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Simplified model of nonlinear Landau damping

N. A. Yampolsky and N. J. Fisch
Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA

The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the
electron distribution function close to the phase velocity of the plasma wave. As a result, Landau
damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts.
However, this simple picture is invalid when the external driving force changes the plasma wave
fast enough so that the plateau cannot be fully developed. A new model to describe amplification
of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift
is proposed. The proposed model takes into account the change of the plasma wave amplitude
and describes saturation of the Landau damping rate in terms of a single fluid equation, which
simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid
model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

PACS numbers: 52.25.Dg, 52.35.Mw, 52.35.Qz

I. INTRODUCTION

The problem of nonlinear Landau damping is a classi-
cal problem in plasma physics. Landau damping was first
predicted analytically by Landau [1] and later observed
many times in various physical systems both experimen-
tally [2] and numerically [3]. Classical Landau damping
occurs through the interaction of a plasma wave with
warm plasma. Electrons, moving with velocities close to
the phase velocity of the wave, strongly interact with the
wave, since they travel for a long time seeing the same
electric field of the wave. As a result, these electrons get
accelerated or decelerated, depending on their original
phase in the plasma wave. The average velocity of nearly
resonant electrons approaches the phase velocity of the
wave. If the original number of near-resonant electrons
moving slower than the phase velocity is larger than the
number of electrons moving faster than the phase veloc-
ity, the total energy of the resonant electrons increases.
This extra energy comes from the energy of the plasma
wave.

For about 40 years, nonlinear studies of Landau damp-
ing focused on different aspects of the phenomenon such
as: time-evolution of the plasma wave and nonlinear re-
duction of the Landau damping rate [5–7], the nonlinear
frequency shift of the plasma wave due to trapped parti-
cles [8–10], long-time asymptotic evolution of nonlinear
Landau damping [11], and plasma echo [12]. Recently,
the importance of nonlinear Landau damping has been
explored with regard to backward Raman scattering [13]
and backward Brillouin scattering [14] in laser-plasma
interactions.

The applications of high-power laser systems include
various parametric processes, which employ plasma
waves. The use of plasma is partially motivated by the
fact that plasma cannot be damaged by heating. More-
over, plasma waves can mediate parametric interactions
with high efficiency. Raman scattering is one example of
this parametric interaction. In this process, two electro-

magnetic (laser) waves propagate in plasma. If the dif-
ference between their frequencies is on the order of the
plasma frequency ωp = (4πe2n/m)1/2, a plasma wave
can be resonantly excited by the ponderomotive poten-
tial of the electromagnetic waves. Since the amplitude of
the ponderomotive force is proportional to its wavenum-
ber, counterpropagating electromagnetic waves generate
the plasma wave with the highest efficiency. The wave-
length of the generated plasma wave is almost half the
laser wavelength in this setup. The short wavelength
of the plasma wave results in its small phase velocity,
which can lead to a large number of the electrons, res-
onantly interacting with the wave. Therefore, a plasma
wave with small wavelength is likely to experience no-
ticeable Landau damping, which might affect the wave
coupling and reduce the growth rate of the instability.
On the other hand, the interaction of the plasma wave
with near-resonant electrons can nonlinearly reduce the
Landau damping rate and enhance the parametric cou-
pling. Whether Raman scattering is a desirable or un-
desirable effect, the accurate calculation of the influence
of nonlinear Landau damping on the output signal will
be required. Moreover, it would be advantageous if the
main effects could be captured in a simple model.

In this paper we study nonlinear Landau damping of
a plasma wave, which is nearly resonantly amplified by
the external force. For example, the plasma wave can be
driven parametrically. Potentially, this study is relevant
to the problems of: laser reflectivity in NIF-like condi-
tions (see, for example, [15]), backward Raman amplifier
in plasma [16], and Raman current drive [17]. The pur-
pose of this paper is to develop and to verify a simple
model of nonlinear Landau damping, which can quanti-
tatively describe the class of problems mentioned above.
Also, the same approach can be applied for studying Lan-
dau damping of the ion-acoustic wave in the case of para-
metric wave coupling.

