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Waves for Alpha-Channeling in Mirror Machines

A. I. Zhmoginov and N. J. Fisch
(Dated: June 18, 2009)

Alpha-channeling can, in principle, be implemented in mirror machines via exciting weakly-

damped modes in the ion cyclotron frequency range with perpendicular wavelengths smaller than

the alpha particle gyroradius. Assuming quasi-longitudinal or quasi-transverse wave propagation,

we search systematically for suitable modes in mirror plasmas. Considering two device designs, a

proof-of-principle facility and a fusion rector prototype, we in fact identify candidate modes suitable

for alpha-channeling.

I. INTRODUCTION

Waves in the ion cyclotron range of frequencies can be

employed in magnetic mirror plasmas for plasma produc-

tion and heating [1–9], stabilization of plasma instabili-

ties [10, 11], particle injection [12, 13], and plasma diag-

nostics [14–17]. Alpha-channeling is a recently proposed

technique [18] for redirecting energy from α particles to

fusion ions by using waves to control the particle dynam-

ics. Originally, the technique was proposed to avoid α

particle damping on waves used in rf current drive tech-

niques [19], but the waves could also be used to extract

energy from the α particles. In particular, coupling cer-

tain rf waves in a tokamak or a mirror machine was pre-

dicted [18, 20–26] to induce α particle flows in the phase

space leading to quick α ejection accompanied by α parti-

cle cooling. As a result, the energy with which α particles

are born can be transferred to the waves and then used

to sustain fusion reaction in the device. The channeling

of the α power in one simple mirror configuration [27] at

ignition has been estimated [24] to increase, potentially,

the effective fusion reactivity by a factor of 2.8.

In the absence of external electromagnetic fields, the

free energy associated with energetic α particles can

feed numerous plasma instabilities, which can, in turn,

transport energy to background plasma species [28–32].

The energy conversion rate in such processes was esti-

mated [29] to be approximately 25%. This suggests that

α-channeling can potentially be a more effective energy

transfer mechanism, also capable of fusion ash removal

and fuel ion injection [24, 33].

The α-channeling effect in a mirror machine was

shown [24–26] to be possible, in principle, via arranging

ion cyclotron wave regions along the device axis (Fig. 1)

and adjusting their parameters. In our earlier work [33],

the possibility of the α-channeling effect in such systems

was confirmed numerically by simulating α particle mo-

tion in a magnetic mirror trap. In particular, we of-

fered a preliminary optimization of the device parame-

ters and proposed a prototype configuration capable of

extracting 60% of the trapped α particle energy. How-

ever, the restrictions introduced on the wave dispersion

by the plasma have not been addressed.

In this work, we analyze the dispersion relation of

waves in mirror plasmas and search for the device param-

eters close to those of the optimum scheme [33]. We con-

sider two different designs of a mirror machine, a proof-

of-principle device and a fusion reactor prototype, and

identify waves suitable for α-channeling in both of them.

We also show that such waves can be excited at different

axial positions if the magnetic field profile has multiple

local minima.

The paper is organized as follows. In Sec. II, we

use two-dimensional ray-tracing equations to study wave

propagation in the central cell of a mirror machine. As-

suming that the wave propagates nearly parallel to the

magnetic field lines, or in a transverse direction, we sim-

plify equations describing the ray trajectory and pro-

pose a method of searching for waves suitable for α-

channeling. In Sec. III, following the approach outlined

in Sec. II, we analyze the dispersion relation of plasmas

FIG. 1: Arrangement of rf regions (gray bars) in a mirror

machine. These regions contain radially and axially localized

azimuthally propagating waves in the ion cyclotron frequency

range.
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trapped in a mirror machine and search for modes with

suitable parameters. After such modes are identified, we

simulate ray trajectories numerically to show that the

wave packet dynamics is consistent with the analytical

predictions and that the identified modes are indeed suit-

able for α-channeling. Section IV summarizes our con-

clusions. In Appendix A, we derive limitations on the

wave parameters necessary for efficient α-channeling.

II. QUASI-LONGITUDINAL AND

QUASI-TRANSVERSE WAVE PROPAGATION

As we show in Appendix A, the α-channeling tech-

nique can be implemented in a mirror machine by excit-

ing such electromagnetic waves in the ion-cyclotron fre-

quency range, with k‖ ! k⊥ and k⊥ρα ≥ 1, that (a) they

are weakly damped, and (b) the damping on electrons is

much weaker compared to the damping on ions. In toka-

maks, a leading candidate wave having this property was

the mode converted ion Bernstein wave [34]. We now

propose a method which can be used to identify waves

satisfying these conditions in a mirror device.

