
Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory

PPPL- 

Pamela Hampton
Text Box
PPPL-



Princeton Plasma Physics Laboratory 
Report Disclaimers 

 

Full Legal Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors or their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or any third party’s use or the results of such use of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof. 

 

Trademark Disclaimer 

Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors.  

 
 

PPPL Report Availability 
 

Princeton Plasma Physics Laboratory: 
 

 http://www.pppl.gov/techreports.cfm  
 
Office of Scientific and Technical Information (OSTI): 

http://www.osti.gov/bridge 

 

Related Links: 
 

U.S. Department of Energy 
 
Office of Scientific and Technical Information 
 
Fusion Links 



Plasma Equilibrium in a Magnetic Field with Stochastic Regions

John A. Krommes∗ and Allan H. Reiman†

Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, NJ 08543–0451
(Dated: April 20, 2009)

The nature of plasma equilibrium in a magnetic field with stochastic regions is examined. It
is shown that the magnetic differential equation that determines the equilibrium Pfirsch-Schlüter
currents can be cast in a form similar to various nonlinear equations for a turbulent plasma, allowing
application of the mathematical methods of statistical turbulence theory. An analytically tractable
model, previously studied in the context of resonance-broadening theory, is applied with particular
attention paid to the periodicity constraints required in toroidal configurations. It is shown that even
a very weak radial diffusion of the magnetic field lines can have a significant effect on the equilibrium
in the neighborhood of the rational surfaces, strongly modifying the near-resonant Pfirsch-Schlüter
currents. Implications for the numerical calculation of 3D equilibria are discussed.

I. INTRODUCTION

There is an extensive literature on the theory of plasma
transport in the presence of stochastic magnetic field lines
(see Refs. 1–3 and references therein). The existence of
an underlying plasma equilibrium is implicitly assumed
in such studies. In this paper, we examine the nature
of plasma equilibria in a field with stochastic field lines,
expanding upon the work of Reiman et al. in Ref. 4. We
take advantage of a similarity in form between (i) the
magnetic differential equation that determines the equi-
librium Pfirsch-Schlüter currents (and a similar equa-
tion for the variation of the pressure along the field),
(ii) the Liouville equation for magnetic field lines,5 and
(iii) nonlinear equations for turbulent plasmas, such as
the Vlasov or drift-kinetic equations, to apply mathemat-
ical methods of turbulence theory to the magnetic differ-
ential equations. We shall focus particularly on an an-
alytically tractable model (the limit of short correlation
lengths) that has previously been studied in the context
of resonance-broadening theory.3 However, we generalize
previous calculations to include the important periodicity
constraints that are required in toroidal configurations.

Equilibria in stochastic regions are of current interest
for tokamaks with ergodic limiters6 and in the context
of stellarator experiments at high pressure, where there
is evidence of the formation of a large region of stochas-
tic field lines at the plasma edge with a nonzero pres-
sure gradient in that region.4,7–9 For diverted tokamaks,
there has been some success in suppressing edge localized
modes (ELMs) by the imposition of nonaxisymmetric
fields near the plasma edge,10 and the possible role of the
stochastic layer produced near the diverter separatrix is a
subject of current research. Additionally, it has recently
been shown that the observed electron thermal conduc-
tivity in one type of discharge in the National Spherical
Torus Experiment is in quantitative agreement with a
theory of transport due to magnetic-field-line stochastic-
ity produced by magnetic perturbations from microtear-
ing instabilities.11

In this paper we shall assume that the magnetic field B
can be expressed as a sum of two pieces, B = B0 + δB,
where B0 is an underlying field with nested flux surfaces

and δB is a small perturbation that breaks the flux sur-
faces and causes the magnetic field lines to weakly dif-
fuse relative to the unperturbed flux surfaces. We will
see that if the underlying surfaces are three-dimensional
(3D), even a very weak radial diffusion of the lines can
have a significant effect on the equilibrium in the neigh-
borhood of the rational surfaces (strongly modifying the
near-resonant Pfirsch-Schlüter currents), and we describe
a numerical procedure to calculate that equilibrium.

A. Overview of the calculation

The essential idea that is explored in this work is quite
simple, although some of the details relating to toroidal
geometry are tedious, and if the equations are pursued
in all generality, one is led into the difficult and only in-
completely understood area of strong-turbulence theory
(of magnetic field-line stochasticity and the associated
current flows). It is useful to appreciate the structure
and challenges of the general theory, and we will discuss
some of those. However, in practical applications one
can make considerable simplifying approximations. To
orient the reader, in this section we sketch the analysis
as concisely as possible, without defining all of our terms
or providing supporting logic. Then, in the remainder of
the manuscript, we develop the topics in detail.

First assume one is given a magnetic field with good,
nested flux surfaces. That is compatible with the stan-
dard scalar-pressure equilibrium force balance

j × B = ∇p. (1)

Such equilibria may be calculated numerically, for exam-
ple with the Variational Moments Equilibrium Code12

(VMEC) or with the Princeton Iterative Equilibrium Solver
(PIES) code.13

Now add a small perturbation δB. In general, such
perturbations give rise to stochastic regions. If Eq. (1) is
taken literally, it requires that the pressure be flattened
in the stochastic regions; otherwise, the pressure force
would have an unbalanced projection along the stochas-
tic lines. However, the true force balance contains addi-
tional small terms that have been omitted from Eq. (1),
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and those terms can balance the pressure gradient in the
stochastic regions. This argument, based on microscopic
parallel force balance, implies after coarse-graining that
nonzero macroscopic pressure gradients can be supported
across stochastic regions.

Given such pressure (and current) profiles, we focus on
the calculation of the equilibrium B. (Ultimately, those
profiles must be determined self-consistently by solution
of long-time-scale transport equations, which we do not

address here.) For Ampère’s law ∇×B = j = j‖b̂+ j⊥,
one requires j‖ and j⊥. The field line stochasticity en-
ters through the calculation of j‖. Define µ

.
= j‖/B. (We

use
.
= for definitions.) Then the quasineutrality condi-

tion ∇· j = 0 leads to the magnetic differential equation
B · ∇µ = −∇ · j⊥. In a coordinate system for which
B0 has straight magnetic field lines, the resonant Fourier

components of the operator (1/Bφ0 )B0 · ∇ vanish at ra-
tional surfaces, implying that the resonant components
of µ may be large in thin boundary layers surrounding
the rational surfaces. To calculate their size precisely,
we coarse-grain the magnetic differential equation via a
quasilinear analysis that represents the magnetic stochas-
ticity by a diffusion operator −D∂2/∂ψ2. Here D[〈δB2〉]
is the magnetic diffusion coefficient, dependent on the
magnetic fluctuation level. (Brackets denote functional
dependence.) The stochastic diffusion broadens the res-
onances at k‖(ψ) = 0 and limits the size of the resonant
amplitudes.

We can now reformulate the equilibrium problem in
the more tractable form ∇ × B = j[B]. To define the
functional j[B], given B, we first find a nearby field
with good surfaces, B0. For numerical solution of the
equilibrium equation, B0 can be calculated by using the
VMEC equilibrium code, which assumes good flux sur-
faces, or by interpolating between regions of good sur-
faces of B. (In the latter case, it may be helpful to
construct the flux surfaces of B0 to approximately coin-
cide with cantori in any large stochastic regions.14) De-
fine δB

.
= B − B0. Calculating D[〈δB2〉], we may solve

the coarse-grained magnetic differential equation for µ.
The equation ∇ × B = j[B] may be solved numerically
by standard methods for solving nonlinear partial dif-
ferential equations, such as Picard iteration13,15,16 or a
Newton-Krylov scheme.17

The most important technical details missing from
this abbreviated discussion are the mathematics of rep-
resenting the stochastic diffusion, given that the physics
should look diffusive whether one traverses the magnetic
lines forwards or backwards. That can be handled by
a Green’s-function technique, as we will show. An ad-
ditional complication is that the Green’s functions must
be periodic in the magnetic coordinates θ (generalized
poloidal angle) and φ (toroidal angle). We will show
how that periodicity can be enforced by working in the
covering space of the underlying magnetic surface, then
using a shifted-sum representation (techniques familiar
from ballooning theory).