We consider the evolution of the plasma wave to be
fast enough that issues of the time-asymptotic behavior
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of the plasma wave are already resolved [11]. Fast enough
dynamics also implies that collisions do not affect the
system unlike the opposite case scenario [5, 13], where
steady-state solutions can be found. In our studies, we
also assume that the amplitude of the plasma wave grows
in time. The classical results for saturation of Landau
damping in the presence of strong plasma wave of a con-
stant amplitude [6, 7] are thus not applicable. Moreover,
the plasma wave starts to grow in the linear regime from
a small amplitude, ωB < ν0, where ωB = (e|E|k/m)1/2 is
the bounce frequency and ν0 is the linear Landau damp-
ing rate. By the time the system enters the parameters
region of Mazitov and O’Neil, ωB ! ν0, the Landau
damping rate is most likely to be significantly reduced,
which does not allow one to use the approach described
in those papers.

Landau damping, in principle, should be described in
at least 3D time-coordinate-velocity space. Analytical
and even numerical studies of a fully kinetic problem can
be challenging if many plasma wavelengths are taken into
account. The development of a simplified model, which
describes the interaction of the wave with near-resonant
particles, will allow reducing the complexity of the sys-
tem. In developing a simple model of nonlinear Landau
damping, we focus on the evolution of the main plasma
wave parameters, such as its amplitude and phase. In
that way, we reduce the kinetic description of the non-
linear Landau damping to a set of fluid equations. In
parametric interactions, the wavenumber of the plasma
wave is typically well-defined by the resonance condition
for the interacting waves. This simplifies the description,
since we need to describe Landau damping of a single
plasma wave mode only, unlike classic quasi-linear model
[18] or fluid models for Landau damping of an arbitrary
plasma wave [19]. The main finding here is the simplified
set of equations which is shown empirically to describe
the essential physics.

The paper is organized as follows: In Sec. II we develop
the simplified model for Landau damping and derive fluid
equations for the Landau damping rate and the nonlinear
frequency shift of the plasma wave. In Sec. III we verify
the proposed model numerically and demonstrate that it
has about 90% accuracy within the applicability limits.
In Sec. IV we summarize the main results of the paper.

II. ANALYTICAL MODEL

In this section we develop a model describing nonlin-
ear Landau damping. The derivations are not fully rig-
orous, but rather to some extent heuristic. They serve
as an analytical motivation for the proposed model. Af-
ter developing the model, we verify it computationally.
We show that this simple heuristic model describes the
kinetic solution well in cases of interest.

We study a plasma wave, which is amplified by a near-
resonant external electric field. We assume that the
plasma wave grows slowly enough compared to the char-

acteristic time for the evolution of the electron distribu-
tion function, which is on the order of the inverse bounce
frequency, ∂tωB/ω2

B " 1. This regime was considered
earlier and it was studied using a quasi-static adiabatic
approach ∂tωB/ω2

B → 0 [9]. The nonlinear quasi-static
solution results in zero Landau damping rate and some
nonlinear frequency shift of the plasma wave caused by
the change of the electron distribution function. How-
ever, this solution does not describe the change of the
plasma wave, since it is assumed to be a given function
of time. While developing the model, which can self-
consistently describe the evolution of the plasma wave
driven by an external force, we will find the first nonvan-
ishing term (on the order of ∂tωB/ω2

B) of Landau damp-
ing.

The change of the nonlinear frequency shift was ob-
tained in earlier papers [9, 20]. In those papers, the
time-asymptotic nonlinear frequency shift was derived
from the unsimplified Vlasov equation. That solution
assumed fully saturated Landau damping rate. If the
plasma wave is driven by external force, it evolves in the
linear regime first and reaches the nonlinear stage when
its amplitude becomes large enough. Therefore, the non-
linear quasi-static solution for the fully saturated Landau
damping [9, 20] is not applicable here. We will find the
first non-vanishing term of the Landau damping rate on
the order of ∂tωB/ω2

B. At the same time, we will use the
time-asymptotic expression for the nonlinear frequency
shift of the plasma wave, since it is the first nonvanish-
ing in the case of ∂tωB/ω2

B → 0. We consider the plasma
temperature to be large and the plasma wave amplitude
to be small so that the fluid corrections to the nonlinear
frequency shift can be neglected [21].

