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Flux Control in Networks of Diffusion Paths
A. I. Zhmoginov ∗ and N. J. Fisch

Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

Abstract

A class of optimization problems in networks of intersecting diffusion domains of a special form of thin paths has been considered.
The system of equations describing stationary solutions is equivalent to an electrical circuit built of intersecting conductors. The
solution of an optimization problem has been obtained and extended to the analogous electrical circuit. The interest in this network
arises from, among other applications, an application to wave-particle diffusion through resonant interactions in plasma.
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1. Introduction

Diffusion, or random-walk processes are, in principle,
straightforwardly treated in any geometry. Although the
treatment is straightforward, in practice, it may be diffi-
cult to extract general properties of solutions in complex
domains. However, certain geometries may be amenable to
useful simplifications. An example of particular interest is
when the diffusion is restricted to narrow one-dimensional
paths. Networks of such domains are frequently used to
model porous media [1–5] and fiber networks in brain white
matter [6]. Also, a discrete model of diffusion path network,
in which particles exhibit random-walk steps between nodes
of some graph [13], is used to study computer and social
networks [8–13], as well as city traffic [14].

Consider a rectangular network formed of vertical and
horizontal intersecting diffusion paths (see Fig. 1). The dif-
fusion tensor on each path is assumed diagonal with the
transverse diffusion being much weaker than the diffusion
along the path. The diffusion tensor in each intersection re-
gion is set to be equal to the sum of tensors of intersecting
paths. The particle distribution f(x, y) can then be found
by solving the diffusion equation:

∂f

∂t
= −∇ ·

[
D̂(x) ·∇f

]
, (1)

where D̂ is a piecewise constant diffusion tensor, yielding
a unique stationary solution of Eq. (1), assuming proper
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Fig. 1. Diffusion domain comprised of four intersecting paths. The
diffusion tensor D̂ on a path σdn outside of the intersection regions
is D̂p(σdn) = Ddnd0 + µτ0(d), and D̂ = D̂p(σ1) + D̂p(σ2) in the
volume formed by intersection of two paths σ1 and σ2, where µ is
the coefficient of a weak transverse diffusion, d ∈ {x, y}, n ∈ {1, 2},
and τ0(d) is equal to y0, when d is equal to x0 and vice versa.
Boundary conditions are: f = 0 at the thick boundaries; f ′ = 0 (i.e.
no particle flux) at the thin boundaries; and the input particle flux
density is given through the dashed boundaries.

boundary conditions [15].
As will be shown in Appendices A and B, the station-

ary solution of Eq. (1) in a rectangular network of thin dif-
fusion paths can be reduced to a set of linear equations,
which can be solved for any particular configuration. How-
ever, the dependence of particle fluxes on diffusion coeffi-
cients is not linear; any change of the diffusion coefficient
of a single path results in a redistribution of the flux in the
whole network. The goal of the present study is to solve an
optimization problem of flux rearrangement in a network
of diffusion paths. Specifically, we find the diffusion coeffi-
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cients minimizing a weighted sum of the outgoing fluxes.
The solution of the optimization problem is shown to be

a limit of a system with the diffusion coefficients equal to
1, β, . . . , βk, with k < 5 as β goes to infinity. As demon-
strated in Ref. [3], the network of diffusion paths is equiv-
alent to the network of intersecting one-dimensional con-
ductors (wires). As a result, all theorems true for one of
the systems can be immediately applied to the other. The
equivalence of systems is demonstrated and the optimiza-
tion problem in networks of diffusion paths is extended to
specific electrical circuits.

Besides being interesting by itself, the optimization prob-
lem has an important application to α-channeling [16] in
tokamaks [17–19] and mirror machines [20,21]. In inhomo-
geneous magnetic field and an electrostatic wave, a charged
particle exhibits random-walk motion along an effectively
one-dimensional curve in the velocity space (Appendix C).
In a system with several waves, the corresponding paths
might intersect, forming a network which is capable of
transporting particles between certain areas of the velocity
space. In application to cooling down α particles in fusion
devices, this concept is known as α-channeling. Maximiza-
tion of the energy extracted from α particles by variation
of the wave amplitudes and hence the effective diffusion
coefficients of the corresponding paths results in the opti-
mization problem solved in this paper.

The paper is organized as follows: In Sec. 2, we reduce the
original system of finite-size intersecting diffusion paths to
an approximate system of one-dimensional equations and
discuss the relation of the random-walk in networks of paths
to the random-walk on oriented graphs. In Sec. 3, we show
the equivalence between the network of diffusion paths and
the network of intersecting conductors. The main result of
the paper, a solution of the general optimization problem,
is given in Sec. 4. Sec. 5 summarizes our conclusions. In Ap-
pendix A, we prove that a network of thin diffusion domains
can be reduced to a system of intersecting one-dimensional
paths. A local optimization of the weighted sum of outgo-
ing fluxes by varying diffusion coefficients is considered in
Appendix B. In Appendix C, we show the physical context
of the optimization problem. In particular, we discuss the
α-channeling concept and its optimization in tokamaks and
mirror machines.