B. Organization

The organization of this paper is as follows. In Sec. II
we describe the basic logic in more detail, and we de-
rive the coupled system of Ampère’s law and the mag-
netic differential equation for parallel current that must
be solved. In Sec. III we discuss the interpretation of
that magnetic differential equation as a stochastic dif-
ferential equation,18 including remarks on the statistical
closure problem but ignoring periodicity considerations.
In Sec. IV we obtain the Green’s-function solution of the
statistically coarse-grained magnetic differential equation
with periodicity constraints enforced. We describe nu-
merical procedures in Sec. V, and briefly discuss out-
standing issues in Sec. VI. In Appendix A we illustrate
statistical closure theory for passive advection with the
aid of a tractable model; that discussion serves as back-
ground for the quasilinear analysis performed in the body
of the paper. Finally, in Appendix B we review the the-
ory of Green’s functions, paying particular attention to
the difficulties engendered by periodicity constraints and
the equivalence of alternate formulations.

II. FORCE BALANCE IN THE PRESENCE OF
STOCHASTIC MAGNETIC FIELDS

The usual MHD equilibrium equation (1) implies that
the pressure gradient vanishes in stochastic regions, since
it predicts that B · ∇p = 0. However, for sufficiently
small perturbations we intuitively expect the stochastic-
ity to affect the radial transport, but not necessarily to
completely flatten the pressure; this is the scenario stud-
ied in many papers that discuss the effect of field-line
stochasticity on radial transport. There is indeed ex-
perimental evidence that nonzero pressure gradients are
supported in regions of stochastic field lines in both toka-
maks and stellarators.4,19

To handle a pressure gradient in the stochastic re-
gion, we follow Ref. 4 and allow for the presence of weak
anisotropic terms in the pressure tensor (P = pI+π, with
|∇·π| � |∇p|) as well as a weak flow (|ρmv·∇v| � |∇p|,
where ρm is the mass density). Ultimately, these quan-
tities and the global pressure and current profiles evolve
and are determined by solution of the long-time trans-
port problem, which we do not address in this paper.
However, we will see that for calculation of the instanta-
neous equilibrium it is adequate to consider merely the
steady-state force-balance

j × B − ρmv · ∇v − ∇ · π = ∇p. (2)

In the remainder of this section, we shall qualitatively
discuss both the parallel and perpendicular components
of this equation in the presence of stochastic magnetic
fields. Our goal here is merely to outline the strategy; de-
tailed treatments of the stochastic differential equations
that arise are given in Sec. III and subsequently.
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A. Parallel force balance

If the field lines diffuse weakly relative to the unper-
turbed flux surfaces, the pressure gradient across the un-
perturbed flux surfaces gives rise to a small pressure gra-
dient along the weakly diffusing field lines that can be
balanced by small terms in the force balance (2). Specif-
ically, let

g
.
= −ρmv · ∇v − ∇ · π (3)

and assume that g is known. Then, upon taking the
scalar product of B with Eq. (2), one gets the magnetic
differential equation20

B · ∇p = B · g. (4)

In Sec. II B we will see that a similar equation arises for
the quantity µ

.
= j‖/B. We will treat the µ equation

thoroughly because its solution is central to our refor-
mulation of the equilibrium problem. The analysis of
Eq. (4), which we just sketch here, is closely parallel to
that for µ.

As discussed in the Introduction, we assume that B

can be expressed as a sum of two pieces, B = B0 +
δB, where B0 is a field with nested flux surfaces and
δB � B0. We shall write B0 ≡ 〈B〉, where the angular
brackets denote a statistical average (discussed in detail
in Sec. III C 1), and treat δB

.
= B − 〈B〉 as a random

variable. Then the statistical average of Eq. (4) is

〈B〉 · ∇〈p〉 + ∇ · (δB δp) = 〈B · g〉. (5)

For stochastic regions, a quasilinear estimate of the sec-
ond term (discussed in detail in Sec. III C 2) is −D∇2〈p〉,
where D∇2 stands for an operator that is possibly com-
plicated due to the details of general geometry. A flux-
surface average of Eq. (5) over the flux surfaces of B0 (de-
noted by an overline and defined precisely in Sec. III C 1)
then annihilates the first term and leads to the equation

−D
∂2〈p〉

∂ψ2
= 〈B · g〉, (6)

where ψ is the toroidal flux. This shows explicitly
how the pressure gradient across a stochastic region
can be supported by the small correction terms to the
MHD equations. We will see in Sec. III C3 that D is
O((δB/B)2). It follows that a g with a magnitude of the
order of (δB/B)2 is sufficient for parallel force balance.

This analysis shows that the parallel force-balance
equation couples to the transport equations (which ul-
timately determine g). Fortunately, we will see in the
next section that it decouples from the perpendicular
force balance, so the solution of the parallel force balance
can be regarded as being part of the transport problem
rather than the equilibrium problem; we shall not deal
with it further.

B. Perpendicular Force Balance

Upon taking the cross product of B with Eq. (2), one
obtains an expression for j⊥, the component of the cur-
rent density perpendicular to the magnetic field:

j⊥ = B × ∇p/B2 − B × g/B2. (7)

We will be interested in retaining terms through
O(δB/B) in Eq. (7). Since g = O((δB/B)2), the last
term can be neglected and one obtains the familiar ex-
pression

j⊥ ≈ B × ∇p/B2. (8)

We will be particularly interested in the resonant com-
ponents of the current. We will see that D is actually
of second order in the resonant components of δB/B, so
that the approximation remains valid for calculating the
resonant components of j.

The component of j parallel to the magnetic field, j‖,
is determined by the quasineutrality condition ∇ · j = 0,
which gives the magnetic differential equation

B · ∇µ = −∇ · j⊥. (9)

Given the pressure, Eqs. (8) and (9) specify j as a func-
tional of B: j = j[B]. With Ampère’s Law ∇ × B = j,
one has a closed set of equations that can be solved for
the equilibrium magnetic field:

∇ × B = j[B] = µB + j⊥. (10)

For evaluating the right-hand side of Eq. (8), we may
to lowest order approximate ∇p ≈ ∇〈p〉 and take the
latter quantity from experiment or transport modeling.
(We will argue in Sec. III C4 that pressure fluctuations
are negligible.) Thus, because g has been neglected, it
is unnecessary to simultaneously solve the parallel force
balance in order to determine B. (As we noted in the
previous section, solution of the parallel force balance
can be treated as part of the transport problem. We do
not address slow evolution on the transport time scale in
this paper.)

The PIES 3D equilibrium code13 was developed to
solve Eq. (10) numerically. In practice, Eq. (8) gives an
explicit expression for j⊥; Eq. (9) then determines µ. The
remainder of this paper deals largely with the solution of
Eq. (9); we focus particularly on the role of magnetic
stochasticity in that equation.

In calculating 3D equilibria with the PIES code, it has
generally been the practice to flatten the pressure profile
in stochastic regions, as dictated by the MHD equilib-
rium equation (1). In that case, the issue of solving the
magnetic differential equation along stochastic magnetic-
field-line trajectories does not arise. However, the prob-
lem becomes more complex when there are stochastic
regions with nonzero pressure gradients. Accurate in-
tegrations along field lines fail because of the well-known
extreme sensitivity of the trajectories to small changes in



4

initial conditions. Shadowing theorems imply that statis-
tics calculated from long-time integrations may still be
valid. However, instead of proceeding entirely numeri-
cally, we will use statistical methods to replace the ef-
fects of the stochasticity by diffusion operators. This
greatly simplifies numerical solution of (the statistically
averaged version of) Eq. (9). Recently the PIES code
has been modified to allow nonzero pressure gradients in
stochastic regions, using a model for j‖ along the lines
discussed in this paper. Further details of the numerical
procedure are given in Sec. V.

III. EQUATION FOR THE
PFIRSCH-SCHLÜTER CURRENTS ALONG

STOCHASTIC FIELD LINES

In this section we discuss Eq. (9), which determines the
Pfirsch-Schlüter current (the pressure-driven part of j‖).
We first describe the solution on good flux surfaces, then
we turn to a discussion of the impact of the stochastic
regions.