We apply the quasi-linear approach to describe the
saturation of the Landau damping rate. To be precise,
the quasi-linear theory describes the case of a broadband
plasma wave rather than a single wave. It can be ap-
plied if resonance domain in the velocity space caused by
the broadband plasma wave is larger than the resonance
domain of a single wave, δv = vph∆k/k ! ωB/k [18].
These parameters are the same for a single plasma wave.
As a consequence, the amplitude of the plasma wave ex-
periences oscillations on the bounce frequency time scale
[7]. However, these oscillations can be not of interest in
particular applications in which only the average ampli-
tude of the plasma wave plays role. At the same time, the
quasi-linear theory correctly describes the energy transfer
between the plasma waves and the average distribution
function. In Appendix A we show that the quasi-linear
theory can be a reasonable model which correctly de-
scribes the interaction of a single plasma wave with most
of the resonant particles. Thus, it stands to reason that
the time-asymptotic quasi-linear limit (∂tωB/ω2

B → 0)
might be a good model even for a single wave in many
situations of interest. This approach is similar to the
approach considered in Ref. [22].

In quasi-linear theory, the plasma wave is considered
to be small enough so its change can be described in the
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wave envelope approximation

E(z, t) = E(t)eiΩ0t−ikz , (1)

∂tE − iδΩE + νE =
E0(t)
i∂ΩD

, (2)

where E(z, t) is the complex amplitude of the plasma
wave, and E(t) is its envelope; E0(t) is the amplitude
of the external electric field envelope, δΩ is the nonlin-
ear frequency shift of the plasma wave in respect to the
linear frequency Ω0; ν is the Landau damping rate; D
is the plasma dielectric function defined by Eq. (3); e,
m are electron charge and mass, respectively; t is time,
z is longitudinal coordinate along the wavevector of the
plasma wave.

The Landau damping rate and the frequency shift of
the plasma wave correspond to the background distri-
bution function F0(v, t) which satisfies the quasi-linear
equation

D(Ω, k) = 1 +
ω2

p

k

∫
∂vF0

Ω− kv
dv = 0, (3)

∂tF0 = Re

{
1
2i

∣∣∣∣
eE

m

∣∣∣∣
2

∂v
∂vF0

Ω− kv

}
. (4)

Eq. (3) describes the change both the Landau damping
rate and the nonlinear frequency shift of the plasma wave.
However, we apply the quasi-linear theory to describe
only the saturation of the Landau damping rate. Alter-
natively, we use the nonlinear quasi-static solution for the
nonlinear frequency shift [9, 20], since it is lowest order
solution at ∂tωB/ω2

B → 0.
First, we consider that the domain of the near-resonant

particles has sharp boundaries in velocity space. The
width of the resonant region is proportional to the bounce
frequency

∂tF0(v, t) = 0, |v − vph| > αωB/k, (5)

where α is a numerical factor which we deduce later.
The Taylor expansion of the distribution function is valid
within the resonant domain, since the width of the res-
onant domain is much smaller than the characteristic
scale of the distribution function, ωB/k " F0/∂V F0.
The first two terms of the Taylor expansion are required
to describe the effect of Landau damping F0(v, t) =
F0(vph, t)+ (v− vph)∂vF0(vph, t). Using the conservation
laws (A10) — (A11), we find the equation describing the
saturation of Landau damping,

∂t

(
(ν0 − ν)ω3

B(t)
)

= ν
3π

4α3
ω4

B(t), (6)

where ν0 is the linear Landau damping rate.
Now we deduce the empirical numerical factor α by

comparing solutions of the exact nonlinear [23] and the
simplified model Eq. (6). We consider the adiabatic am-
plification of the plasma wave until it reaches some ampli-
tude E. The time-asymptotic stage results in saturated

Landau damping and a steady-state plasma wave. The
near-resonant particles are accelerated during the wave-
particle interaction, which results in a plasma current
(plasmon momentum transfers into electron momentum).

To obtain the numerical factor α, we now compare cur-
rents predicted by different theories. The change of the
electron momentum predicted by the nonlinear kinetic
solution [23] can be written as

∆Pkin =
64
9π

∂vF (vph, 0)
ω3

Bm

k3
. (7)

On the other hand, the simplified fluid theory deduced
heuristically here predicts the change of the electron mo-
mentum as

∆Pfluid =
2α3

3
∂vF (vph, 0)

ω3
Bm

k3
. (8)

Comparing these two results, we conclude that α3 =
32/3π in order to correctly describe the final stage of
Landau damping. Then the self-consistent set of equa-
tions describing nonlinear Landau damping of a driven
plasma wave:

∂tE − iδΩE + νE =
E0(t)
i∂ΩD

, ωB =
∣∣∣∣
eEk

m

∣∣∣∣
1/2

,(9)