2. Basic Equations

The optimization of a flux distribution in a rectangular
network of diffusion paths can be performed analytically if
each path can be approximated as a one-dimensional curve.
As discussed in Appendix A, if the transverse diffusion is
negligible, the path characteristic widths are much smaller
than all distances between the paths, and the input flows
are quasi-homogeneous, then Eq. (1) yields a stationary so-
lution with a spatial scale much larger than the character-
istic path width. Hence, particle flux distribution in a net-
work of thin diffusion paths can be estimated by calculating

fluxes in a network of one-dimensional paths (see Fig. 2).
Particle density fluxes and particle densities in such net-
work satisfy conditions: (a) particle conservation, reading

jx
i,j − jx

i,j−1 + jy
i,j − jy

i−1,j = 0 (2)

and (b) relation between the linear fall of particle density
along the path, supporting the constant particle flux be-
tween two adjacent intersection volumes, and the flux itself:

jx
i,j =

fi,j+1 − fi,j

Dx,i∆xj
, jy

i,j =
fi+1,j − fi,j

Dy,j∆yi
, (3)

where fi,j is the particle density at the intersection of the
horizontal and vertical diffusion paths with indices i and j
correspondingly, further called the volume (i, j), ∆xi and
∆yi are the distances between horizontal and vertical paths
with indices i and i + 1 respectively, and jx

i,j , jy
i,j are den-

sity fluxes through the segments linking volume (i, j) with
volumes (i, j + 1) and (i + 1, j) correspondingly. The out-
going fluxes are denoted by jx

i,0 and jy
0,j . The optimization

problem of particular physical interest for such a network
is to find Dx and Dy minimizing a linear combination of
the outgoing fluxes:

min
Dx,Dy




n̄∑

i=1

wxij
x
i0 +

m̄∑

j=1

wyjj
y
0j



 , (4)

where m̄ and n̄ are total numbers of horizontal and vertical
paths correspondingly, weights wxi and wyi are constants,
densities at the left and bottom sides of the network are zero
[jx

i,0 = fi,1/(aiDx,i) and jy
0,j = f1,j/(bjDy,j)] and input

fluxes at the top jy
n,j and to the right jx

i,k are given.
Random-walk of particles in a network of diffusion paths

can be represented as a random-walk on an oriented graph
with nodes corresponding to the intersection volumes, sinks
and sources and with edges corresponding to possible par-
ticle transitions between these nodes. A probability pij of
a particle jump from the node i to the node j is defined
by assigning weights to all graph edges according to pij =
ξij/

∑
k

ξik, where ξij is a weight of the edge connecting the

node i with the node j, or zero if there is no such edge. One
can show then that for every diffusion path network, there
exists a weight distribution such, that the probabilities of

Fig. 2. An example of a network comprised of one-dimensional paths.
Circles show sinks, while arrows at the ends of diffusion paths cor-
respond to given input fluxes.
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particle jumps between the nodes are the same in both sys-
tems. Due to the fact that the inverse is not true, and some
optimization problems of the form (4) for the graphs with
variation over the edge weights cannot be reformulated for
the diffusion path networks, one can argue that the class of
optimization problems on oriented graphs is wider. For in-
stance, the problem of maximum extractable energy from
plasmas under wave-induced diffusion [22] can be reduced
to an optimization of a random-walk on a certain graph.
Another example is an optimization of outgoing fluxes (4)
in a graph corresponding to the network of diffusion paths,
in which jumps between two nodes are permitted in only
one direction. Restricting all jumps to be directed towards
the sinks, and the weights of the edges located on the same
path to be equal, one defines a well posed optimization
problem. The solution of this problem can be found using
dynamic programming [23] by successively adding horizon-
tal and vertical paths to the system. It can be shown that
the optimum is achieved for a system with path weights
proportional to 1, β, . . . , βk with k < 5 as β goes to in-
finity. The same property holds for the system of diffusion
paths, however the proof of this fact is different and will be
given in Sec. 4.

3. Equivalence to electrical circuit

Replacing j by currents, f by potentials, and D by con-
ductivities of a unit length ρ−1 in Eqs. (2) and (3), the
optimization problem (4) becomes equivalent to an analo-
gous optimization problem for electrical circuit comprised
of intersecting homogeneous wires with grounded left and
bottom ends (f = 0) and given currents through top and
right ends. Equivalence between two systems allows to ap-
ply any knowledge about one system to another. For exam-
ple, the distribution of currents in the circuit can be found
as a solution of a variational problem:

min
I∈S

n∑

k=1

I2
k∆lkρk,

where n is a number of the edges, I is an n-dimensional
vector of the currents, ρ−1

k is the conductivity of a unit
length of the k-th edge, ∆lk is the length of this edge, and
S ⊂ Rn is such that

∑
i∈e(v) Ii = 0 for every circuit node

v, with e(v) being a set of indices of edges adjacent to it.
Thus reformulated, the variational problem in the network
of intersecting diffusion paths reads:

min
j∈S

n∑

k=1

j2
k∆lk/Dk,

where a vector of currents I is replaced by a vector of par-
ticle fluxes j, and conductivities ρ−1

k are replaced by diffu-
sion coefficients Dk.