A. Solution for j‖ on good flux surfaces

On a good flux (ψ) surface, Eq. (9) can be solved by
transforming to magnetic coordinates (ψ, θ, φ). Those
are flux coordinates with straight field lines: B ·∇ψ = 0,
while ι(ψ)

.
= B · ∇θ/B · ∇φ is constant on the flux

surface. Upon taking ψ to be the toroidal flux, one can
write B in the form

B = ∇ψ ×∇θ + ι∇φ×∇ψ. (11)

In magnetic coordinates, Eq. (9) can be rewritten as

∂µ

∂φ
+ ι

∂µ

∂θ
= f

.
= −

∇ · j⊥
Bφ

. (12)

We use superscripts to denote contravariant components,
e.g., Bφ ≡ B · ∇φ. We shall sometimes write f ≡ f ext,
where “ext” stands for external; f ext is to be viewed as
an externally imposed source for the purposes of solving
for µ. (Later we will also discuss an internal source f int

arising from nonlinearity.) Fourier transformation in θ
and φ according to

µ(ψ, θ, φ) =
∑

mn

µ̂mn(ψ)ei(mθ−nφ) (13)

(cf. space-time variations ∼ exp[i(kx− ωt)]) gives

iκ‖mn(ψ)µ̂mn(ψ) = f̂mn(ψ), (14)

where κ‖mn(ψ)
.
= ι(ψ)m−n is essentially the wave num-

ber parallel to the unperturbed field lines.
The left-hand side of Eq. (14) vanishes for m = 0 and

n = 0. To see that f̂00(ψ) also vanishes for all ψ, re-
call that the Jacobian of the transformation between the

Cartesian components xi and generalized coordinates ui

is J
.
= (∇u1·∇u2×∇u3)−1. From Eq. (11), one sees that

the Jacobian of the (ψ, θ, φ) ≡ ui magnetic coordinate
system is J = 1/Bφ. Therefore the (0, 0) Fourier com-
ponent of ∇ · j⊥/B

φ is proportional to the ψ derivative
of the volume integral of ∇ · j⊥ over the region bounded
by ψ, which vanishes by Gauss’s law if p = p(ψ). An
alternate proof uses the formula, for arbitrary vector A,

∇ · A =
1

J

∂

∂ui
(JAi). (15)

Integration of J∇·j⊥ over θ and φ eliminates the θ and φ

components; the result then vanishes with jψ⊥.
Equation (12) does not determine the Fourier coef-

ficient µ̂00(ψ), which serves as a constant of integra-
tion. Specification of the µ̂00 profile is equivalent to
the specification of the net poloidal or toroidal current
profile.21 Thus, determination of a general nonaxisym-
metric equilibrium requires specification of two profiles,
a pressure profile and a current profile (or a q profile,
where q

.
= ι−1), just as is the case for axisymmetric equi-

libria.

B. Effect of stochastic magnetic fields on j‖

The apparent singularities of µ̂mn at the rational sur-
faces [κ‖mn(ψ) = 0] can be resolved if one allows for the

presence of magnetic islands22 or magnetic stochasticity.
A heuristic generalization of the solution of Eq. (14) that
resolves the singularity is

µ̂mn =

(
−iκ‖mn

κ2
‖mn + η2

mn

)
f̂mn, (16)

where η is an effective spread in parallel wave number
and a measure of the stochasticity in the vicinity of the
rational surface. In Sec. IV we will show how this for-
mula arises from systematic statistical formalism. First,
however, we motivate the use of statistical methods, dis-
cuss the role of small terms in the determination of j‖,
and introduce various issues related to the calculation of
the magnetic diffusion coefficient, the size of which ulti-
mately determines η.

1. Motivation for statistical methods

The component of the current density parallel to the
magnetic field, j‖ = µB, is in principle determined by
Eq. (9), which is an ordinary differential equation along
the magnetic field lines. If one uses ζ as a coordinate
along a given line, the equation for µ along the field line
takes the form

dµ

dζ
= −

∇ · j⊥
Bζ

.
= f. (17)
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This equation can in principle be solved numerically to
any desired accuracy. In practice, however, if one inte-
grates the equation sufficiently far along a given chaotic
field-line trajectory, small numerical errors amplify and
swamp the solution.

To get some additional insight into this situation,
Fourier decompose f as a function of θ and φ, then write
µ =

∑
mn µ

(mn), where

dµ(mn)/dζ = f̂mn(ψ(ζ))ei[mθ(ζ)−nφ(ζ)]. (18)

Let ζl represent a scale length such that for ζ � ζl the
trajectory may be regarded as unperturbed by δB, and
let ζnl represent a nonlinear mixing length (to be dis-
cussed in Sec. IV C), with ζnl > ζl. For (m,n) satisfy-
ing κ‖mnζl � 1, the wavelength along the field line is

short compared to ζl, and µ(mn) is well approximated
in terms of the local value of ψ by µ(mn)(ψ, θ, φ) ≈

−if̂mn(ψ)ei(mθ−nφ)/κ‖mn(ψ). On the other hand, for
(m,n) satisfying κ‖mnζnl � 1, the wavelength along the
field line is long compared to the mixing length and accu-
rate calculation of µ(mn) becomes difficult. Furthermore,
field-line trajectories that are initially close will deviate
significantly for ζ � ζnl, so the physically relevant quan-
tity is a statistical average (over either the trajectory or
initial coordinates). It is thus natural to adopt statistical
methods and study a suitably averaged 〈µ〉mn.

2. Effect of small terms on j‖

The m = 0, n = 0 component of Eq. (18) requires
special consideration. Consider first the case where ∇p =
0. The approximate Eqs. (1) and (9) imply B · ∇µ = 0;
however, the considerations discussed in Sec. II A for the
equation B · ∇p = 0 apply here as well. Specifically, a
nonzero ∇µ across the unperturbed surfaces corresponds
to a very small B · ∇µ along the weakly diffusing field
lines. That small B·∇µ can be balanced by contributions
from the small additional terms retained in the expression
for j⊥ in Eq. (7).

Consider a case where a magnetic field that ini-
tially has good flux surfaces is stochasticized by a small
magnetic-field perturbation. Initially there is a µ̂00(ψ)
profile, which can be determined by specifying either
q(ψ) or a net poloidal or toroidal current as a function
of ψ. Turning on a small magnetic-field perturbation
that breaks the flux surfaces, so that the field becomes
stochastic in the region of interest, produces a slow ra-
dial diffusion of the field lines. The electrons move along
the field lines much more rapidly than the ions, and they
carry electron momentum with them as they move along
the radially diffusing lines, producing an electron viscos-
ity. This effect was first studied by Stix.23 The resulting
term in Ohm’s law is called hyper-resistivity ; it has been
discussed extensively in the context of tearing-mode tur-
bulence (see, e.g., Ref. 24 and references therein). As
with the weak variation of p along the radially diffus-
ing field lines, the weak variation of µ along the radially

diffusing field lines in this case is properly dealt with in
the context of transport theory rather than equilibrium
theory.

In the more general case where ∇p is nonzero, the same
considerations lead to the conclusion that µ̂00 varies very
slowly along the magnetic field lines; that variation is
properly dealt with in the context of transport theory.

3. Stochastic magnetic fields and resonance broadening:
Heuristic considerations

We shall assume that Bφ0 � Bθ0 and that the three
components of δB are of the same order, so the term
containing δBφ in the magnetic differential equation can
be neglected. Thus, in the presence of δB Eq. (12) ac-
quires two additional terms:

∂µ

∂φ
+ ι(ψ)

∂µ

∂θ
+
δBψ

Bφ0

∂µ

∂ψ
+
δBθ

Bφ0

∂µ

∂θ
= f ext. (19)

The homogeneous part of Eq. (19) is identical in form
to the Liouville equation for magnetic field lines discussed
in the fundamental paper by Rosenbluth, Sagdeev, Tay-
lor, and Zaslavskii (RSTZ).5 Those authors showed that
when the perturbing fields are stochastic their effect can
be described at the macroscopic level by a diffusion equa-
tion, and they found the quasilinear expression for the
magnetic diffusion coefficient D. A related equation for
test-particle transport in stochastic magnetic fields was
discussed by Krommes25 and Krommes et al.2 (There has
been a resurgence of interest in such equations; see, for
example, Ref. 26 and references therein.)