∂t

(
(ν0 − ν)ω3

B(t)
)

=
9π2

128
νω4

B(t), (10)

δΩ(t) = 1.09ωB(t)
ω2

p

k3∂ΩD
∂2

vvF0(vph, 0). (11)

This model describes both the nonlinear Landau
damping rate and the nonlinear frequency shift of the ex-
ternally driven plasma wave. These effects are described
in terms of fluid equations rather than kinetic equations.
Eq. (10) describes the saturation of the Landau damp-
ing rate. This phenomenon is described for an arbitrary
ratio of the bounce frequency and the Landau damping
rate. Thus, Landau damping can be described appro-
priately both in the linear and the nonlinear regimes.
Note from Eq. (10) that, for a constant amplitude of the
plasma wave, the Landau damping rate decays exponen-
tially. The timescale of this decay is on the order of the
inverse bounce frequency, which is consistent with more
rigorous derivations (i.e [7]).

The model (9) — (11) describes Landau damping for
an externally driven plasma wave. It takes into account
that the resonant domain in velocity space expands, while
the amplitude of the plasma wave grows. This results in
reduced saturation of Landau damping, since new par-
ticles become resonant with the growing plasma wave.
To illustrate this, we consider a rapidly growing plasma
wave. We consider this growth to be exponential-like.
A time-asymptotic analysis of Eq. (10) for a given time
dependence of the plasma wave amplitude results in the
approximate solution for the Landau damping rate, [24]

ν = ν0
128
3π2

1
t∫

0
ωB(t)dt

. (12)
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Now the Landau damping rate decreases much slower
than for a constant-amplitude plasma wave. The
timescale of this saturation is the same as the timescale
of the amplitude growth, ∂t log ν = ∂t log ωB, rather than
the inverse bounce frequency. Such a slow saturation of
Landau damping may be important.

To establish the regime of validation of the model, re-
call that the simplified fluid model of nonlinear Landau
damping (9) — (11) was derived using a number of as-
sumptions. First, the oscillatory part of the distribution
function should be small compared to the background
distribution function, which limits the maximum allowed
amplitude of the plasma wave

ωB " k2v2
T

Ω0
. (13)

The same condition states that the initial background
distribution function F0(v, t = 0) does not change a lot
within the resonant domain, making valid its Taylor ex-
pansion within the resonant domain.

We also assumed that the amplitude of the plasma
wave does not change rapidly compared to the bounce
frequency timescale

∂tωB " ω2
B. (14)

This condition allows one to use expression (11) for
the nonlinear frequency shift of an adiabatically driven
plasma wave. This condition also guaranties that the
width of the resonant domain in velocity space is propor-
tional to the bounce frequency rather than the bandwidth
of the plasma wave envelope.

We assumed the amplification of the plasma wave

∂tωB > 0. (15)

This condition states that the near-resonant electrons re-
main within the resonant domain, while the amplitude of
the plasma wave changes in time. Otherwise, some en-
ergy of the damped plasma wave would be associated
with the electrons outside of the resonant domain, and
the total particle energy would not be proportional to
the slope of the distribution function. In other words,
the increase of the plasma wave amplitude results in the
trapping of the electrons which did not interact with the
wave at early time. Therefore, extra cold electrons are
trapped, which changes the slope of the distribution func-
tion in the resonance domain. This effect is absent for
the reducing amplitude of the plasma wave. In that case
the saturation of Landau damping is similar to the case
of a constant plasma wave, ∂tν ∝ νωB.

The condition for the electrons remaining trapped also
implies that the change of the resonant velocity vph =
(Ω0 + δΩ)/k does not result in the electron untrapping,
δΩ < αωB . This condition is satisfied automatically in
Maxwellian plasma.

The simplified model describes the average evolution
of the Landau damping rate and the nonlinear frequency

shift. It does not describe oscillations of the wave en-
velope on the bounce frequency timescale. The plasma
wave should be driven long enough in order to observe
this averaging out

ωBt ! 1. (16)

Finally, the plasma temperature should not be very
high, so that the dispersion relation (3) allows a solution
for the linear plasma wave mode [25]

kvT

ωp
< 0.67. (17)

III. NUMERICAL VERIFICATION OF
SIMPLIFIED FLUID MODEL

In this section we compare the results of a numerical
simulation of the Vlasov-Poison set of equations (A1) —
(A2) with a solution of the simplified fluid model (9) —
(11).