A. Ray-Tracing Equations

In this subsection, we write ray-tracing equations in

the system of coordinates adjusted to the magnetic field

lines. Considering wave propagation outside of the re-

gions of strong damping, we assume that the device is

large enough to fit many wavelengths so that the ge-

ometrical optics approximation is valid. Introducing a

characteristic device length L, and a characteristic de-

vice diameter d ! L, this condition can be rewritten as

k‖L # 1 and k⊥d # 1. Fixing azimuthal wave num-

ber m, two-dimensional ray trajectory r(t), k(t) can be

obtained as a solution of the system [35]:

dr

dτ
=
∂D
∂k

,
dk

dτ
= −

∂D
∂r

, (1)

where D = 0 is a wave dispersion relation, r = (r, z)

and k = (kr, kz) are two-dimensional wave packet posi-

tion and wave vector correspondingly, and τ is the new

independent variable, or “time” defined through

dt

dτ
=
∂D
∂ω

. (2)

Consider D as a function of k‖ = k · b̂ and kn = k · n̂,

where b̂ is a two-dimensional unit vector directed along

the magnetic field and n̂ is a two-dimensional unit vector

perpendicular to b̂ such that nr > 0; then one can rewrite

the ray-tracing equations as:

ṙ =
∂D
∂k‖

b̂r +
∂D
∂kn

b̂z, (3)

ż =
∂D
∂k‖

b̂z −
∂D
∂kn

b̂r (4)

k̇‖ = −b̂r
∂D
∂r

∣

∣

∣

∣

k‖,kn

− b̂z
∂D
∂z

∣

∣

∣

∣

k‖,kn

+

+
∂D
∂kn

[

k‖
ρ‖

+
kn

ρ⊥

]

, (5)

k̇n = −b̂z
∂D
∂r

∣

∣

∣

∣

k‖,kn

+ b̂r
∂D
∂z

∣

∣

∣

∣

k‖,kn

−

−
∂D
∂k‖

[

k‖
ρ‖

+
kn

ρ⊥

]

, (6)

where ρ−1
‖ = n̂ · [(b̂∇)b̂] is the magnetic field curvature,

and ρ−1
⊥ = n̂ · [(n̂∇)b̂] is the curvature of lines in (r, z)

plane transverse to the magnetic field lines. For conve-

nience, we will further work in the system of coordinates

adjusted to the magnetic field lines. In particular, in-

stead of defining wave packet position (r, z) in cylindrical

coordinates, we will characterize its position by a tuple

(R, η), where R ≈ r
√

B(η)/B0 is a midplane distance

from the system axis to the field line on which the wave

packet resides, B0 = B(0) is a midplane magnetic field

and η is a coordinate along the field line such that η = 0

on the midplane and dη = b̂z dz + b̂r dr.

B. Quasi-Longitudinal Propagation

Assume that the group velocity of the wave packet is

directed primarily along the magnetic field and that the

radial gradients can be neglected. This makes negligi-

ble the term −∂D/∂n ≡ −b̂z∂D/∂r + b̂r∂D/∂z in Eq.

(6). In this case, the ray trajectory describes wave pack-

ets quickly moving along the magnetic field lines, while

drifting slowly in R. Since R ! L, the term propor-

tional to ρ−1
‖ can be neglected compared to ρ−1

⊥ . Sub-

stituting ρ−1
⊥ ≈ −(2B)−1dB/dη in Eq. (6), one then

obtains kn = ζ
√

B, where ζ is a constant. As a result,

longitudinal wave packet motion can be described by the

Hamiltonian:

H(k‖, η; ζ, R) = D(k‖, kn = ζ
√

B(η), η, R) = 0,
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where k‖ is a canonical momentum, η is a canonical co-

ordinate, and ζ, R are slowly changing parameters. To

find how the k‖(η) dependence evolves with time, note

that since motion in (k‖, η) space is fast compared to the

transverse motion, the adiabatic invariant I‖ =
∮

k‖ dη

must be approximately conserved. This property and the

knowledge of the slowly changing ζ and R defines k‖(η).

The evolution of ζ and R can be calculated either using

the following averaged equations:

ζ̇ = −
〈

1√
B

∂D
∂n

〉

, Ṙ =

〈√
B
∂D
∂kn

〉

,

where the averaging is performed over the fast longitu-

dinal oscillations, or using the conservation of I‖ which

restricts motion in (η, R) to a one-dimensional curve. A

more strict derivation of these equations will be discussed

in our future work.

If, for a wave of interest, k‖ ! kn and η ! L, one can

decompose

D ≈ D0(kn, R) + α(kn, R)k2
‖/2 + β(kn, R)η2g/2g, (7)

where g is some integer number. Therefore, neglecting

first order corrections with respect to k‖ and η, averaged

motion in kn and R satisfies D0(kn, R) ≈ 0. Substi-

tuting this solution in the expressions for α(kn, R) and

β(kn, R), we can describe the shape of the longitudinal

ray trajectory in (k‖, η) space as the wave packet slowly

drifts radially in the device.