One can also draw some parallels between Eq. (19) and
other stochastic differential equations commonly encoun-
tered in plasma physics. If ι is a monotonic function of ψ
in the region of interest, one can adopt it as the radial
variable. Equation (19) then becomes

∂µ(ι, θ, φ)

∂φ
+ ι

∂µ

∂θ
+
δBι

Bφ0

∂µ

∂ι
+
δBθ

Bφ0

∂µ

∂θ
= f ext. (20)

We first compare this with the collisonless Vlasov equa-
tion in one spatial dimension for an unmagnetized plasma
with a turbulent electrostatic field δE:

∂f(x, v, t)

∂t
+ v

∂f

∂x
+

q

m
δE
∂f

∂v
= 0. (21)

The homogeneous part of Eq. (20) has the same form as
Eq. (21) if one ignores δBθ. (We identify µ → f , θ → x,
ι → v, and φ → t.) For a random δE that is given
(i.e., not a functional of f), Eq. (21) defines the so-called
stochastic acceleration problem, which has been studied
by Sturrock,27 Dupree,28 Orszag and Kraichnan,29 and
Orszag,30 for example.

An even closer parallel is to the drift-kinetic equation
for a plasma in a strong magnetic field parallel to the
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z direction and possessing a fluctuating E × B velocity
δVE :

∂f(x, v‖, t)

∂t
+ v‖

∂f

∂z
+ δVE · ∇f +

q

m
E‖

∂f

∂v‖
= 0. (22)

The parallel nonlinearity is frequently neglected. Then
the nonlinear advection term δVE · ∇f = δVE,x∂xf +
δVE,y∂yf is seen to be analogous to the δB terms in
Eq. (20); note that ∇ · VE = 0 for constant B, anal-

ogous to ∇ · (δB/Bφ0 ) = 0 for constant Bφ0 .
In Refs. 25 and 2, Krommes pointed out that the simi-

larity in form of equations such as Eq. (20) to the Vlasov,
drift-kinetic, and other nonlinear equations allows one to
apply to magnetic-field problems the mathematical meth-
ods that have been developed extensively in the context
of stochastic differential equations18 and turbulence.3 To
do so, one begins by considering δBθ and δBψ (or δBι)
to be random functions. Then all of the methodology
of statistical closure theory becomes available. A review
article on that topic is Ref. 3.

In this section, we introduce the closure issues heuristi-
cally. In the next section and in Appendix A, we consider
more formal aspects of the statistical problem.

In the simplest (resonance-broadening) approximation,
the effects of the fluctuating terms are replaced by dif-
fusion operators. For example, if in Eq. (21) one con-
siders δE to be random and further assumes that it is
Gaussian white noise (delta-correlated in time), it follows
from Fokker-Planck theory that the probability density
function (PDF) obeys

∂f

∂t
+ v

∂f

∂x
−

∂

∂v
Dv(v)

∂f

∂v
= 0, (23)

where the velocity-space diffusion coefficient is

Dv
.
=
( q
m

)2
∫ ∞

0

dτ 〈δE(x̃(τ), τ)δE(x̃(0), 0)〉 (24)

and the integral is taken over the turbulent particle
trajectories x̃(τ) (the tilde denotes a random quan-
tity). This is a principle result of Dupree’s 1966
resonance-broadening formalism,28 which has been dis-
cussed extensively.3

Note that the assumption of Gaussian white noise is
not essential; it merely allows one to rigorously transform
an equation of the form of Eq. (21) to the more tractable
form of Eq. (23). When the turbulence has a nonzero
correlation time or length, the transformation still holds
approximately provided that the effective Kubo number
for the problem (see Appendix A) is small.3,31

At virtually the same time as Dupree’s work leading to
Eq. (23), RSTZ5 derived the analogous equation for the
PDF fm of magnetic field lines. Note that the operator

∂

∂φ
+ ι

∂

∂θ
≡

∂

∂ζ
(25)

is the directional derivative along the unperturbed field
lines. RSTZ treated ζ as literally time-like in that they

advanced the Liouville distribution forward along the
lines, analogous to the causal way in which the initial-
value problem is usually studied in turbulence theory.
Upon performing an appropriate average, they found a
diffusion equation that in the present notation would
have the form

∂fm
∂ζ

−
∂

∂ψ
D
∂fm
∂ψ

= 0, (26)

where D is the diffusion coefficient of the magnetic lines.
One might expect to be able to follow an analogous

procedure for the magnetic differential equation (19).
However, while Eq. (19) is similar to the equation studied
by RSTZ, there is an important nuance. In an applica-
tion to a real device, one must solve for 〈µ〉(θ, φ) on a
domain that is 2π-periodic in both θ and φ; however,
periodic systems are not spatially causal. To get to any
particular physical point, one can move either forward or
backward along a line; the physics should look diffusive
in either direction. Thus, in the presence of periodicity

〈µ〉 itself does not obey a diffusion equation. Instead, one
must represent 〈µ〉 as a superposition of solutions that are
constructed from both causal (forward integration) and
anti-causal (backward integration) Green’s functions. It
will be the causal Green’s function that obeys a stan-
dard diffusion equation (with ζ increasing). Thus, if one

defines δbi
.
= δBi/Bφ0 , takes the δbi in Eq. (19) to be

Gaussian white noise (as seen along the unperturbed field
lines), and assumes that j⊥ is statistically independent
of δB [strictly speaking, this is not true; see the discus-
sion of term (c) below Eq. (41)], one may argue (ignoring
details of general geometry) that the causal Green’s func-
tion G+ should obey

∂G+

∂ζ
− ε

(
∂

∂ψ
Dψ ∂G

+

∂ψ
+

∂

∂θ
Dθ ∂G

+

∂θ

)

= δ(ψ − ψ′)δ(θ − θ′)δ(ζ − ζ ′), (27)

where

εDψ .
=

∫ ∞

0

dζ 〈δbψ(ψ̃(ζ), θ̃(ζ), ζ)δbψ(ψ̃(0), θ̃(0), 0)〉,

(28a)

εDθ .
=

∫ ∞

0

dζ 〈δbθ(ψ̃(ζ), θ̃(ζ), ζ)δbθ(ψ̃(0), θ̃(0), 0)〉,

(28b)

and the integrals are taken along the field-line trajecto-
ries. The ε coefficients have been included to emphasize
that the diffusion coefficients are assumed to be small.
In the analogous equation for the anti-causal (adjoint)
Green’s function G−, the sign of the diffusion terms is
reversed.

An implicit assumption of the resonance-broadening
theory is that the fluctuating field is passive. That is,
it is statistically specified, not self-consistently related to
the dependent variable (e.g., the particle PDF). In our
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application, this is actually not true because the solu-
tion for 〈µ〉 will be fed into Ampère’s law, from which
δB ultimately follows. Nevertheless, for the purpose of
simplifying the equations for the Green’s functions, we
shall use a passive approximation, as a complete theory
of self-consistent statistics is quite involved.3

The introduction of ζ has the unfortunate side effect
of complicating the periodicity constraints. We will solve
the periodic generalization of Eq. (27) in Sec. IV, where
we also show how to construct 〈µ〉 from G+ and its ad-
joint G−. Before doing so, however, it is necessary to
resolve several other issues:

1. One must clearly understand how to work with the
ensemble average 〈. . . 〉.

2. It is well known that standard resonance-
broadening theory violates certain conservation
properties. One must understand the implications
of those in the present context and argue that they
are unimportant.

3. Because j⊥ depends on B according to Eq. (8), it
depends on the fluctuating δB. Therefore, δj⊥ is
statistically correlated to δB; this violates the as-
sumption of statistical independence between the
random coefficient and the inhomogeneous source
term that is used in the derivation of the equation
for 〈µ〉.

4. Fundamentally, we find an equation for 〈µ〉. How-

ever, the current j̃ = µ̃B̃ + j̃⊥ on the right-hand
side of Ampère’s law involves the total µ̃

.
= 〈µ〉+δµ.

One must either discuss how to treat the fluctuat-
ing δµ and δj⊥ or argue that they are negligible.

The resolutions of these issues are nontrivial. Some dis-
cussion is given in the next section. We have also found it
instructive to use a simple stochastic model to illustrate
various points, especially items 2 and 3 above. In order
to not interrupt the flow of the logic, we have relegated
discussion of that model to Appendix A.