An example illustrating the transition from the optimiza-
tion problem (4) to that for an electrical circuit is the opti-
mization problem for the intersection of two pairs of paral-
lel wires (Fig. 3a). Redirection of all input currents to the

horizontal (vertical) exit with index x1 (y1) is possible in
a limit β → 0 of the configuration ρx1 = βρy1 = β2ρx2 =
β2ρy2 (ρy1 = βρx1 = β2ρx2 = β2ρy2). This solves the opti-
mization problem in the case when wx1 or wy1 are smaller
than the other weights. The case when wx2 (wy2) is the
smallest weight is more difficult because it is impossible to
direct all input currents into the corresponding exit even if
ρx2 (ρy2) is much smaller than the other weights. However,
as shown in Sec. 4, the minimum of the weighted sum is
reached when the resistance ρx2 (ρy2) is the smallest and
the system is reduced to the circuit shown on Fig. 3b. The
optimization problem is then reformulated as:

min
j

w = min
j

[
wx1j1+wx2j2+wy1j3+wy2j4+wy2j5

]
, (5)

where output currents are connected by ji = j1 + j2 + j3 +
j4 + j5, j2/j5 = ∆x1/a2, j1/j4 = ∆x1/a1. Substituting
these expressions into Eq. (5), the problem reduces to the
minimization of a linear function

w = wx1j4∆x1/a1 + wx2j5∆x1/a2 + wy2j4 + wy2j5+
+ wy1(ji − j4∆x1/a1 − j5∆x1/a2 − j4 − j5)

over a triangle in (j4, j5) space, formed by three inequalities:
j4 ≥ 0, j5 ≥ 0, ji ≥ j4(∆x1/a1 + 1) + j5(∆x1/a2 + 1).
The minimum of a linear function is reached in one of the
triangle’s vertices [24], and thus three different solutions
are possible:

(a) ρy2 = βρx2 = β2ρx1 = β2ρy1,

(b) ρy2 = βρx1 = β2ρx2 = β2ρy1,

(c) ρy2 = βρy1 = β2ρx1 = β2ρx2.

4. Solution for the diffusion path network

In the general case of n×m rectangular network of diffu-
sion paths, the minimum in Eq. (4) is reached in the limit
β →∞ of a network with finite diffusion coefficients equal
to 1, β, . . . , βk with k < 5. This property, which is the main
result of the paper, is proved in this section in two steps.
First, we note that the diffusion path with a minimum-
weighted sink (we take this weight to be equal to 0 for dis-
tinctness) should have a diffusion coefficient much greater
than the diffusion coefficients of the paths intersecting it.
Then, using independence of the subnetworks obtained by
partition of the original network by the minimum-weighted
path, solutions in each subsystem is obtained separately.

When the sink of the leftmost (bottom) diffusion path has
the smallest weight, the optimization problem has a trivial
solution. In this case, all particles can be directed to the
minimum-weighted path by making its diffusion coefficient
large compared to the diffusion coefficient of the bottom
horizontal (leftmost vertical) path, which should in turn be
much larger than diffusion coefficients of other paths.

In a more general case, when the minimum-weighted sink
is not on the leftmost or the bottom path, the optimum
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Fig. 3. (a) Electrical circuit equivalent to the simplest diffusion network formed by four intersecting diffusion paths. (b) The same circuit
when the resistivity of the second vertical diffusion path is much smaller than all the others.

is also achieved when the diffusion coefficient Dmin of the
minimum-weighted path is much larger than the coefficients
Dint of the paths intersecting it. This can be proved using
a random-walk process analogy. Compare a configuration
in which Dmin ∼ Dint with the same configuration having
Dmin * Dint. For each particle trajectory which does not
cross the minimum-weighted path in the large-Dmin sys-
tem, there is an identical particle trajectory in the finite-
Dmin system with the same realization probability and the
same output weight. On the other hand, for each trajec-
tory crossing the minimum-weighted path (and then leav-
ing immediately) in the large-Dmin system, there is a fam-
ily of trajectories in the finite-Dmin system with the same
path before the crossing and the same overall probability,
but larger or equal average output weight. Thus, averaging
over all trajectories, one concludes that the weight defined
by Eq. (4) in the large-Dmin system is smaller or equal to
the weight in the finite-Dmin system.

The minimum-weighted path divides the network into
two subnetworks. An optimal solution to the right of
this path (we choose vertical orientation of the minimum-
weighted path for distinctness) is trivial: all vertical dif-
fusion paths have diffusion coefficients much smaller than
the diffusion coefficients of every horizontal path. In this
case, all particles entering the system to the right of the
minimum-weighted path are captured by it. On the other
hand, the part of the network to the left of the minimum-
weighted path, which we will call enclosed, can be treated
as an isolated part in which points of intersection with the
minimum-weighted path are replaced by particle sinks with
zero weights (the minimum weight in the system). To spec-
ify the network geometry, the number of vertical and hori-
zontal paths in the enclosed system are denoted by m and
n correspondingly, fluxes entering the system from above
are denoted by ji

k, distances between horizontal or vertical
diffusion paths with indices i and i + 1 are denoted by ∆xi

and ∆yi, and the distances from the leftmost vertical path

to the left sinks and from the bottom horizontal path to
the bottom sinks are denoted by ai and bi correspondingly.

To solve the optimization problem in a general case, we
first analyze a horizontal path with fixed vertical input and
output fluxes. Then we solve an optimization problem in a
class of networks, in which the relations between vertical
fluxes and corresponding differences of densities of adjacent
intersection volumes are omitted. We prove that there are
many optimal solutions, one of which can be asymptotically
reached in a conventional diffusion path network.