We consider a homogeneous plasma wave which is
driven with a given external force. We consider the driv-
ing force to be monochromatic, i.e. its amplitude and
frequency are constant in time: E0(t) = E0 expi(ΩS−Ω0)t,
E0,ΩS = const. The plasma wave grows if the frequency
of the source is close to the resonant frequency of the
plasma wave, ΩS ≈ ReΩ0. In the beginning of am-
plification, the plasma wave grows in the linear regime
of Landau damping. The amplification then enters the
nonlinear stage of Landau damping, in which the Lan-
dau damping rate is significantly reduced. However, the
growth of the plasma wave can still be saturated due
to dephasing between the plasma wave and the driving
force, since the nonlinear frequency shift increases with
the plasma wave amplitude. The frequency of the driving
force was chosen to be smaller than the linear frequency
of the plasma wave in order to partially compensate the
nonlinear frequency shift. As a result, the dephasing be-
tween the plasma wave and the external force remained
small and the plasma wave amplitude was monotonically
growing. Such a compensation mechanism of the de-
phasing is efficient at relatively small amplification time
presented below in Fig. 1. Further amplification of the
plasma wave would eventually result in dephasing. The
frequency chirp of the driving force would be required in
order to compensate the nonlinear frequency shift of the
plasma wave at longer amplification time.

The plasma wave can be described in terms of the am-
plitude and phase envelopes

E(z, t) = ReE(t)eiφ(t)eiΩ0t−ikz =

= Re
(
E(t)ei

∫
δΩ(t)dteiΩ0t−ikz

)
, (18)

This representation of the plasma wave is not unique,
since some arbitrary fraction of the wave phase can be
associated with the complex wave amplitude E(t). This
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representation becomes unique if both E and φ are real
functions.

The electric field amplitude oscillates at any given co-
ordinate z0:

E(z0, t) = E(t)Re
(
eiΩ0t+iφ(t)+iφ0

)
. (19)

We can find the amplitude and the phase of the signal in
its maxima. Then we can interpolate this data and re-
store the time dependence of the amplitude and the phase
of the plasma wave if the envelopes change slowly within
the plasma wave period. The frequency of the electric
field is defined as the time derivative of its phase. To
compare solutions of two different models, we define their
amplitudes and phases consistently as described above.

The solution of the Vlasov-Poison set of equations (A1)
— (A2) results in a time-dependent amplitude of the elec-
tric field. The frequencies of both the plasma wave mode
and the external force affect the frequency of the gener-
ated electric field. In order to determine the frequency of
the plasma wave, we assume that the plasma wave is the
only mode, excited by the driving force. This assump-
tion is in agreement with the detailed numerical studies
[26]. Then the plasma wave frequency and the damping
rate can be deduced from Eq. (9). If the solution of this
equation is E(t)eiφ(t), then we have from Eq. (9)

ν(t) = Re

(
E0(t)

iE(t)eiφ∂ΩD

)
− dtE(t)

E(t)
, (20)

δΩ(t) = dtφ + Re

(
E0(t)

E(t)eiφ∂ΩD

)
. (21)

This technique allows one to find full time dependence
of the plasma wave parameters such as its frequency and
the damping rate and compare the semi-analytical and
Vlasov code results.

A numerical study of nonlinear saturation of Landau
damping was performed with a standard Vlasov code,
which uses a time split-scheme for solving Vlasov and
Poison equations. The common normalization, in which
e = m = 1, was used. The evolution of the plasma wave
with a single wavelength |k| = 1 was simulated. We per-
formed runs exciting the plasma wave either with a sin-
gle traveling wave or with a standing wave (two counter
propagating waves). There was no significant difference
between these two cases for small enough amplitudes of
the plasma wave. The typical dimensionless plasma pa-
rameters were: vT = 0.25 − 0.4, ωp = 1. The driving
force E0 was typically constant in time and its ampli-
tude in different runs varied from 10−5 to 10−3. The fre-
quency of the driving force was constant and downshifted
with respect to the linear frequency of the plasma wave,
which avoids early dephasing between the plasma wave
and the driving force. Typical numerical parameters of
the simulations are: time step dt = 0.1, maximum cal-
culation time tmax = 1500, maximum calculated velocity
domain |v| < 2.5, number of grid points in velocity space
NV = 1024, number of grid points in space Nx = 32.