C. Statistical methodology and the diffusion
equation

We now consider a more formal approach to the deriva-
tion of the diffusion equation. We begin with some gen-
eral discussion of statistical averaging techniques. Then
in Sec. III C 2 we introduce a stochastic Langevin equa-
tion and use it to derive the diffusion equation.

1. Statistical averaging techniques

The instant one introduces a diffusion coefficient, as
we did heuristically in the last section, one commits to
the use of some sort of statistical averaging. Ensemble
averages are the most flexible, as they permit systematic

discussion of temporally nonstationary and spatially in-
homogeneous problems without the need for somewhat
ill-defined multiple-scale methods. A clear statement
was made by Balescu (Ref. 32, Appendix A.7). In self-
consistent problems, one generally envisions an ensemble
of initial conditions (and then argues that the final, non-
linearly and self-consistently determined, statistics are
sensibly independent of the initial state33). For passive
problems, one additionally postulates an ensemble of re-
alizations of the random coefficient. The use of ensem-
bles reflects the fact that in stochastic regimes dynamical
realizations are extremely sensitive to small changes in
initial conditions. Diffusion coefficients describe the con-
sequences of that sensitivity in a coarse-grained, mean-
square sense.

Statistical methods can be problematical. In non-
stochastic (integrable) regimes, indiscriminate use of sta-
tistical approximations can introduce spurious dissipa-
tion or decay of correlations.3 In the present problem, we
also face an additional difficulty. Although in traditional
analytical turbulence theory one solves equations only
for ensemble-averaged quantities (e.g., the mean field
and two-point correlation function), we intend to solve
Ampère’s law (numerically) in a particular realization.
Stochastic fluctuations will be involved in that procedure,
so we must be very careful.

As we have stated, we divide the total magnetic field
into (i) a part B0 possessing good flux surfaces every-
where, and (ii) a stochastic part δB. This decomposition
has meaning even for a single realization defined by a
microscopic j⊥ field. However, to aid us in dealing with
the extreme sensitivity of the field lines (and thus j‖)
in stochastic regions to small changes in initial condi-
tions, we treat the magnetic field as a random variable

B̃ = 〈B〉+δB and envision a formal ensemble averaging
such that 〈B〉 = B0. We will need to say little about the
operational definition of 〈. . . 〉. However, it is instructive
to understand that it is neither a simple integration over
angles nor a flux-surface average. In simple problems
with homogeneous statistics, it is sometimes stated that
ensemble averages may be replaced by spatial integration
over a single realization. That assertion is incomplete, for
one must define multipoint correlation functions as well
as the mean field. Furthermore, it holds only for ergodic
flows, whereas ensemble averages are not so restricted.
In any event, spatial integration is not appropriate in
the present case because in general even fields with good
flux surfaces have nontrivial dependencies on all coor-
dinates. For example, in straight field-line coordinates
ui = (ρ, θ, φ), where ρ labels the flux surface, it can be
shown34 that

Bρ0 = 0, Bθ0 =
Ψ̇pol(ρ)

2πJ(ρ, θ, φ)
, Bφ0 =

Ψ̇tor(ρ)

2πJ(ρ, θ, φ)
, (29)

where Ψpol and Ψtor are the poloidal and toroidal fluxes,
the dot means the derivative with respect to ρ, and J is
the Jacobian. Thus angle dependence enters the con-
travariant components through J . When B0 is con-
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structed in terms of the covariant basis vectors, i.e.,
B0 = Bi0ei (summation convention implied), additional
coordinate dependence enters through the ei’s. One can-
not extract the Ψ̇’s merely by integrating B(ρ, θ, φ) over θ
and φ.

For the magnetic field vector only, a coordinate-
averaging operation that might appear to work is the
following. Assume that one is given the set of covariant
basis vectors ei and the reciprocal, contravariant set ei

that are associated with the good flux surfaces expressed
in straight field-line coordinates. (In reality, the e’s are
not known until the flux surfaces are found.) J is then
determined according to J = e1 · (e2 × e3). Define

〈B〉
.
= ei

V ′

(2π)2J
Bi, (30)

where Bi
.
= ei ·B, V ′ .=

∫ 2π

0
dθ
∫ 2π

0
dϕJ , and the overline

denotes the flux-surface average: For any scalar A,

A(ρ)
.
=

1

V ′

∫ 2π

0

dθ

∫ 2π

0

dϕJ A. (31)

(A thorough discussion of flux-surface averaging can be

found in Ref. 34.) Because V ′/[(2π)2J ] = 1 and ei · e
j =

δji , this procedure defines a proper projection operator.
Equation (30) becomes

〈B〉 = ei

(
1

J

∫ 2π

0

dθ

2π

∫ 2π

0

dφ

2π
JBi

)
. (32)

We see that this averaging procedure extracts the angle-
independent part of the J-weighted contravariant com-
ponent, but still defines a 〈B〉 that depends on θ and φ.

For this average to be useful, one would hope to apply
it to Ampère’s law and write something like ∇ × 〈B〉 =
〈j〉. However, in general geometry the J-weighted average

does not commute with the curl! One has

(∇ × B)i =
1

J
εijk

∂Bk
∂uj

, (33)

naturally expressed in terms of the covariant components
of B. One may introduce the contravariant components
with the aid of the metric tensor gij

.
= ei · ej , viz.,

Bk = gklB
l. However, although the J−1 in Eq. (33) is

canceled by the J in the weighted average (32), the pres-
ence of the angle-dependent metric factors introduces a
nonlinear coupling of Fourier harmonics and precludes
the average from acting directly on the Bl. In fact, in
stellarators this coupling may be the principal mecha-
nism for the generation of resonant (stochastic) Fourier
components (see Sec. III C4).

To deal with this difficulty, we shall eschew a statistical
treatment of Ampère’s law; instead, we will solve the
full, unaveraged equation numerically, given j = µB +
j⊥. Having obtained the total B, one can use standard
interpolating techniques to construct a field B0 ≡ 〈B〉
having good surfaces everywhere. Then δB is defined
from δB = B − B0.

Unfortunately, use of this procedure raises another is-
sue, which is how to define the total µ (treated as a ran-
dom variable µ̃). Since we desire to introduce an analyti-
cal approximation and broaden the resonances by means
of diffusion terms, we cannot avoid some kind of averag-
ing; we must write µ̃ = 〈µ〉 + δµ and calculate both 〈µ〉
(from a diffusion equation) and δµ. In order to ultimately
obtain a time-like diffusion equation for 〈µ〉 (or its un-
derlying Green’s functions), we need to be able to write

〈B0 · ∇µ̃〉 = B0 · ∇〈µ〉 =
Ψ̇tor

2πJ

(
∂〈µ〉

∂φ
+ ι

∂〈µ〉

∂θ

)
. (34)

However, as is well known,34 the flux-surface average an-

nihilates B0 · ∇, so use of that operation would predict
B0 · ∇〈µ〉 = 0. But we expect that an appropriately
defined 〈µ〉 is angle-dependent in a general toroidal equi-
librium, so contains a spectrum of m’s and n’s. Only
for 〈µ̂〉00 does B0 · ∇ vanish identically. Therefore a
flux-surface average is not appropriate for our needs.

There is a simple and intuitive way of understand-
ing why the flux-surface average seems to work for B

but is inadequate for µ. Consider an analogy to the
time-dependent problems of standard turbulence theory.
Given a temporal evolution equation for a generic ran-

dom field ψ̃(t) [analogous to µ̃(ζ)], one may average that
equation to find ∂t〈ψ〉(t) + · · · = 0. From an arbitrary
initial condition, the mean field evolves in time (analo-
gous to B0 · ∇〈µ〉 6= 0). Ultimately, the system satu-
rates due to nonlinear terms and achieves a steady state
in which ∂t〈ψ〉 = 0. The steady-state 〈ψ〉 is analogous
to the 〈µ̂〉00 term, which is annihilated by B0 · ∇; the

temporal Fourier components 〈ψ̂〉(ω) of the nonsteady
〈ψ〉(t) are analogous to the 〈µ̂〉mn. In contrast, in our
calculation of the mean magnetic field there is no analog
to nonsteady states. B0 is a global configuration, not
“evolving” in field-line distance ζ. (Slow temporal evo-
lution occurs on the transport time scale, but we do not
address the transport problem in this paper.) It is analo-
gous to the saturated steady state of the time-dependent
problems. The flux-surface average of the contravariant
magnetic-field component extracts that state directly.