Consider a single horizontal diffusion path with vertical
fluxes jk entering from the above, vertical outgoing fluxes
ik, and the left outgoing flux j0. The equation for j0 then
reads:

j0ak + (j0 −∆1)∆x1 + (j0 −∆1 −∆2)∆x2 + · · ·+
+ (j0 −∆1 −∆2 − · · ·−∆m)∆xm = 0,

where ∆k = jk − ik. This solution is correct when particle
densities in all intersection volumes are nonnegative, which
results in m conditions:

j0 ≥ 0, j0ak + (j0 −∆1)∆x1 ≥ 0,

. . .

j0ak + (j0 −∆1)∆x1 + (j0 −∆1 −∆2)∆x2 + · · ·+
+ (j0 −∆1 −∆2 − · · ·−∆m−1)∆xm−1 ≥ 0.

Consider the optimization problem in a network of diffu-
sion paths, in which vertical fluxes and corresponding dif-
ferences of densities are not related. In such a network, the
fluxes on all segments of vertical diffusion paths, or ∆ij =
jy
i,j−jy

i−1,j , can be defined independently. Limiting all par-
ticle densities and outgoing vertical fluxes to be positive,
nm + m linear conditions are imposed on the system:

j0 =

m∑
i=1

i∑
j=1

∆kj∆xi

ak + ∆x1 + . . . ∆xm
≥ 0, (6)
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j0ak + (j0 −∆k1)∆x1 ≥ 0, . . . , (7)

j0ak +
m−1∑

i=1

∆xi



j0 −
i∑

j=1

∆kj



 ≥ 0 (8)

for 1 ≤ k ≤ n, and
n∑

k=1

∆kl ≤ ji
l for 1 ≤ l ≤ m. (9)

Under these conditions, the minimum weight of the en-
closed system is nonnegative and the expression for the lin-
ear weight function w reads:

w =
n∑

k=1

wxk

m∑
i=1

i∑
j=1

∆kj∆xi

ak + ∆x1 + . . . ∆xm
+

+
m∑

k=1

wyk

(
ji
k −

n∑

l=1

∆lk

)
. (10)

The solution of a linear optimization problem is reached in
the vertex of nm-dimensional manifold defined by Eqs. (6)–
(9). This vertex corresponds to the intersection of nm hy-
perplanes (out of nm+m conditions), limiting it. In terms
of conditions (6)–(9), this means that 0 ≤ s ≤ m vertical
output fluxes are zero and there are at least nm− s inter-
section volumes with vanishing f . Due to the fact that the
horizontal flux cannot emerge from the intersection volume
with zero density, there should be exactly s volumes with
nonzero densities in the system with all input fluxes greater
than zero. Furthermore, every vertical path with vertical
output flux equal to zero should contain just one such vol-
ume; henceforth we call such configurations primitive.

The found optimum cannot necessarily be realized in an
ordinary network of intersecting horizontal and vertical dif-
fusion paths. However, we show here that any such opti-
mum can be transformed to another configuration with ex-
actly the same weight, which can be represented as a net-
work of both horizontal and vertical diffusion paths. We use
a convenient notation, characterizing each primitive con-
figuration by (m + 1)-dimensional vector (α1, . . . ,αm, 0),
where αk is equal to l if the nonzero density volume is
situated on the intersection of the vertical path with in-
dex k and the horizontal diffusion path with index l, and
αk is equal to zero if there is no such intersection vol-
ume on this vertical path. Considering a primitive solu-
tion of the minimization problem corresponding to a vector
(α1, . . . ,αm, 0), we can construct other primitive configu-
rations with the same weight applying a following lemma.

Lemma 1 For every primitive configuration of
the form (α1, . . . ,αl, s, r, . . . , r, 0, αq, . . . ,αm, 0) [or
(α1, . . . ,αl, s, r, . . . , r, 0)], where s > 0, r > 0 and s ,= r,
there exists another primitive configuration corresponding
to the vector (α1, . . . ,αl, s, s, . . . , s, 0, αq, . . . ,αm, 0) [or
(α1, . . . ,αl, s, s, . . . , s, 0)], which has the same weight.

PROOF. Consider a primitive configuration defined by:

f II
ij = 0, i ,= s,

f II
sj =

Dxrf I
rj

Dxs
, l + 2 ≤ j ≤ q − 2,

where f I
ij and f II

ij are particle densities in the original and
constructed solutions correspondingly (Fig. 4). In the con-
sidered configuration all horizontal fluxes between nonzero
density volumes are left the same as in the original sys-
tem, except for the volumes on vertical paths with indices
l+1 and l+2. This, in turn, means that all outgoing fluxes
for vertical paths with indices ranging from l + 3 to q − 2
are left equal to zero. Noting that jc = ja − jb, we also
see that

∑
k ∆I

k,l+1 =
∑

k ∆II
k,l+1 = ji

l+1 and
∑

k ∆I
k,l+2 =∑

k ∆II
k,l+2 = ji

l+2, which suggests that outgoing fluxes for
vertical paths with indices l +1 and l +2 are equal to zero,
too. This proves that the weight of constructed system is
equal to the weight of the original configuration because all
outgoing fluxes are the same in both configurations.