Weakly damped longitudinal modes can be identi-

fied as closed loops on the graph k‖(η; ζ, R) which

avoid regions of strong electron and ion Landau damp-

ing (ω/k‖ ∼ we\i) and regions of strong ion cyclotron

damping [(ω − nΩi)/k‖ ∼ wi], where ws is a ther-

mal velocity of the species s. We will further denote

such loops as candidate loops. The value of k‖ solv-

ing H(k‖, η; ζ, R) = 0 depends on η through longitudi-

nal plasma parameter profiles. Neglecting effects asso-

ciated with the longitudinal plasma temperature vari-

ation, and assuming that the line plasma density is

nearly constant along a field line and hence n(η) ≈
n0B(η)/B0, one can express the longitudinal wave num-

ber as k‖(B(η);ω, m, ζ, R
√

B0, n0/B0, Te\i). Noticing

this, one can plot k‖(B) dependence for fixed parame-

ter values and search for such B0 and the mirror ratio

RB that there is a loop on the k‖(η) graph. Being plot-

ted as a function of B, such loop can be located either in

the middle of the segment [B0, RBB0], or be “wrapped”

around one of its ends, in which case k‖(B) graph re-

stricted to B0 ≤ B ≤ RBB0 shows just a half of the loop.

In conclusion, in order to find a system which allows for a

slowly damped longitudinally propagating wave trapped

in it, one needs to study k‖(B) dependencies plotted for

different values of ω, m, ζ, n/B, r
√

B, and T . The fea-

tures indicating existence of the mode include either a

presence of the candidate loop, or a half of it located at

B = B0, or at B = RBB0 for some B0 and RB.

C. Quasi-Transverse Propagation

Assume now that the wave of interest is instead prop-

agating nearly perpendicular to the magnetic field lines.

Since we suppose that the motion in (kn, R) variables is

fast, while the quiver motion in (k‖, η) is negligible, the

wave packet averaged motion along the magnetic field

line can be described by

η̇ ≈
〈

∂D

∂k‖

〉

, (8)

k̇‖ ≈ −
〈

∂D0

∂η

〉

+

〈

kn
∂D0

∂kn

〉

1

ρ⊥
, (9)

where the averaging is performed over oscillations in

(kn, R) space. The quiver motion in (kn, R) variables

can be found independently using an approximate lo-

cal dispersion relation D(kn, R; k‖, η) = 0 and Ṙ =

∂D/∂kn. Note that the slow motion in (k‖, η) can also

be found from the conservation of the adiabatic invari-

ant I⊥(k‖, η) =
∮

kn(R; k‖, η) dR associated with the fast

oscillations.

To simplify Eqs. (8), (9), assume further that k‖ ! kn

and that the transversely propagating wave is local-

ized near the midplane at η ! L. Decomposing again

D ≈ D0(kn, R)+α(kn, R)k2
‖/2+β(kn, R)η2g/2g, one ap-

proximates

η̇ ≈ 〈α〉k‖, (10)

k̇‖ ≈ −〈β〉η2g−1 + g

〈

∂D0

∂kn
kn

〉

η2g−1

L2g
= −γη2g−1. (11)

If 〈α〉γ > 0, Eqs. (10), (11) describe the particle motion

in the attractive potential U(η) = 〈α〉γη2g. Hence, the

corresponding ray trajectories will be bounded in (k‖, η)

and under a proper choice of initial parameters they will

be weakly damped on electrons due to k‖ ! ω/we. To

identify such waves, one needs to study k‖(B) dependen-

cies and look for waves with k‖ ≈ 0. If 〈α〉γ > 0 and the

transverse motion of the found wave is quick compared
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to the longitudinal motion, ray trajectory evolution in

(k‖, η) space satisfies Eqs. (10), (11), and such wave can

be suitable for α-channeling.

III. NUMERICAL SIMULATIONS

To illustrate methods discussed in Sec. II and show

that weakly damped modes can exist in practical fusion

devices, we consider two mirror machine designs: a proof-

of-principle facility and a fusion reactor prototype with

parameters similar to those used in Refs. 36 and 37. We

assume that the magnetic field B in both devices is given

by Bφ = 0, Br = −r(dBz/dz)/2, and

Bz = Bmin +
1

2
(Bmax − Bmin) [1 − cos (π |2ηz/L|g)] ,

where g is an integer, η ≥ 1 is a constant, Bmin and

Bmax are the minimum and the maximum values of Bz

correspondingly. We also assume that (i) the linear den-

sity of the plasma does not depend on the axial po-

sition, and hence n(z)|R=0 ≈ n0B(z)/B0 on the axis,

and (ii) that radial plasma temperature and density pro-

files are given by n(r, z) = n(z)|R=0 exp(−R2/a2) and

T (r) = T 0[κ + (1 − α) exp(−R2/a2)], where α ≤ 1 is a

constant, and a is a characteristic plasma radius. The

dispersion relation D = 0 is modelled by the plasma ki-

netic dispersion relation reading D = ‖ε̂ − n2
1̂ + nn‖,

where ε̂ = 1̂ +
∑

s
χ̂s, χ̂s = ω2

ps/ω ·
∑

n e−λŶ
s

n(λ), and

tensor Ŷ
s

n(λ) is given by the following expression [35]:

Ŷ
s

n =



















n2In

λs
An −in∆InAn

k⊥
Ωs

nIn

λs
Bn

in∆InAn QAn
ik⊥
Ωs
∆InBn

k⊥
Ωs

nIn

λs
Bn −

ik⊥
Ωs
∆InBn

2(ω − nΩs)

k‖w2
s⊥

InBn



















.