Given such difficulties, we shall eschew attempts to de-
fine averages in terms of spatial integration. Instead, by
analogy with the more familiar time-dependent problems,
we shall apply formal ensemble-averaging procedures to
the µ̃ equation, assuming only that the average commutes
with B0 · ∇. That will lead us to a diffusion equation
that contains coefficients involving the two-point corre-
lation functions of the δbi’s. Only at that stage will we
need to say something about the operational definition
of the average; we will be able to do that plausibly.
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2. A stochastic Langevin equation and derivation of a
diffusion equation for µ

.
= j‖/B

The statistical average of Eq. (19) is
(
∂

∂φ
+ ι

∂

∂θ

)
〈µ〉 +

1

Bφ0 J

∂

∂ui
(Bφ0 J〈δb

iδµ〉)

= −〈∇ · j⊥/B
φ
0 〉 = 〈f ext〉. (35)

We used ∇ · δB = 0 to write δB · ∇µ = ∇ · (δB µ),
then employed formula (15). Equation (35) is exact. To
proceed, one must introduce a statistical closure such as
the direct-interaction approximation (DIA).3 Although
such approximations are usually stated in terms of means
and correlation functions, we shall for pedagogical rea-
sons instead assert a stochastic Langevin model. (See
Appendix A for the simplest version of this procedure as
applied to a problem dependent only on time.) In or-
der to focus on the statistical aspects of the problem, we
shall ignore periodicity issues for the remainder of this

section. The exact equation for δµ is

B0 ·∇δµ+∇·(δB δµ−〈δB δµ〉) = −δB ·∇〈µ〉−∇·δj⊥.
(36)

By using straight field-line coordinates based on the mean
field B0, one can rearrange and simplify this to
(
∂

∂φ
+ ι

∂

∂θ

)
δµ+(n.l. terms) = −δbi

∂〈µ〉

∂ui
+δf ext, (37)

where “(n.l. terms)” refers to the δB δµ terms in Eq. (36)

and δf ext refers to the last term of Eq. (36) divided byBφ0 .
A statistical closure is intended to provide a workable
model of the nonlinear terms. One expects that one ef-
fect of those terms will be to broaden the resonances by
introducing a diffusion operator acting on δµ; we shall
write that as −D′∇2δµ, where “D′∇2” is a symbolic no-
tation for a possibly complicated formula. (That is, D′

is really a tensor and should appear inside one of the
derivatives, as ∇ · D

′ · ∇, and one must worry about
metric factors associated with the nonorthogonal coordi-
nate system. We use the prime to distinguish D′ from
the diffusion coefficient D that will shortly appear in the
equation for 〈µ〉.) This diffusion term describes so-called
coherent response, i.e., it acts on the same δµ that ap-
pears under the time-like φ derivative. In general, there
is also a phase-incoherent part of the nonlinearity, which
we shall call δf int (“int” stands for internal). (In the
general theory, as discussed in Appendix A, there also
arises another piece Σ′δb. However, Σ′ vanishes in the
white-noise limit, so we do not write it here.) Thus one
has
(
∂

∂φ
+ ι

∂

∂θ

)
δµ−D′∇2δµ = −δbi

∂〈µ〉

∂ui
+ δf int + δf ext.

(38)
In the passive DIA, the incoherent internal noise δf int is
modeled by

δf int = −δB · ∇δξ, (39)

where δξ is a centered Gaussian random variable, sta-
tistically independent of δB, whose variance and cross
correlations with δB and δf ext are pinned to those of
the δµ that is ultimately determined from the Langevin
equation (38). This construction is subtle and possibly
unfamiliar; see further discussion in Appendix A.

For forward motion, one can solve Eq. (38) by intro-
ducing the causal response function R that obeys

(
∂

∂φ
+ ι

∂

∂θ

)
R(1; 1′) −D′∇2R = δ(1 − 1′) (40)

subject to R(φ;φ′) = 0 for φ < φ′ on a given field line.
(The precise meaning of “forward” will be clarified in
Sec. IV with the introduction of field-line-following coor-
dinates.) Thus, with ? denoting convolution,

δµ = R ?

(
−δbi

∂〈µ〉

∂ui︸ ︷︷ ︸
(a)

+ δf int

︸︷︷︸
(b)

+ δf ext

︸︷︷︸
(c)

)
. (41)

3. Role of δµ in the 〈µ〉 equation

The δµ so determined is required for both the 〈µ〉 equa-
tion and for Ampère’s law. Here we concentrate on its
role in Eq. (35) for 〈µ〉, for which we need 〈δbiδµ〉. All
terms of Eq. (41) contribute to this, in principle; label
them (a), (b), and (c). Term (a) evaluates directly to

〈δbiδµ〉(a) = −Dij ∂〈µ〉

∂uj
, (42)

where the magnetic diffusion tensor is schematically
Dij .

= 〈δbiRδbj〉. In writing these forms, we have implic-
itly made the Markovian approximation, namely that the
fluctuating magnetic field has a short Lagrangian corre-
lation length, so the action of R is only on the second δb,
not on 〈µ〉.

The diffusion tensor can be simplified by neglecting off-
diagonal correlations. That need not be true in general,
but it is a legitimate approximation for the boundary-
layer problem we will ultimately solve, where the diver-
gence of term (a) is dominated by Dψ∂2/∂ψ2. As we
stated earlier, we shall neglect δbφ because the back-
ground toroidal field is large. For any diagonal compo-
nent, one has

Dii = 〈δbi(ρ, θ, φ)

∫
dρ dθ dφR(ρ, θ, φ; ρ, θ, φ)δbi(ρ, θ, φ)〉

(43)
(no sum on i). In the subsequent discussion, we shall
drop the i label for brevity. In the absence of resonance
broadening and periodicity constraints, the solution of
Eq. (40) for R is R ≈ R0, where

R0(ρ, θ, φ; ρ′, θ′, φ′) = H(φ−φ′)δ(θ−θ′−ι(φ−φ′))δ(ρ−ρ′)
(44)
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and H(ζ) is the unit step function [see Eq. (A9)]. Upon
Fourier-decomposing δb and defining ζ

.
= φ−φ, one finds

D =

∫ ∞

0

dζ
∑

m′n′

∑

mn

〈δb̂m′n′(ρ)δb̂mn(ρ)〉

× ei(m
′+m)θe−i(n

′+n)φei(n−ιm)ζ . (45)

This is a complicated angle-dependent expression. How-
ever, since the principal role of D is merely to broaden
the resonances in the 〈µ〉 equation, we argue that its size
is more important than its detailed form. One can sim-
plify expression (45) by using one of two closely-related
arguments. First, one can assert that distinct Fourier
components are uncorrelated. That assumption is legiti-
mate in a statistically homogeneous geometry, and a ho-
mogeneity assumption is plausible for a stochastic mag-
netic field with short correlation length. Alternatively,
one can average D over θ and φ by arguing that the D
should be representative of the (assumed homogeneous)
stochastic region as a whole. Either way, one gets the
angle-independent formula

D =

∫ ∞

0

dζ
∑

mn

〈|δb̂mn|
2〉eiκ‖m nζ . (46)

(The general Green’s-function formalism to be described
in Sec. IV and Appendix B can in principle handle
an angle-dependent D, such as might arise from weak

poloidal variation of 〈δb̂2〉.) Because the spacing between
rational surfaces is small, it is appropriate to treat κ‖ as
a continuous variable (see discussion in the next para-

graph) and introduce the spectral density Ĉn(κ‖), nor-
malized such that

〈δb2〉 =
∑

n

∫ ∞

−∞

dκ‖

2π
Ĉn(κ‖) =

∑

mn

〈|δb̂mn|
2〉. (47)

Formula (46) then becomes

D =

∫ ∞

0

dζ CQL
L (ζ), (48)

where

CQL
L (ζ)

.
=

∫ ∞

−∞

dκ‖

2π
eiκ‖ζ

∑

n

Ĉn(κ‖) (49)

is the quasilinear approximation to the Lagrangian corre-

lation function. (Lagrangian implies measurement along
the field lines.) [Compare Eq. (48) to Eqs. (28).] It is
reasonable to expect CL(ζ) to decay as |ζ| → ∞. The
correlation length or integral scale ζac is defined by