0 500 1000
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ωp t

E

0 500 1000
1

1.5

2

2.5

3

ωp t

δφ

0 500 1000

−10

−5

0

x 10−3

ωp t

δω

0 500 1000
0

0.5

1

ωp t

ν

FIG. 1: (Color online) The results of numerical simulations
using a Vlasov code (solid blue lines) and their approxima-
tions with the simplified model of nonlinear Landau damping
(dashed red lines). Parameters of the simulation: vT = 0.35,
E0 = 2·10−4 , ΩS = 1.1961 (Ω0 = 1.2112). The upper left plot
shows the time dependence of the plasma wave amplitude.
The upper right plot shows the phase mismatch between the
plasma wave and the driving source. The lower plots show
the Landau damping rate (lower left plot) and the nonlinear
frequency shift (lower right plot) of the plasma wave derived
from Eqs. (20) — (21).

Typical results of the Vlasov simulations and their
comparison with the solution of the analytical model (9)
— (11) are presented in Fig. 1. Note that the time de-
pendence of the wave amplitude and the damping rate
of the plasma wave can be well approximated by the
simplified model (9) — (11). The electric field, calcu-
lated using a Vlasov code, exhibits slow oscillations. The
timescale of these oscillations is on the order of the in-
verse bounce frequency. Therefore, these oscillations can
be interpreted as an influence of an individual particle
motion in the potential of the electric field. Since our
simplified approach does not take into account individ-
ual particle motion, it misses this feature. However, our
simplified model correctly describes the average change
of the electric field. Comparing the two solutions, we find
that the nonlinear frequency shift of the plasma wave can
be described by Eq. (11) (the second order corrections
on the plasma wave amplitude was used for a better fit
[20]) with a numerical factor slightly different from the
theoretical value of 1.09. In a numerical run presented in
Fig. 1, this factor was 1.1; typically the difference varies
within 10% range. This difference is probably caused in
the initial stage of the amplification, when the plasma
wave is small and does not grow adiabatically. Also, this
difference can be partially caused by small corrections
to the dispersion relation in the case of a driven plasma
wave [27]. In the analysis presented in Figs. 1 and 2, we
adjusted the theoretically predicted factor of 1.09 in (11)



6

to fit the time-asymptotic dependence of the nonlinear
frequency shift in the Vlasov simulations.
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FIG. 2: (Color online) Accuracy of the simplified fluid model
of Landau damping. The upper plot shows the difference be-
tween the solutions of the fluid and the Vlasov models versus
the amplitude of the driving force E0 at vT = 0.35. The
lower plot shows the difference between the solutions versus
the plasma temperature at E0 = 2 × 10−4.

The accuracy of the simplified model was checked
for different plasma temperatures and amplitudes of the
driving force. The results are presented in Fig. 2. We in-
troduce a norm of the function in order check if solution
of the simplified model Efluid is close to the solution of
the Vlasov simulation EV lasov

‖Efluid − EV lasov‖ =
[∫

|Efluid − EV lasov|2dt∫
|EV lasov|2dt

]1/2

.

(22)
Both the amplitudes and the phases of two solutions
should be close to each other so that the norm is small.
Using this norm, the numerical results presented in Fig. 2
show that the simplified fluid model (9) — (11) matches

10−4 10−3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

|| 
|E

flu
id

|−
|E

Vl
as

ov
| |

|

E0

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

|| 
|E

flu
id

|−
|E

Vl
as

ov
| |

|

vT

FIG. 3: (Color online) Accuracy of the simplified fluid models
of Landau damping. The difference between the amplitude of
the kinetic and fluid solutions are shown for the same param-
eters as in Fig. 2. Blue stars represent the simplified model
presented in this paper. Green circles and black squares rep-
resent the solutions predicted by Lindberg et al. and Benisti
and Gremille models, respectively.

the Vlasov simulations to an accuracy of about 90%. The
norm has the minima versus both the plasma tempera-
ture and the amplitude of the driving force, which de-
fines the parameters region for the simplified fluid model.
The boundaries of this parameter region are described
in Sec. II and are consistent with the numerical results.
The maximum amplitude of the driving force and the
minimum thermal velocity are determined by condition
(13). The growth of the norm at high plasma tempera-
ture is caused by approaching the limits (16) and (17).
The relatively poor accuracy of the fluid model at small
amplitude of the driving force can be explained by long
time of the linear regime of Landau damping. During
this stage, the nonlinear frequency shift does not reach
its time-asymptotic value and, therefore, it cannot be
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described by Eq. (11). This results in significant phase
mismatch between two solutions.