Here ω2
ps is the plasma frequency for species s, Q =

(

n2Inλ−1
s + 2λs∆In

)

, ∆In = In(λs) − I ′n(λs), An =

(k‖ws ‖)
−1Z0(ξs

n), Bn = k−1
‖ [1 + ξs

nZ0(ξs
n)], ξs

n = (ω −
nΩs)(k‖ws ‖)

−1, λs = k2
⊥ρ

2
s/2, Z0 is the real part of the

plasma dispersion function, ws ‖ and ws⊥ are parallel

and perpendicular thermal particle velocities correspond-

ingly, ρs = ws ⊥/Ωs, and Ωs is the gyrofrequency.

FIG. 2: Dependence of k‖ on B/Bω for ω ≈ 5.8 × 107 s−1,

r
√

B = 18.3 cm × T1/2, n0
D/n0

T = 1, n/B = 6.67 ×
1012 cm−3T−1, m = 1, and ζ = 0.045 cm−1 T−1/2. Parts of

the dispersion curve lying inside the gray areas correspond to

waves strongly damped through electron Landau resonance,

or ion cyclotron resonance. Circles indicate the parts of

the dispersion curve in the regions [B1\2/Bω, B′
1\2/Bω ] corre-

sponding to the weakly-damped mode candidates. The inset

shows zoomed in band [B2/Bω , B′
2/Bω] in better resolution.

A. Dependence k‖(B) for the Proof-of-Principle

Facility

For a proof-of-principle facility [36, 37] consider an

open system with characteristic diameter d = 6a = 1.2 m,

the central cell length L = 12 m, ion and electron temper-

atures on the axis T 0
e = T 0

i = 4 keV, κ = 0.15, B ∼ 1 T,

the electron and ion densities on the axis at the mid-

plane n0
e = n0

D + n0
T being of order of 1013 cm−3 with

n0
D and n0

T being the deuterium and tritium densities

correspondingly.

Consider first the case k⊥ρα ∼ 1, or k⊥ρi ! 1. Cal-

culating the dependence k‖(B) numerically for r
√

B =

18.3 cm×T1/2, n0
D/n0

T = 1, n/B = 6.67×1012 cm−3T−1,

m = 1, ζ = 0.045 cm−1 T−1/2, and ω ≈ 5.8 × 107 s−1 ap-

proximately equal to the deuterium gyrofrequency in the

magnetic field Bω = 1.2 T, several loop candidates were

identified (Fig. 2). Both parts of the plot indicated by

circles lie outside of the areas amenable to strong Landau

and ion cyclotron damping and have reflection points at

the higher values of the magnetic field. Hence, both these

curve segments described by an approximate dispersion

relation

a = n2
‖ +

d2

b − n2
, (12)
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where

a ≈ 1 −
∑

i

ω2
pi

ω

∑

n

e−λi
n2In(λi)

λi(ω − nΩi)
,

b ≈ 1−
∑

i

ω2
pi

ω

∑

n

e−λi

ω − nΩi

[

n2In(λi)

λi
+ 2λi (In − I ′n)

]

,

d ≈
∑

i

ω2
pi

ω

∑

n

ne−λi (In − I ′n)

ω − nΩi
+
ω2

pe

ωΩe
,

might correspond to weakly-damped modes trapped near

the midplane. This dispersion relation was derived from

‖ε̂ − n2
1̂ + nn‖ = 0 neglecting n2

⊥ compared to εzz,

neglecting εxz, εzx, εxy, εyx, and assuming that Ωe # ω.

The dispersion relation (12) is the finite-k⊥ρ version of

the fast wave dispersion relation for cold plasmas reading

(S − n2
‖)(S − n2) = D2, where

S = 1 +
∑

s

ω2
ps

Ω2
s − ω2

,

D =
∑

s

ω2
psΩi

ω(Ω2
s − ω2)

.

However, while Eq. (12) describes both observed waves

with k‖ ≈ 0 shown in Fig. 2, the cold dispersion relation

holds only at ω ≈ ΩD. Considering this wave, the mode

characteristic growth rate γ which is attributed to the

interaction with α particles can be estimated as:

γ ∼ ω2
p α

∆η

v‖ res

wα⊥

v‖ res

,

where ωp α is the α particle plasma frequency, ∆η is

the characteristic length of the rf region, v‖ res = (ω −
nΩα)k−1

‖ is the resonant parallel velocity, and n is the

cyclotron resonance number. The derivation of this re-

sult will be discussed in our future works.

Notice that for both loop candidates shown in Fig. 2

k‖ ! kn and that they can exist in the local minimum of

the magnetic field only. Numerical calculations of k‖(B)

dependence for other wave and plasma parameters differ-

ent from those used in Fig. 2 by no more than one order

of magnitude, did not reveal any candidate waves which

either had k‖ ∼> kn, or were represented by closed loops

in k‖(B) plot. Hence, for k⊥ρi ! 1, the observed candi-

date waves can be studied assuming quasi-longitudinal,

or quasi-transverse propagation and using Eq. (7). Fur-

thermore, in performing numerical calculations of k‖(B)

dependence for k⊥ρi ∼> 1 for plasma and wave parameters

similar to those used in k⊥ρi ! 1 case, we also did not

observe candidate waves with k‖ ∼>kn, or closed loops in

the k‖(B) plot. This suggests that the candidate waves

with k⊥ρi ∼> 1 can be studied using the same approach

used for the waves with k⊥ρi ∼> 1.