Applying the lemma repeatedly, one can prove that for
any primitive configuration there exists a configuration
with the same weight, which is described by either a vec-
tor (s1, . . . , s1, 0, . . . , 0, s2, . . . , s2, 0, . . . , 0, sk, . . . , sk, 0),
or a vector (0, . . . , 0, s1, . . . , s1, 0, . . . , 0, s2, . . . , s2,
0, . . . , 0, sk, . . . , sk, 0) with si > 0. Noticing then
that for every primitive configuration of the form
(. . . , 0, r, . . . , r, 0, . . . , 0) with r > 0, there exists another
primitive configuration having the same weight and de-
scribed by the vector (. . . , 0, s, . . . , s, 0, . . . , 0) with s > 0,
one can state that an arbitrary primitive optimum is equiv-
alent to another primitive configuration with all nonzero
density volumes situated on a single horizontal diffusion
path with index denoted further by s. Interestingly, such
configurations can be asymptotically reached as β → ∞
in a conventional network of intersecting horizontal and
vertical diffusion paths. The diffusion coefficients in the
diffusion path network are to be set as follows (if there is at
least one nonzero intersection volume in the system): the
diffusion coefficient of the horizontal path with index s is
to be much larger (∼ β3) than the diffusion coefficients of
the rest of horizontal paths (∼ β) and vertical paths with
nonzero density volumes (∼ β2); remaining vertical paths
are to have Dy ∼ β4.

Having determined the form of the optimal solution, Eq.
(10) can be rewritten as

w = wxs

m∑
i=1

i∑
j=1

∆sj∆xi

as + ∆x1 + . . . ∆xm
+

m∑

l=1

wyl

(
ji
l −∆sl

)
, (11)

where ∆sl ≤ ji
l ; then the value of s can be then found by

minimizing
wxs

as + ∆x1 + · · · + ∆xm
. (12)

By substituting the corresponding values to Eq. (11), the
optimization problem is reformulated as a minimization of
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Fig. 4. Construction of a primitive configuration described by vector (. . . , s, s, s, . . . , s, 0, . . . ) from a primitive solution defined by vector
(. . . , s, r, r, . . . , r, 0, . . . ). Denoting by fII particle densities in the constructed system and by fI particle densities in the original system, the
construction is defined by relation fII

sj = DxrfI
rj/Dxs for indices j ≥ l + 2. As a result, all flows except for ja, jb and jc are left unchanged.

All segments without arrows indicate the segments with zero fluxes. Relation jc = ja− jb proves that all outgoing flows are the same in both
systems.

min
m∑

j=1

µj∆sj (13)

over a manifold limited by Eqs. (6)-(8) and m conditions
∆sl ≤ ji

l . The solution of this optimization problem defines
which of vertical diffusion paths are to have diffusion coeffi-
cients proportional to β4 and which are to be proportional
to β2.

5. Conclusions

The optimization of the exit flux rearrangement in the
rectangular network of one-dimensional diffusion paths as
defined by Eq. (4) is obtained. The solution is also applica-
ble to the electrical circuit comprised of intersecting con-
ductors.

The solution of the optimization problem was obtained
by extending the class of the networks over which the op-
timization was performed and showing that one of the op-
timal solutions is asymptotically achieved in the original
class as diffusion coefficients of certain diffusion paths be-
come large compared to the others. More specifically, the
largest diffusion coefficient, proportional to β4, where β →
∞, should be assigned to the minimum-weighted diffusion
path (vertical for distinctness). To the right of this diffusion
path all vertical paths are assigned Dy ∼ 1. The remaining
diffusion coefficients are to be determined solving a sim-
pler optimization problem (13) and finding index s, which
minimizes Eq. (12). Solution of Eq. (13) determines which
vertical paths in the enclosed system are to have Dy ∼ β4

and which Dy ∼ β2. Horizontal paths with indices k ,= s
are assigned Dx ∼ β and Dx ∼ β3 is assigned to the hori-
zontal path with index s.

6. Acknowledgments

This work was supported by DOE Contracts No. DE-
FG02-06ER54851 and DE-AC0276-CH03073.

Appendix A: One-dimensional model of the particle
distribution function

In this Appendix we show that a spatial scale of the
particle density distribution in a rectangular network of
thin diffusion paths greatly exceeds a characteristic dif-
fusion path width. This fact allows us to employ a one-
dimensional model for the distribution function, consider-
ing dependence only in the path direction.

Consider first the simplest network formed of two
straight effectively one-dimensional diffusion paths inter-
secting at a right angle (Fig. 5a). In steady state Eq. (1)
reads

Dxx(x, y)
∂2f

∂x2
+ Dyy(x, y)

∂2f

∂y2
= 0. (A-1)

It is solved for the distribution function f in the domain
comprised of two, horizontal and vertical narrow stripes,
with widths wh and wv correspondingly. At one exit of
each path (distances rh and rv apart from the intersection
region) the particles are absorbed and f = 0, at the other
two exits input particle flux densities are given, and since
the problem is linear, one of the two can be taken equal to
zero.