ζac
.
= C−1

∫ ∞

0

dζ CL(ζ), (50)

where C
.
= C(ζ = 0) = 〈δb2〉. Thus

D = Cζac. (51)

In the quasilinear approximation (49), formula (50)
can be written as ζQL

ac = 1
2CL(k‖ = 0)/C or, in

terms of the spectral width ∆κ‖ defined from C =

(2π)−1∆κ‖ĈL(κ‖ = 0), ζQL
ac = π/∆κ‖. Thus

DQL = π〈δb2〉∆κ−1
‖ . (52)

Such formulas are well known in the literature on stochas-
tic magnetic fields.2

The key assumption in this argument is that κ‖ may
be treated as a continuous variable even though it is built
from discrete Fourier mode numbers. This issue is well
known in the closely analogous problem of the quasilinear
velocity-space diffusion coefficient for electrostatic Vlasov
turbulence.3,35 The resolution is understood to be that
in the stochastic regime (i.e., when the Chirikov criterion
for stochasticity is satisfied) the resonance broadening,
contained in Eq. (40) but neglected in the approximate
solution (44), is large enough to justify the continuum
approximation. Note that the final formula for DQL does
not depend on the strength of the resonance broadening.
That is, if we think of the stochasticity as providing an
extra damping with decay length ζD , we are working in
the quasilinear limit ζac � ζD. That is the case when
the diffusion is sufficiently weak, i.e., when one is not too
far above the threshold for stochasticity.

The appearance of the spectral component at κ‖ = 0
tells us that the diffusion of the magnetic lines is a res-
onant phenomenon. Frequently one evaluates D by per-
forming the ζ integration first in Eq. (46); in that pro-
cedure, and in the absence of resonance broadening, the
quantity δ(κ‖) appears [analogous to the δ(ω − k · v)
in Vlasov quasilinear theory]. This unfortunately intro-
duces the embarrassment of a Dirac delta function eval-
uated with a discretely varying (in m and n) argument;
the resulting D(ρ) would be a singular function of ρ. The
problem is again cured by passing to the continuum limit
or by introducing some resonance broadening. However,
both physically and mathematically, introducing the La-
grangian correlation function and performing the ζ inte-
gral last is the better way to proceed. (These ideas have
a long history. In plasma physics, they go back to at
least the 1976 PhD dissertation of Tetreault.36 For flu-
ids, basic notions of the Lagrangian correlation function
were already considered by G. I. Taylor37 in 1921.)

To this point, we have ignored periodicity considera-
tions in the calculation of D. Clearly the toroidal period-
icity constraint should affect the value of D when ζac be-
comes greater than or comparable to 2π. In that case, one
must use more sophisticated, periodically constrained, re-
sponse functions; see the discussion in Appendix B. In
practice, it is frequently found that correlation lengths
are of the order of the connection length qR, where R is
the major radius. That implies ζac ∼ qR/2πR = q/2π,
so one is marginally in the regime where periodicity con-
straints on D are unimportant. Of course, that is con-
sistent with our initial assumption of “short” correlation
lengths, to which we restrict ourselves here.
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Next we consider the contribution to 〈δb δµ〉 due to the
internal incoherent noise [term (b)]. This term vanishes
because

〈δb δµ〉(b) = 〈δbR δf int〉 ∼ 〈δbR δb δξ〉 = 0, (53)

the last result following because δξ is statistically inde-
pendent of δB and has zero average.

Finally, we must assess the contribution of δf ext

[term (c)] to 〈δb δµ〉. The answer is not immediate be-
cause, as we remarked two paragraphs above, δf ext is a
functional of δB and is therefore cross-correlated with δb.
The theory of passive advection in the presence of such
cross correlations is relatively unfamiliar, although some
calculations have been done.38 In Appendix A we work
out an explicit example that demonstrates the conse-
quences of the cross correlation X . There one sees that
X effectively behaves as an O(〈δb2〉) correction to 〈f ext〉.
Since for our problem 〈f ext〉 ∼ ∇ · j⊥ is of zeroth order
in δb, we shall neglect term (c). (This argument fails
for µ̂00; however, we will specify µ̂00 as part of the defi-
nition of the equilibrium, not determine it from the 〈µ〉
equation.)

4. Role of fluctuating terms in Ampère’s law

Although the incoherent noise makes no direct contri-
bution to the evolution of 〈µ〉, it obviously does con-
tribute to δµ, which appears on the right-hand side
of Ampère’s law. If that contribution were retained,
the complexity of the problem would increase consider-
ably since one would have to work explicitly with many
stochastic realizations and generate appropriate samples
of δξ at each stage of the field-line integration that de-
termines 〈µ〉. Since the representation (39) describes a
closure approximation, it would also be unclear how the
random statistics of δξ would affect the detailed structure
of the stochastic field. Fortunately, we can argue that
when the stochastic component is small δf int is negligible
relative to δf ext. The latter involves the fluctuating j⊥,
which is the fluctuating part of Eq. (8). That involves
either δB or pressure fluctuations δp. Crudely speaking,
those arise at linear order, whereas the incoherent noise
is nonlinear and should therefore be small.

Such an argument is dangerous and incomplete; the
sizes of stochastic terms may differ in mean square from
nominal orderings. In Appendix A, we work out a
tractable model in complete detail and focus in particular
on the effects of the incoherent noise. In fact, that noise
does turn out to be important at scales long compared to
the appropriate correlation scale, as its presence is nec-
essary in order to guarantee conservation of quadratic
nonlinear invariants. However, we argue in Appendix A
that on the scale at which the stochastic field saturates
the effect of the incoherent noise should be small. We
shall therefore neglect its contribution to δµ.

Whether fluctuations are important at all on the right-
hand side of Ampère’s law appears to depend on the ap-

plication. Those terms arise only in stochastic regions,
so one must inquire into the dominant mechanism for the
generation of resonant harmonics. In stellarators, which
are intrinsically nonaxisymmetric, the metric factors in-
volved in the curl operator depend on both θ and φ; non-
linear beats between that dependence and nonresonant
harmonics of 〈B〉 can drive substantial resonant compo-
nents. Therefore, for stellarators we shall ignore all fluc-
tuating terms on the right-hand side of Ampere’s law.

This argument does not apply to axisymmetric toka-
maks, for which the metric factors are independent of φ.
The fluctuating terms are therefore crucial and must be
retained, at least through first order. Explicitly,

δj = δµ〈B〉 + 〈µ〉δB + δµ δB − 〈δµ δB〉 + δj⊥, (54)

where from Eq. (8) δj⊥ involves δB and δp. We shall
neglect the small products of fluctuating quantities. Be-
cause δB is known at any step in the iterative solution
of Ampère’s law, calculation of any term involving δB
presents no problem; that includes term (a) in Eq. (41).
Term (c) in Eq. (41) involves δp, as does δj⊥. One
can estimate the size of δp as follows. From Eq. (5),
the basic size of the small terms g [Eq. (3)] is O(δB2).
From Eq. (4), nonresonant parts of δp are also O(δB2)
and therefore negligible. The maximum size of a reso-
nant part is O(g/ηD); since we show in Sec. IV C that
ηD = O(D1/3) = O(δB2/3), one estimates that the res-
onant δp = O(δB4/3). This is slightly smaller than the
basic δB; furthermore, it exists only in a narrow stochas-
tic layer [whose width is O(δB2/3)]. Therefore, we will
neglect δp altogether.

There are two sources of δB. First, a seed δB can be
introduced externally by either field errors or purposely
produced nonaxisymmetric fields, such as those used to
suppress ELMs. The plasma responds to the seed δB
as dictated by Ampère’s law to produce the true δB of
the equilibrium. Second, a δB can arise spontaneously
from a saturated nonaxisymmetric instability, such as a
tearing mode or resistive wall mode. In each case, the
Fourier decomposition of δB in magnetic coordinates re-
veals a broad Fourier spectrum that generally includes
resonant components corresponding to the rational sur-
faces in the plasma. This effect is of first order in δB and
can therefore be expected to dominate the second-order
coupling terms in Eq. (54).