B. Quasi-Longitudinal and Quasi-Transverse

Waves in the Proof-of-Principle Facility

We now study wave candidates similar to those shown

in Fig. 2. We assume that the corresponding waves prop-

agate either quasi-longitudinally, or quasi-transversely

and that for such waves k‖ ! kn and η ! L. Using

Eq. (7), one obtains approximate expression for the wave

packet trajectory in (kn, R) space:

D0(kn, R) ≈ 0.

The numerical solution of this equation for ω ≈ 5.8 ×
107 s−1, T 0

e = T 0
i = 4 keV, n0

e ≈ 7.4 × 1012 cm−3,

n0
D/n0

T = 1, κ = 0.15, m = 1, and B ≈ 1.5 T is shown on

Fig. 3. According to this figure, there are two distinct tra-

jectories in (kn, R) space, for one of which, marked with

“s”, the characteristic period of motion Ts is of order of

10 Tl, while for another, marked with “f”, the period of

motion Tf is of order of 0.02 Tl. Here Tl is a characteristic

period of the longitudinal motion calculated for the ray

trajectory with k‖ ∼ 0.004 cm−1. Since Tf ! Tl ! Ts,

the trajectory marked with s corresponds to the longitu-

dinal wave propagation, while the trajectory marked with

f corresponds to the transverse case. An example of a

ray trajectory plotted for the longitudinal case is shown

on Fig. 4. According to this figure, which captures one

period of slow motion in (kn, R), the parallel adiabatic

invariant I‖ is nearly conserved. Due to I‖ conservation,

the maximum value of k‖ is reached near the point of

the curve D0(kn, R) = 0, where β/α reaches maximum.

For the parameters used to plot Fig. 4, the minimum

of vph/we = ω/(k‖we) is approximately equal to 3 and,

therefore, the corresponding wave is weakly damped on

electrons.

For the transversely propagating wave, there exist two

possible regimes. In one of them, shown in Fig. 5 with a

dashed line, the characteristic reflection time, on which

k‖ changes sign, is of order of Tf . In this regime, the

description of the longitudinal motion by particle mo-

tion in the potential U(η) = 〈α〉γη2g is inaccurate. In-

stead, there will be a random walk in k‖ as a result of
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which a wave packet can approach k‖ ∼ ω/we and be-

come strongly damped on electrons. In another regime

shown in Fig. 5 with a solid line, the characteristic reflec-

tion time is much larger than Tf . In this case, the ray

trajectory can be described by the equations of motion

in the potential U(η) = 〈α〉γη2g and, as a result, such

wave can remain weakly damped after many longitudi-

nal oscillations.

To provide examples of the modes weakly damped on

electrons, but interacting with deeply trapped α parti-

cles, we considered several system designs. The best

result for k⊥ρi ! 1 case was achieved for the system

with ω ≈ 5.8 × 107 s−1, T 0
e = T 0

i = 4 keV, n0
e ≈

4.2 × 1012 cm−3, n0
D/n0

T = 1, m = 1, and B ≈ 0.6 T. In

this configuration, ω ≈ 2ΩD and the interaction with α

particles occurs through the second cyclotron resonance.

The quasi-transverse wave launched near the midplane at

R = 20 cm and having initial k‖ ∼ 0.005 cm−1 was shown

to be weakly damped on electrons since min vph/we ≈
3.5 and strongly interacting with α particles because

min vres/wα ≈ 0.34, where vres is a resonance parallel ve-

locity calculated for n = 2. The mode was also shown to

be bounded radially and longitudinally in a region with

∆R ∼ 30 cm and ∆η ∼ 4 m. The characteristic values of

kn∆R and k‖∆η were approximately equal to 2.5, and

hence, such wave can, in principle, be excited in a device

FIG. 3: Solution of equation D0(kn, R) = 0 for ω ≈ 5.8 ×
107 s−1, T 0

e = T 0
i = 4keV, n0

e ≈ 7.4 × 1012 cm−3, κ = 0.15,

n0
D/n0

T = 1, m = 1, and B ≈ 1.5 T. The slow trajectory,

period of motion along which is much larger than the charac-

teristic period of the longitudinal oscillations, is marked with

letter “s”. The fast trajectory is marked with letter “f”. The

period of oscillations along this trajectory is much smaller

than the characteristic period of the longitudinal motion.

of a similar size. Interestingly, both kn∆R and k‖∆η can

be increased for fixed device scale sizes and B0 by consid-

ering higher cyclotron resonances. Numerical simulations

confirmed that after doubling ω (so that ω ≈ 4ΩD), not

only the characteristic k‖ can be doubled while leaving

ω/(k‖we) the same as for ω ≈ 2ΩD, but the maximum

kn achieved for the quasi-transverse wave is also nearly

doubled. As a result, kn∆R increased nearly three times

(due to both kn and ∆R increase), while k‖∆η increased

more than twice.

