulence resembles the structure of

the linear modes. One may obtain an equation for the linear modes φ(θ) from the

quasineutrality condition 0 = ge/τ + gi, with response function gs equal to k2λ2

s times

the linear susceptibility, yielding

0 = ge/τ + 1 −

〈

J2

0

ω − ωf
∗i

ω − k‖v‖ − ωD

〉

v

' C(ω) +D(ω)(qRk‖)
2, (1)

cubic in mode frequency ω, with velocity-space average 〈..〉, ωf
∗ ≡ ω∗[1 + η(u2 −

3)/2], u ≡ v/vT , thermal velocity vT , diamagnetic and drift frequencies ω∗ ≡

−ckθκnT/(eB) and ωD ≡ vD · k = ωd(u
2

⊥/2 + u2

‖), ωd ≡ cTi/(eiB
3)B × ∇B · k⊥,

C(ω) ≡ (c0 + ω−1c1 + ω−2c2), D(ω) ≡ (ω−2d2 + ω−3d3), and coefficients c0−2, d2−3

collecting terms in powers of ω and k‖, e.g., c0 ≡ ge/τ + 1− I0(bi)e
−bi . For adiabatic

electrons, ge = 1.
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The shape of Vef ≡ C(ω)/D(ω), shown in Fig. 6 for a single tube (j = 2) for

each of the 4 geometries, is dominated by that of K2, coming from the drift term

(∝ ωD/ω) from (1). Using the replacement ik‖ → ∇‖ = (BJ )−1∂θ in (1), with

Jacobian J ≡ 1/∇α × ∇ψp · ∇θ ≡ 1/Bθ, a Schrödinger-like mode equation is

obtained for φ along a field line, 0 = [Vef − (qRBθ/B)∂θ(qRB
θ/B)∂θ)]φ(θ), in

which curvature enters through Vef .

The local shear sl = ∂θ(g
xy/gxx) (with gij the components of the metric tensor) en-

ters Eq.(1) through locally modifying both k‖(θ), and k2

⊥(θ) through radial wavenum-

ber kx(θ). In Fig. 7 are compared sl in NCSX and NCSX sym. As for other stellara-

tors, the much stronger shaping for NCSX makes |sl| substantially larger and more

structured than for a 2D system like NCSX sym. One might expect spikes in sl to

bound modes more than would occur just through the action of Vef , since sl causes

k‖ or kx to locally appreciably deviate from 0, enhancing Landau damping, as well

as reducing the mode radial extent, similar to the function performed nonlinearly by

zonal flows. Evidence for this may be seen in comparing the spikes in sl in Fig. 7 with

the restrictions and dimples in 〈φ〉 for NCSX in Fig. 1a. Further support is found by

creating an artificial configuration, NCSX s, obtained from NCSX by artificially dou-

bling sl by doubling gxy, adjusting gyy to preserve the field alignment constraint, and

consistently modifying K2, which implicitly contains gxy. 〈φ〉(θ) in NCSX s resem-

bles that of NCSX, but substantially more localized, restricted by the increased peaks

in sl(θ), with Qi(θ) correspondingly narrowed and reduced.

Summarizing, we have examined the structure of microturbulence in a broad family

of transport-optimized toroidal systems using the gk code GENE. Visualizing this, and

its relation to important geometric quantities, is facilitated by the construction of a 2D

picture of these over a flux surface from the 1D information a flux-tube code provides.
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Two such geometric quantities, K2 and sl, are seen to be important for ITG turbulence

in determining the parallel form of 〈φ〉, both from the simulation results, and because

both are operative in the linear mode equation, whose solutions φ have been observed

to resemble the averaged nonlinear amplitude 〈φ〉. For each stellarator, 〈φ〉 is seen to

peak toward the outboard side near the device corners (where K2 is worst), manifest-

ing a toroidal ballooning structure, which is modulated by the helical ripples, but not

enough to localize modes within them, even for HSX. Further improvements to the

present results are planned, e.g., incorporating the effect of an ambipolar electric field,

and in taking adiabatic electrons, which removes the trapped electron drive, which can

change mode characteristics.16 A relatively simple relationship between 〈φ〉 and iden-

tifiable geometric quantities like K2 and sl, which can be quickly computed, suggests

an optimization may be done with an objective function involving those quantities, to

obtain a geometry which seeks to minimize the turbulent transport.
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(b)

(a)

FIG. 1: (a)Averaged turbulent potential 〈φ〉(z = θ) and (b)curvature K2(z = θ) for

NCSX sym (dashed), NCSX (solid).
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FIG. 2: (a)〈φ〉(θ, ζ) and (b)K2(θ, ζ) for NCSX sym.
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FIG. 3: (a)〈φ〉(θ, ζ) and (b)K2(θ, ζ) for NCSX.
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FIG. 4: (a)〈φ〉(z = θ) and (b)K2(z = θ) for W7X.
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FIG. 5: (a)〈φ〉(z = θ) and (b)K2(z = θ) for HSX.
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efV

FIG. 6: Effective potential Vef (z = θ) for tube j = 2 of NCSX sym (blue), NCSX (green),

HSX (red), and W7X (cyan).
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FIG. 7: Local shear sl(z = θ) for NCSX sym (dashed), NCSX (solid).
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