When the parameter µ, which is responsible for a
weak transverse diffusion, is negligible, an approximate
solution outside of intersection region reads: f(x, y) =
h1(y) + h2(y)x − µh′′1(y)x2/(2Dx) − µh′′2(y)x3/(6Dx) +
O(µ2) for horizontal path, or f(x, y) = h1(x) + h2(x)y −
µh′′1(x)y2/(2Dy) − µh′′2(x)y3/(6Dy) + O(µ2) for vertical
path, where h1 and h2 are arbitrary smooth functions with
characteristic spatial scales Li = (h′′i /hi)−1/2. Further-
more, when condition (µ/minDi)(max l2i / minL2

i ) - 1,
with li being a path length, is satisfied, the solution outside
of the intersection region can be approximated by the lead-
ing order terms. Thus, the solution in the original domain
might be obtained by solving the diffusion equation in the
intersection volume with a new set of boundary conditions
(see Fig. 5b):
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Fig. 5. (a) Two intersecting diffusion paths and their geometrical sizes; (b) intersection volume and the boundary conditions.

∂f

∂y

∣∣∣∣
y=0

≈ 0, Dxwh
∂f

∂x

∣∣∣∣
x=wv

≈ −h(y),

∂f

∂y

∣∣∣∣
y=−wh

≈ f(x,−wh)
rv

,
∂f

∂x

∣∣∣∣
x=0

≈ f(0, y)
rh

.

(A-2)
where h(y) is the horizontal input flux density.

Equation (A-1) with boundary conditions (A-2) can be
solved by separating variables:

f ≈
∞∑

k=0

ck

[(
1 +

2
λxkrh − 1

)
exp(λxkx)+

+ exp(−λxkx)
]

cos λyky,

where ck are constant coefficients, λxk =
√

λk/Dx, λyk =√
λk/Dy, and λk is found from the equation:

tan−1

(
wh

√
λk/Dy

)
= rv

√
λk/Dy. (A-3)

Assuming that the width of the horizontal path wh is
much smaller than the distance from the intersection vol-
ume to the particle sink rv, Eq. (A-3) can be solved ap-
proximately:

λy0 ≈
1

(rvwh)1/2
- 1

wh
,

λyk ≈
πk

wh
+

1
rvπk

≈ πk

wh
, for k > 0.

The relation λy0 - λyk for k > 0 suggests that if the
input flux density h(y) is quasi-homogeneous, ck - c0.
Neglecting the terms of order wh/rv, the fraction of the
input particle flux absorbed at the left loss boundary is
then given by:

Jx=0

Jx=wv

≈ 1
1 + λ2

x0wvrh
=

(
1 +

Dywvrh

Dxwhrv

)−1

=

=
(

1 +
Dywvrh

Dxwhrv

)−1

.

Thus, in a steady state regime, the net particle flux J in-
coming by the horizontal diffusion path divides into two
outgoing fluxes Jh and Jv:

Jh ≈ J ·
(

1 +
Dywvrh

Dxwhrv

)−1

, Jv = J − Jh. (A-4)

Particularly, when Dywvrh is much smaller or much larger
than Dxwhrv, the major part of the input flux will be
absorbed at the, whereas in a symmetric system with
Dywvrh = Dxwxrv, the input flux is divided into two equal
fluxes.

Consider a network comprised of n̄ horizontal and m̄ ver-
tical paths, and denote by Dx and Dy vectors of diffusion
coefficients of horizontal and vertical diffusion paths corre-
spondingly. The flux distribution in a such network is a sum
of distributions in two simpler systems: (i) the system with
zero vertical input fluxes and the horizontal input flux den-
sities equal to ji

x(y) and (ii) the system with zero horizontal
input fluxes and the vertical input flux densities equal to
ji

x(y). The solution fijk in the intersection region formed
by horizontal and vertical diffusion paths with indices i and
j can be found in the form fijk = Xijk(x)Yijk(y), where
Xijk and Yijk satisfy

X ′′
ijk

Xijk
=

λijk

Dxi
,

Y ′′
ijk

Yijk
= −λijk

Dyj
,

with k enumerating eigenfunctions and eigenvalues λijk.
For convenience, we assign the origin to the volume’s left
bottom corner.

Considering, for example, a system with zero vertical in-
put fluxes, the vertical eigenfunctions Yijk(y) can be found
independently in each column as follows. Noticing that
the intersection volumes on a vertical path are restricted
to have the same horizontal structure, one concludes that
λijk for different values of i are connected through λijk =
λjkDxi. Values of λjk can then be found using vertical
boundary conditions simplified when µ is negligible: (a)
boundary condition at the bottom intersection region:

Y ′
1jk(0) = Y1jk/bj ,

where bj is the distance to the particle sink on the vertical
path with index j; (b) zero input flux density condition at
the top intersection region Y ′

njk(yn) = 0, and (c) conditions
necessary to connect adjacent intersection volumes:

Y ′
i,j,k(yi) = Y ′

i+1,j,k(0),

Yi+1,j,k(0)− Yi,j,k(yi) = Y ′
i,j,k(yi)∆yi = Y ′

i+1,j,k(0)∆yi,

where yi is the width of the horizontal path with in-
dex i, and ∆yi is the distance between horizontal
paths with indices i and i + 1. These equations can be
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solved approximately when the vertical and the hori-
zontal diffusion path widths xi and yj are much smaller
than all distances between paths ∆xj , ∆yi and dis-
tances to the sinks ai and bj , by considering the leading
zeroth-order terms in the expansion by small parame-
ters εi = max {xi/∆xj , xi/aj , yi/∆yj , yi/bj}. Assuming
λjy2

i Dxi/Dyj - 1 and λj > 0 (which we later show to be
consistent with our final result), we can use small-value ex-
pansions, as we did solving Eq. (A-3), to obtain a simplified
equation for the zeroth eigenvalue λj0:

si+1 =
si

1− si

Dx,i+1

Dx,i

yi+1

yi
+

∆yi

bj
τi+1, (A-5)

sn = 1, s1 = τ1.