In k⊥ρi # 1 case, we considered quasi-longitudinal

modes in the system with ω ≈ 5.8 × 107 s−1, T 0
e = T 0

i =

4 keV, n0
e ≈ 7.6 × 1012 cm−3, n0

D/n0
T = 1, m = 20, and

B ≈ 1.15 T. The wave was launched close to the device

periphery at R = 55 cm with initial k‖ ∼ 0.006 cm−1

and was shown to be weakly damped on electrons since

min vph/we ≈ 3.5 and strongly interacting with α parti-

cles because min vres/wα ≈ 0.42. The mode was bounded

both radially with ∆R ∼ 60 cm and longitudinally with

∆η ∼ 6 m. Since kn reaches 15.0 along the ray trajec-

tory, the radial wave number of the mode is very large and

max k⊥ρα ≈ 300. The characteristic value k‖∆η, in turn,

was approximately equal to 4, and hence, such mode can,

in principle, be excited in the proof-of-principle device.

As an intermediate conclusion, two qualitatively differ-

ent weakly damped modes with k⊥ρD ! 1 and k⊥ρD #
1, with τi # τe, capable of resonant interaction with

deeply-trapped α particles, have been identified.

C. Fusion Reactor Prototype

For a fusion reactor prototype, following Ref. 36, we

consider a mirror machine with the following parameters:

d = 6 m, L = 15 m, B0 = 3 T, n0
e = n0

D+n0
T ≈ 1014 cm−3,

Te = 60 keV, and Ti = 15 keV. Even though we ≈ 0.2c,

we neglected relativistic effects and used the same dis-

persion relation as in Sec. III A. Similarly to the proof-

of-principle facility, the dependencies of k‖ on B did not

show any candidate waves which either had k‖ ∼>kn, or

were represented by closed loops on k‖(B) plot. Nu-

merical simulations confirmed that, by analogy with the

proof-of-principle facility, in the prototype device, two

weakly damped modes capable of resonant interaction

with deeply-trapped α particles, τi # τe, and either

k⊥ρD ! 1 (quasi-transverse wave), or k⊥ρD # 1 (quasi-

longitudinal wave) could be identified. However, since in

the fusion reactor prototype, ωL/we is 1.3 times smaller

compared to the proof-of-principle facility, we used higher
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FIG. 4: Ray trajectory plotted for the longitudinally propagating wave: (a) ray trajectory in (k‖, η) space, (b) ray trajectory

in (r, z) coordinates. The system parameters are ω ≈ 5.8 × 107 s−1, T 0
e = T 0

i = 4keV, n0
e ≈ 7.4 × 1012 cm−3, n0

D/n0
T = 1,

κ = 0.15, m = 1, Bmin ≈ 1.5 T, Bmax = 5Bmin. The ray is launched from the point with k0

‖ = 0.004 cm−1 and η = 1 m.

ion cyclotron resonances to satisfy both k‖∆η∼>π and

kn∆R∼> π.

FIG. 5: Ray trajectories in (k‖, η) space for two quasi-

transverse waves: (i) chaotic trajectory plotted for the case

Tf ∼ Tr (dashed), where Tr is a characteristic k‖ reflec-

tion time, (ii) quasi-periodic trajectory for Tf % Tr (solid).

Both trajectories are simulated for the system with ω ≈
5.8 × 107 s−1, m = 1, κ = 0.15, n0

e ≈ 9.8 × 1012 cm−3,

Bmin ≈ 1.5 T, and Bmax = 5Bmin. The random walk oc-

curs in a system with T 0
e = T 0

i = 4keV and nT /nD = 1,

while the quasi-periodic trajectory is plotted for the case

T 0
e = T 0

i = 2keV and nT /nD = 1.5.

D. Multiple Wave Regions

The system of rf regions with high α-channeling ef-

ficiency, proposed in Ref. [24, 25], consisted of several

waves located at different axial positions. Unfortunately,

the weakly-damped mode described by the dispersion re-

lation (12) was shown to exist only in a small vicinity of

the local magnetic field minimum and hence could not

be employed anywhere except at the midplane. In order

to use the mode described by Eq. (12) for α-channeling

at an arbitrary axial position, a magnetic field profile

with several minimum-B wells can be employed. For ex-

ample, the k‖(η) dependencies for two waves with equal

values of k⊥, but different values of ω, with the magnetic

field profile illustrated in Fig. 6a, is shown in Fig. 6b.

Three weakly-damped ion-cyclotron modes, one at the

midplane, and others at |z| = zm, exist in such a config-

uration and are shown in Fig. 6b with arrows.