We also compare the accuracy of our model to that
of other similar models recently proposed [28, 29]. The
results are presented in Fig. 3. In order to adequately
compare the accuracy of saturation of Landau damping,
we use the same expression for the nonlinear frequency
shift of the plasma wave as described in this paper. More-
over, the most inaccuracy between the exact kinetic and
simplified fluid models in Fig. 2 comes from the phase
mismatch of two solutions. We eliminate this effect by
plotting the norm of the absolute, rather than complex,
amplitude in Fig. 3. The results presented in Fig. 3 in-
dicate that all three simplified fluid models provide rea-
sonable agreement with the kinetic solution. At the same
time, the accuracy of our fluid model (9) — (11) is better
than that of the models described in Refs. [28, 29]. At the
same time, those fluid models have their own advantages.

The main advantage of the fluid model proposed by
Benisti and Gremillet is the ability to explicitly express
the nonlinear Landau damping rate in terms of the local
plasma wave amplitude and its growth rate (Eq. (49) in
Ref. [28]). Therefore, the growth of the plasma wave is
described by the first-order ODE, rather than the second-
order set of ODEs (9) — (11) presented in this paper.
The simplified fluid model for saturated Landau damping
proposed by Lindberg et al. [29] uses the same approach
as in Ref. [28]. The authors use a reasonable but heuris-
tic approach to describe the transition stage of saturation
of Landau damping. Surprisingly, the accuracy of their
model is almost the same as of more accurate Benisti and
Gremillet’s model in the regime of relatively short transi-
tion stage (relatively large amplitude of the external force
in Fig. 3). The advantage of this model is its potential
ability to correctly describe saturated Landau damping
in the presence of strong plasma wave beyond the lim-
itation (13). However, the description becomes kinetic
in this regime since it requires evaluation of an integral
in velocity space at each time step. We did not inves-
tigate capability of Lindberg’s et al. model and limited
ourselves by the study of the “small-amplitude” regime
(Eq. (16) in Ref. [29]).

IV. CONCLUSIONS

We developed a simplified model for the nonlinear sat-
uration of Landau damping. It self-consistently describes

the growth of a plasma wave, driven by a near-resonant
external force. The simplified model describes the satu-
ration of Landau damping and the nonlinear frequency
shift in terms of fluid equations. It does not describe a
number of kinetic effects, such as the plasma echo and
oscillation of the plasma wave amplitude on the bounce
frequency timescale. However, it describes the satura-
tion of Landau damping as well as the linear damping
and the transition stages, when Landau damping is not
fully saturated. The solution of the simplified model ap-
proximates well both the amplitude and the phase of the
plasma wave.

This model was verified through numerical simulations
using a Vlasov code. The introduced norm (22) allows
comparing two solutions quantitatively, which showed
about 90% accuracy of the simplified model within its
applicability limits. The proposed model can be used
for solving complicated systems, when nonlinear Landau
damping of the plasma wave is present. It can be in-
cluded in fluid codes instead of using full kinetic codes,
for example, in describing Landau damping. This model
can also be used for finding analytical solutions, since the
equations has a much simpler form than does the original
Vlasov-Poison set of equations. For example, this model
can be successfully applied to study nonlinear Landau
damping in backward Raman amplifier [24]. Also, using
the technique employed here, it should be possible to gen-
eralize the model to describe nonlinear Landau damping
of the ion-acoustic wave.
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APPENDIX A: QUASI-LINEAR MODEL FOR A
SINGLE PLASMA WAVE

The appendix argues that the use of the quasi-linear
limit even for a single wave may be appropriate in cap-
turing most of the essential physics.

We start from the 1D Vlasov-Poison set of equations,
describing the change of the distribution function and the

amplitude of the electric field

∂tF + v∂zF +
e
(
E + E0

)

m
∂vF = 0, (A1)

∂zE = 4πen

∫
Fdv, (A2)

where E(z, t) is the amplitude of the plasma wave,
E0(z, t) is the amplitude of the external electric field,
F (z, v, t) is the electron distribution function, e, m are
electron charge and mass, respectively, n is the electron
density, t is time, z is longitudinal coordinate along the
wavevector of the plasma wave, v is the electron velocity.