where τi = λj0Dx,iyibj/Dy,j . For any k, the solution for τk

of this recursive scheme is of order of one when all equa-
tion parameters are of order of one, which suggests that
all possible solutions for λj0 are of order of (yb)−1 and as-
sumption used above holds. It can be proved that, in the
general case, Eq. (A-5) has exactly n nonnegative and no
negative solutions, which justifies the assumption λj > 0.

Once the eigenvalues λj0 and corresponding eigenfunc-
tions are calculated, the horizontal quasi-homogeneous in-
put flux density can be decomposed by eigenfunctions of
the rightmost vertical path. Quasi-homogeneity of the in-
put flux density suggests that its decomposition is domi-
nated by the zeroth eigenfunctions corresponding to eigen-
values λj0, because all other eigenfunctions oscillate a few
times on a width of at least one of diffusion paths. Notic-
ing that the decomposition of zeroth eigenfunction of one
vertical diffusion path by eigenfunctions of the adjacent
path contains just zeroth eigenfunctions to the zeroth or-
der term in a small parameter ε = max εi, one can couple
zeroth-order eigenfunctions of adjacent vertical diffusion
paths and find an approximate solution everywhere in the
system. Obtained solution is a linear combination of just
zeroth eigenvalues (to the zeroth order in small parame-
ters), which suggests that the spatial scale of the particle
distribution function is much larger than the characteristic
path width.

Appendix B: Derivative calculation

In practical applications, the optimal solution obtained
in Sec. 4 might be impossible to achieve. In α-channeling
implementation, for instance, infinitely large diffusion coef-
ficient would imply an infinitely large wave amplitude. One
can resolve this by introducing additional limitations on the
parameter space or adding terms depending on Dx and Dy

into the optimized functional. Numerical algorithms suit-
able for solution of such extended optimization problem,
like gradient descent method, might require calculation of
derivatives of the weight function w with respect to the
diffusion coefficients. In this section we outline such cal-
culation for an isolated system enclosed by the minimum-
weighted diffusion path.

Denote by xi a vector of particle densities and their
derivatives down the path for the intersection vol-
umes situated on a horizontal path with index i: xi =
(fi1, fi2, . . . , fim, f ′i1, . . . , f

′
im), where f ′ij is a y-derivative

of f down the vertical path with index j. To solve for par-
ticle densities given incoming fluxes, two 2m × 2m linear
operators t̂i and T̂k are introduced:

xi+1 = t̂i(Dxi)xi.

T̂k = t̂k t̂k−1 . . . t̂1 =



 Âk B̂k

Ĉk D̂k



 , T̂0 = Î ,

where Î is an identity operator. Given the m-dimensional
vector of input fluxes I0 entering the system from above,
the state vector at the bottom diffusion path is calculated:

x1 = κ̂−1(Dx)



 Λ̂−1
y I0

Λ̂−1
b Λ̂−1

y I0



 =

=



 Ĉn + D̂nΛ̂−1
b 0

0 Ĉn + D̂nΛ̂−1
b




−1 

 Λ̂−1
y I0

Λ̂−1
b Λ̂−1

y I0



 ,

where (Λ̂b)ij = δijbj and (Λ̂y)ij = δijDyj are m×m matri-
ces and t̂n is constructed by introducing a virtual horizontal
path with index n + 1 having vanishing Dx,n+1 and situ-
ated arbitrary distance ∆yn apart from the adjacent path.
The value of the weight function can then be calculated:

w =

[
wT

y Λ̂yΛ̂−1
b +

(
wx1Dx1

a1
Î +

wx2Dx2

a2
T̂1 + · · ·+

+
wxnDxn

an
T̂n−1

)

1

]
x1, (B-1)

where (Ŝ)1 denotes the first row of the matrix Ŝ, and wx,
wy are vectors of positive weights of the leftmost horizontal
and vertical sinks relative to the weight w0 of the rightmost
horizontal sinks. Using (Ŝ−1)′ = −Ŝ−1Ŝ′Ŝ−1, and

∂ t̂i/∂Dxk = δk,i



 ∆yiĉ
′
i 0

ĉ′i 0



 =

= δk,iD
−1
xi



t̂i − Î −∆y



 0 Î

0 0







 =

= δk,iD
−1
xi

(
t̂i(Dxi)− t̂i(0)

)
,

one can differentiate Eq. (B-1) with respect to Dxk to ob-
tain:

∂w

∂Dxk
=

[
wxk

ak
Î + Â

(
t̂k − t̂k(Dxk = 0)

)]

1

T̂k−1x1−

−
[
wT

y Λ̂yΛ̂−1
b +

(
B̂

)
1

]
· κ̂−1 κ̂− κ̂(Dxk = 0)

Dxk
x1, (B-2)

where
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Â =
(

wx,k+1Dx,k+1

ak+1Dxk
Î +

wx,k+2Dx,k+2

ak+2Dxk
t̂k+1+

+
wx,k+3Dx,k+3

ak+3Dxk
t̂k+2t̂k+1 + . . .