IV. DISCUSSION

We described the limitations on the wave parameters

necessary to achieve a high α-channeling efficiency. In

particular, ion-cyclotron waves weakly damped on elec-

trons and having k‖ ! k⊥, k⊥ρα ≥ 1 are considered suit-

able for α-channeling. Assuming that such waves propa-

gate either along the magnetic field lines, or perpendicu-

lar to them, we proposed an algorithm to identify modes

with desired properties in a given mirror machine config-
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FIG. 6: (a) The magnetic field profile in a system with three magnetic field wells. One well is near the midplane at z = 0 and

the other two are at |z| = zm ≈ 0.6L. (b) The dependence k‖(z/L) for two waves with ω1 ≈ 0.8Ω0
D (dashed) and ω2 ≈ 2Ω0

D

(solid), where Ω0
D is a deuterium gyrofrequency at the midplane. Three weakly-damped modes located near z = 0 and |z| = zm

are indicated with arrows.

uration. In order to find weakly-damped modes, we both

(i) looked for waves with k‖ ≈ 0 and (ii) analyzed the

dependence of k‖ on B, looking for closed loops, or half

of closed loops located away from regions subjected to

strong Landau or ion cyclotron damping. This method

was applied to two mirror machine designs: a proof-of-

principle facility and a fusion reactor prototype.

As a result, we were able to identify mode candi-

dates suitable for α-channeling in both devices. By sim-

ulating a two-dimensional ray trajectory, we confirmed

the validity of the method and showed that there exist

weakly-damped fast waves localized both radially and ax-

ially for which k‖ is always smaller than any pre-chosen

value. These modes were shown to be interacting with

deeply trapped α particles, while being weakly damped

on electrons and even more weakly damped on ions. Fur-

thermore, in order to improve prospects of the weakly-

damped mode excitation for α-channeling in mirror ma-

chines, a possibility to arrange several rf regions at dif-

ferent axial positions using magnetic field profile with

several wells was demonstrated.

The fact that modes suitable for α-channeling exist

does not yet mean that a complete scenario has been

demonstrated. It does remain to determine the fraction

of affected α particles and the expected α-channeling effi-

ciency. Furthermore, methods used to find waves suitable

for α-channeling do not exhaust all possibilities. More-

over, the plasma configuration considered is simple; more

complicated configurations of plasma may permit other

wave candidates. Thus, while an extensive search of suit-

able waves was conducted here, other candidate modes,

possibly superior to the ones identified here, may in fact

exist, and remain to be discovered.
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Appendix A. Restrictions on Wave Parameters

The α-channeling effect is a phenomenon in the phase

space (r, p), in which α particles born at fusion reac-

tions diffuse along one-dimensional paths due to resonant

interaction with electromagnetic waves imposed over a

background dc magnetic field. If the diffusion induced

along the path is suppressed at high energy whereas at

the low-energy end there is an effective particle “sink”,

the interaction with the waves will result in the ejection

of the cold α particles from the system and simultaneous

transfer of their initial energy to the waves. The α parti-

cle ejection leads to fusion ash removal, while by coupling

the amplified wave to ion species, it is possible to redirect

extracted energy to fuel ions, thus increasing effective fu-

sion reactivity compared to the typical scenario, in which

born α particles heat plasma, slowing down collisionally

on electrons.
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Considering the wave-α particle interaction and the

wave damping on ions and electrons independently, we

will now derive the limitations on the wave parameters

necessary to maximize the energy transfer from α par-

ticles to fuel ions. In particular, we show that weakly

damped electromagnetic waves in the ion-cyclotron fre-

quency range, with k‖ ! k⊥, k⊥ρα ≥ 1, and weaker

damping on electrons compared to damping on ions, are

suitable for α-channeling.

A. Diffusion Path Shape

The diffusion path can be seen from the Hamiltonian

of a particle moving in a homogeneous background mag-

netic field and a field of a plane wave reading

H =
(p − qA0/c − qA∼/c)2

2M
+ qϕ∼, (13)

where q and M are the particle charge and mass, corre-

spondingly, ϕ∼ and A∼ are scalar and vector potentials

of the electromagnetic wave, and A0 is a vector poten-

tial of the background dc magnetic field B = ẑB with ẑ

being a unit vector directed along the z axis.

First we derive the resonance condition. Assuming

that the wave field is weak, one can find the particle

trajectory using Hamiltonian perturbation theory [38],

treating terms proportional to A∼ and ϕ∼ as weak per-

turbations to the unperturbed Hamiltonian H0 = (p −
qA0/c)2/(2M). According to KAM theorem [38], the

invariant tori of the unperturbed problem located near

the resonances ω − nΩ − kzvz = 0, where ω is a wave

frequency, Ω is a cyclotron frequency, k is a wave vec-

tor, v is a particle velocity, and n is an arbitrary integer

number, are destroyed. Fixing Ω, n and α particle par-

allel resonant velocity v0
z , the resonance condition can be

understood as a relation between the required ω and kz.

The shape of the diffusion path can be derived from Eq.