We linearize Eqs. (A1) and (A2), and seek the solution
as a sum of slowly changing in time background distri-
bution function F0(v, t) and fast oscillating distribution
function F1(z, v, t) ∝ eiΩt−ikz which corresponds to the
plasma wave.

F (z, v, t) = F0(v, t) + Re
{
F̃ (v, t)eiΩt−ikz

}
, (A3)

|F̃ | " |F0|. (A4)

Here Ω and k are the complex frequency and the
wavenumber of the plasma wave, respectively. The char-
acteristic timescale of F0 and F̃ is on the order of the
inverse bounce frequency, ω−1

B ! Ω−1, which validates
this decomposition.

For simplicity, we consider F̃ to be constant in time,
thus, applying the quasi-static solution for the plasma
wave. This solution is a reasonable approximation in the
∂tωB/ω2

B → 0 limit. The oscillating part of the distribu-
tion function F̃ = ie(E + E0)/m ∂vF0/(Ω− kv) becomes
singular close to the phase velocity of the plasma wave
vph = ReΩ/k. This singularity results in Landau damp-
ing, like in the case of a linear plasma wave. At the
same time, the oscillating part of the distribution func-
tion F̃ becomes larger than the background distribution
function F0 close to the resonant velocity, which violates
assumption (A4). However, Eq. (A4) can still be valid
for the most of the resonant particles |v − vph| ∼ ωB/k if
the amplitude of the plasma wave is small enough

ωB " k2v2
T

Ω0
, (A5)

where vT =
√

T/m is the thermal velocity of the
original distribution function (here it is assumed to be
Maxwellian) and Ω0 is the frequency of a linear (small
electric field) plasma wave. Note, that this condition
becomes milder when the plateau in the background dis-
tribution function is formed.

The linearized set of Vlasov-Poison equations (A1) —
(A2) results in a solution for the amplitude of the plasma
wave:

D(Ω, k, t)EΩ,k = (D(Ω, k, t) − 1)E0
Ωk

, (A6)

D = 1 +
ω2

p

k

∫
∂vF0

Ω− kv
dv, (A7)
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where D is the plasma dielectric function and
EΩ,k is a Fourier harmonic of the electric field,
E(z, t) =

∫
EΩ,keiΩt−ikzdΩdk. The change of a quasi-

monochromatic electric field E(z, t) = E(t)eiΩ0t−ikz can
be deduced from Eq. (A6). Here we consider the car-
rier frequency of the electric field Ω0 to be equal to the
resonant frequency of the linear plasma wave, D(Ω0 +
iν0, k, t = 0) = 0.

∂tE − iδΩE + νE =
E0(t)
i∂ΩD

. (A8)

Here δΩ = Re(Ω−Ω0) is the frequency shift of the plasma
wave due to the nonlinear change of the background
distribution function, D(Ω, k, t) = 0; ν = Im(Ω) ≈
−π(ωp/k)2∂vF0/∂ΩD is the Landau damping rate of the
plasma wave.

Averaging in time the Vlasov equation we find the
equation describing the change of the background dis-
tribution function F0. This equation has a quasi-linear
form

∂tF0 = Re

{
1
2i

∣∣∣∣
eE

m

∣∣∣∣
2

∂v
∂vF0

Ω− kv

}
. (A9)

Here we took into account that during the near-resonant
amplification of the wave, its amplitude becomes much
larger than the amplitude of the driving force, E ! E0.

This equation describes the average change of the distri-
bution function, since the steady-state solution for the
oscillatory part of the distribution function F̃ was used.
The solution for F0 misses the oscillations at the bounce
frequency timescale, since the solution for F̃ fails close to
the phase velocity of the plasma wave. However, these
oscillations will be averaged out if the interaction time is
large compared to the inverse bounce frequency. These
oscillations might not be important in some applications
such as parametric interactions.

Even though Eq. (A9) is approximate, it still satis-
fies the basic conservation laws. Combining Eqs. (A9)
and (A8) in the absence of the external force, E0 = 0,
one can demonstrate the conservation of the number of
particles, the momentum and the energy. Here the mo-
mentum and the energy of the plasma wave include both
the electrostatic and particle parts.

∂t

(
n

∫
F0dv

)
= 0, (A10)

∂t

(
nm

∫
vF0dv

)
= 2ν∂Ω(DΩ)

|E|2

16π

k

Ω
, (A11)

∂t

(
nm

2

∫
v2F0dv

)
= 2ν∂Ω(DΩ)

|E|2
16π

. (A12)
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