)
,

B̂ =
wx1Dx1

a1
Î +

wx2Dx2

a2
T̂1 + · · · + wxnDxn

an
T̂n−1,

and where we used Dxkκ̂′ = κ̂(Dx)−κ̂(Dxk = 0). Consider
a network formed from the original by removing k-th hori-
zontal path, or equivalently by taking Dxk = 0; henceforth
we call such network reduced. Denote by Ir such vector of
input fluxes entering the reduced system, that the values
of f at its bottom horizontal path are equal to x1:



 Λ̂−1
y Ir

Λ̂−1
b Λ̂−1

y Ir



 = κ̂(Dxk = 0)x1,

the last term in the right-hand side of Eq. (B-2), multiplied
by Dxk, can be interpreted as the difference of weights of
the original system with I = I0 and the same system with
I = Ir. The first term in the right-hand side of Eq. (B-2),
multiplied by Dxk, is equal to the sum of weights of horizon-
tal paths with indices k, k + 1, . . . , n in the original system
minus the sum of weights of paths with indices k +1, . . . , n
in the reduced system with I = Ir. Noticing that all out-
going vertical fluxes and horizontal fluxes leaving through
sinks with indices 1, . . . , k − 1 of the reduced system with
I = Ir are equal to the same fluxes of the original system
with I = I0 (because f1 is the same in both systems), Eq.
(B-2) finally takes the form:

Dxk
∂w

∂Dxk
=

[
wT

y Λ̂yΛ̂−1
b +

+
n∑

i=1

wx,iDx,i

ai
T̂i−1

]

1
· κ̂−1κ̂(Dxk = 0)x1−

−



wT
y Λ̂yΛ̂−1

b +
n∑

i=1, i %=k

wx,iDx,i

ai
T̂i−1(Dxk = 0)





1

x1.

According to this relation, the derivative of the system
weight with respect to Dxk is simply equal to the differ-
ence of weights of the original system with I = Ir and the
reduced system with I = Ir.

Appendix C: Physical Background

In the presence of exact or approximate integrals of mo-
tion, particle trajectories are constrained to lie in a lower-
dimensional manifold of the phase space, thus restricting
particle diffusion in stochastic systems. A particle reso-
nantly interacting with an electrostatic wave in a magnetic
field is an example of the system with constrained diffusion.
The equation of particle motion reads:

mv̇ = −Re iqϕ0ke−iωt+ik‖z+ik⊥r⊥ +
q

c
v ×B, (C-1)

where m, q, r and v are the particle mass, charge, position
and velocity correspondingly; B = ẑB‖ is the magnetic

field assumed constant; ϕ0k, ω, and k are the wave ampli-
tude, the frequency and the wave-vector correspondingly.
Introducing new coordinate z̃ = z − ωt/k‖, one can make
a canonical transformation in the Hamiltonian correspond-
ing to Eq. (C-1), to obtain [25]:

mv2
⊥ + m(v‖ − ω/k‖)2

2
+ Re qϕ0e

−iωt+ik‖z+ik⊥r⊥ = C,

where C is a constant of motion. When the wave amplitude
is small and qϕ0 - C, this integral restricts the particle
trajectory in the velocity space to a ring with the center at
vc = z0ω/k‖, and with a width ∆u ∼ qϕ/mC, where z0

is a unit vector directed along the z axis. If the resonance
condition ω − k‖u‖ = nΩ = neB/mc is satisfied, a typical
change of the particle velocity due to interaction with the
wave greatly exceeds the ring width ∆u and the particle
trajectory in the velocity space is directed along the arcs
forming the ring.

In physical systems where the wave-particle interaction
is not a continuous process, but is broken into many short
acts, in which particle phases are not correlated (an ex-
ample being a mirror machine with localized rf regions),
the particle dynamics is stochastic. In this case, the vol-
ume of the phase space subjected to the strongest diffu-
sion contains resonant particles moving along the circle
v2
⊥ + (v‖−ω/k‖)2 = const. Due to resemblance of this vol-

ume to a thin neighborhood of one-dimensional curve, it is
frequently referred to as a diffusion path. A single wave at
finite amplitude can also induce this diffusion [26].

The α-channeling concept is based on arranging diffu-
sion paths in the velocity space, in such a way that they
connect areas of phase space where hot α particles are born
to the much lower-energy areas where they are lost [16]. As
a result of population inversion created along these paths,
an average flux of α particles is induced, and the particles
leave the system and cool at the same time, quickly convert-
ing their initial energy to the wave. In mirror machines, for
instance, α-channeling can be implemented by arranging
several rf regions along the device axis [20,21]. Varying pa-
rameters of the wave regions, the configuration of diffusion
paths in the phase space can be optimized to extract maxi-
mum energy from α particles. In optimal configurations, it
might be advantageous or even unavoidable for several dif-
fusion paths to intersect, and, because the paths intersect
with the loss boundary at different values of energy, the op-
timization problem of selecting wave amplitudes (and thus
effective diffusion coefficients at the paths) minimizing the
output energy of all leaving particles is posed. Similar op-
timization problems occur when α-channeling is applied to
tokamaks [17–19].
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