(13). Since ϕ∼ and A∼ depend on time through the wave

phase ωt − kr, as a result of a canonical transformation

to a new longitudinal coordinate κ = z − ωt/kz, new

Hamiltonian H will be independent of time and will take

the form:

H =
(P − qA(x, y,κ)/c)2

2M
+ qϕ(x, y,κ) − Pzω/kz,

where A = A0 + A∼, P is a new canonical momentum,

and κ is a new longitudinal canonical coordinate. In-

troducing the kinetic particle momentum p = M ṙ, and

using A0 z = 0, the conservation of H leads to:

p2
⊥

2M
+

(pz − Mω/kz)2

2M
+ qϕ−

qω

ckz
A∼ z = const,

where p2
⊥ = p2

x + p2
y. Therefore, a particle resonantly in-

teracting with the wave diffuses along a one-dimensional

path defined by the equation p2
⊥+(pz−mω/kz)2 = const

describing a circle in (p⊥, pz) space. To keep the wave in

resonance with the particle while it moves along the path,

parallel particle velocity should remain nearly constant,

what is achieved when kzv⊥ ! ω. If another condi-

tion k⊥ρα = ρα

√

k2
x + k2

y ≥ 1 is satisfied, this limitation

can be rewritten as kz ! nk⊥. Note, however, that if

kz ∼> nk⊥ and kz depends on z, diffusion of a particle re-

peatedly interacting with a wave will be accompanied by

a change of vz and thus the change of the position where

the resonance condition ω − nΩ − kzvz = 0 is satisfied.

This effect accompanied by a proper choice of the wave

longitudinal profile can be considered a useful tool for

manipulating particle diffusion along the path, but will

not be studied in this work.

B. Suppression of the Diffusion Along the Path

A limitation on k⊥ value follows from the analysis of

the particle diffusion. The quasilinear diffusion equation

written along the resonant path for a homogeneous mag-

netic field reads [39]

∂p

∂t
=
∂

∂l

(

Dl
∂p

∂l

)

, (14)

where Dl is a diffusion coefficient, l is a linear coordinate

along the diffusion path in the multi-dimensional action

variable space of the unperturbed problem and p(l; t) is

a particle density on the path. The action variables of

the unperturbed problem are the parallel momentum p‖,

the magnetic moment µ = mv2
⊥/2B, negative particle

energy −H , and mΩX , where X is an x component of

the particle guiding center [40]. Notice that if at some

point l = l0, Dl(l) vanishes, particles cannot diffuse past

such a point [41]. This effect is particularly important for

limiting α particle heating and hence reducing average α

particle extraction time. The optimal value of l0 should

be greater than l = lb, where α particles are born, but it

cannot be much greater than lb either, because this would

result in heating of particles. If there is only one wave

resonant with a given α particle, the condition l0 ∼> lb
limits k⊥ρα(lb). For example, for an electrostatic wave,
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DE ∼ J2
n(k⊥ρα), where DE is a characteristic energy-

space diffusion coefficient and Jn is the Bessel function of

order n. This suggests that k⊥ρα(lb) should be somewhat

less than the first positive zero of the Bessel function

Jn(x).

If there are several uncorrelated waves with identical

kz and ω, but different transverse wavenumbers k⊥ i,

the diffusion along the path is not suppressed by pre-

viously discussed effects, but it can be avoided by the

radial limitation of the wave. If for every i and j,

one has |k⊥ i − k⊥ j | ! k⊥ i, finite excursion of the

particle energy ∆E leads to a particle radial excursion

∆r ∼ −k⊥∆E(mαωΩα)−1 ∼ −k⊥ρ2α/n, where mα is the

α particle mass, and k⊥ is an average of k⊥ i. Thus,

by choosing k⊥ρα(lb) # 1, which allows radial displace-

ments much larger than ρ, and by limiting radial wave

profile, α particle heating is constrained by the maxi-

mum possible radial excursion before the particle leaves

the wave.

C. Required Wave Damping Rates

Efficient α-channeling is possible only if the wave am-

plitude is much larger than a certain critical value f0 at

which the characteristic α particle extraction time τextr

is of order of the typical collisional α-electron energy re-

laxation time τα e. But even if τextr # τα e, electrons

can gain more energy than ions if the wave damping

on electrons is stronger than the wave damping on ions.

Therefore, we will further focus our attention on waves

with τe # τi, where τs is a characteristic Landau or ion-

cyclotron wave damping time on species s. If for some

wave τi ≥ τe, we will assume that there exist another

mechanism which can transport wave energy to ions on

the characteristic time scale further denoted by the same

τi, which is much smaller than τe.

Another limitation on τi follows from the fact that the

α-channeling technique is practical only if the energy ex-

tracted from α particles exceeds the energy necessary to

excite the channeling wave. In particular, τi must be

larger than the time τamp on which the wave amplitude

is amplified by a factor of 2. Assuming that the geo-

metrical optics approximation is valid, a dimensionless

parameter ξ = τamp/τL, where τL is a time which takes

the wave packet to travel a distance comparable to the

device length L, can be introduced. If the rate of α par-

ticle production is so large that ξ ! 1, α-channeling can

be implemented by launching waves which damp upon

reaching an ion-cyclotron resonance layer. If, in turn,

ξ ! 1, then excitation of a weakly damped mode trapped

in the device core is necessary. It is the latter case that

is considered in this work.
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