IV. PERIODIC SOLUTION IN THE WEAK
DIFFUSION LIMIT

In this section, we solve the periodic generalization of
Eq. (27) for the Pfirsch-Schlüter current under the as-
sumption that the diffusion terms are relatively weak.
For definiteness, we adopt the toroidal flux ψ as the ra-
dial coordinate ρ.
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A. Introductory remarks on periodic Green’s
functions

For maximal generality, we shall use the method of
Green’s functions. The periodicity requirements raise
special concerns and interesting subtleties, so the for-
malism is reviewed and illustrated in Appendix B. That
discussion describes several equivalent formulations dis-
tinguished by the boundary conditions applied to Green’s
function. When the stochastic diffusion is weak there
may be numerical advantages to the use of homoge-
neous boundary conditions, as is traditionally done in
boundary-value problems; see Sec. B 3 c. However, the
simplest formal solution involves a function G2π , con-
strained to be 2π-periodic in both θ and φ, such that

〈µ〉(u) =

∫ ψwall

0

dψ

∫ 2π

0

dθ

∫ 2π

0

dφG2π(u; u)〈f〉(u). (55)

This formula is to be used for all Fourier harmonics
(m,n) 6= (0, 0); again, µ̂00 is to be specified.

It is not immediately obvious what equation G2π

should obey. For an initial-value problem, G should obey
a diffusion equation along the magnetic lines, as discussed
in Sec. III C 2. In a doubly periodic torus, however, one
can traverse magnetic lines in either of the forward or
backward directions, and the physics should look diffu-
sive in either direction. That is, if one chooses ζ = 0 as
an arbitrary origin, one intuitively expects an equation
of the form

∂ζ〈µ〉 − sgn(ζ)D∇2〈µ〉 = 〈f〉. (56)

In such situations, a standard way of proceeding is to
introduce + and − parts according to A± = H(±ζ)A(ζ)
(A = 〈µ〉 or 〈f〉) and calculate each part separately.
Thus, we will first find the appropriately periodic so-
lution 〈µ〉+ for forward traversal. Then we obtain the
analogous one 〈µ〉− for backward traversal. Finally, we
superimpose 〈µ〉+ and 〈µ〉− to obtain the final solution.
Symmetry considerations described in Sec. B 3b show
that 〈µ〉 = 1

2 (〈µ〉+ + 〈µ〉−).
Although Green’s formalism is quite general, we will be

able to make analytical progress only by simplifying the
diffusion operator. Although Dψ and Dθ can be assumed
to be of comparable size, diffusion will be important only
in a narrow layer around a rational surface. Accordingly,
the second derivative with respect to ψ will dominate, so

D∇2 ≈ Dψ ∂2

∂ψ2
. (57)

This argument justifies both passingDψ through the first
ψ derivative and ignoring the angle dependence of J in
the formula (15) for the divergence in general geometry.

B. Field-line-following coordinates and periodicity

Let G±
2π(ψ, θ, φ;ψ′, θ′, φ′) be Green’s function for for-

ward (+) or backward (−) traversal. It is convenient to

0 2Π 4Π 6Π 8Π
Φ0

2Π

4Π
Θ

1
2 3

4 5

FIG. 1: A portion of the covering space for a magnetic flux
surface, showing a sample magnetic field line. Coordinates are
chosen such that field lines on good surfaces are straight [with
slope ι(ψ)]. The numbers indicate the consecutive domains
that are pierced as the line is traversed in the direction of
increasing φ. Periodicity wraps a line into the fundamental
square, as shown in Fig. 2.

transform to the field-line-following coordinates

χ
.
= ψ, α

.
= θ − ι(ψ)φ, ζ

.
= φ. (58)

With G
+
(χ, α, ζ;χ′, α′, ζ ′)

.
= G+

2π(ψ, θ, φ;ψ′, θ′, φ′), one
finds the diffusion equation

∂ζG
+
−D∇

2
G

+
= δ(χ− χ′)δ(α − α′)δ(ζ − ζ ′), (59)

where the effective Laplacian in the new coordinates is

D∇
2

= Dψ

(
∂

∂χ
− ι′ζ

∂

∂α

)2

, (60)

with ι′
.
= ∂ι/∂ψ describing the magnetic shear. (Note

the well-known secular ζ dependence that is introduced
by the variable transformation.) As is well known, the ex-
pression of physical periodicity in the field-line-following
coordinates is nontrivial.39 Specifically, one has

G(α+ 2π, ζ) = G(α, ζ), (61a)

G(α, ζ + 2π) = G(α + 2πι, ζ). (61b)

Thus α is periodic but ζ is not. The α periodicity
permits Fourier transformation according to Gm(ζ) =

(2π)−1
∫ 2π

0 dα e−imαG(α, ζ). The condition (61b) is then
stated as

Gm(ζ + 2π) = eiβmGm(ζ), (62)

where

βm
.
= 2πmι. (63)

C. The causal field-line propagator

One way of dealing with the aperiodicity in ζ is to
work in the infinite covering space40 depicted in Figs. 1
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FIG. 2: The fundamental domain of the covering space is
pierced repeatedly by the magnetic field line as it winds
around the torus. The periodicity constraint on Green’s
function captures contributions from all segments of the line
and permits integration over only the fundamental domain
φ ∈ [0, 2π), i.e., effectively along just segment 1.

and 2, then construct properly periodic solutions by using
a shifted-sum representation (i.e., the Poisson sum for-
mula). The technique is illustrated for a closely related
example in Appendix B. (The material in Sec. B 2 b is
integral to the present discussion and should be surveyed
at this time.) As described in Sec. B 2b, the first task is
to determine the causal function R that obeys

(∂ζ −D∇
2
)R(χ, α, ζ;χ′, α′, ζ ′)

= δ(χ− χ′)δ(α− α′)δ(ζ − ζ ′) [R(ζ < ζ ′) = 0]. (64)

Here ζ is defined on the real line R; the α dependence
remains periodic according to Eq. (61a). Upon Fourier
transformation with respect to α− α′, one has

[
∂

∂ζ
−Dψ

(
∂

∂χ
− iι′mζ

)2
]
Rm(χ, ζ;χ′, ζ ′)

= δ(χ− χ′)δ(ζ − ζ ′). (65)

Dψ and ι′ may be evaluated at χ′ because the stochastic-
ity is important only near the resonance. Equation (65)
has the same form as Eq. (23) for constant D after the
streaming term has been transformed away if one iden-
tifies α → x, χ → v, ζ → t. The equation can be
completely solved analytically by Fourier transformation
with respect to χ; the result is quoted in Ref. 3, Ap-
pendix E.1.2, for the test-particle problem. One finds

Rm(χ, ζ;χ′, ζ ′) = H(ζ − ζ ′) exp[imι′(χ− χ′) 1
2 (ζ + ζ ′)]

× Φ(χ− χ′ | 2Dψζ)

× exp[− 1
12 (mι′)2Dψ(ζ3 − ζ ′3)], (66)

where Φ(ψ | σ2)
.
= (2πσ2)−1/2 exp(−ψ2/2σ2) is the dif-

fusion Green’s function. The last factor introduces the
characteristic “length” (dimensionless because ζ is the

toroidal angle)

ζD
.
= ( 1

4m
2ι′2Dψ)−1/3. (67)

[The factor of 1
4 is included to bring formulas (68) and

(84a) into a standard form.] ζD describes the well-known
resonance-broadening effect of Dupree.28 [Had the θ dif-
fusion been included, the length ζ⊥

.
= (m2Dθ)−1 would

also have appeared; however, in the regime of interest one
has ζD � ζ⊥.] When the radial dispersion σ2 = 2Dψζ is
evaluated at ζD , σ2 is also small, so we shall approximate
Φ(χ− χ′) ≈ δ(χ− χ′). That reduces formula (66) to

Rm(χ, ζ;χ′, ζ ′) ≈ H(ζ − ζ ′)Km(ζ; ζ ′)δ(χ− χ′), (68)

where

Km(ζ; ζ ′)
.
= Km(ζ)/Km(ζ ′), (69a)

Km(ζ)
.
= exp[− 1

3 (ζ/ζD)3]. (69b)

Note that K possesses the semigroup property
K(ζ; ζ)K(ζ ; ζ ′) = K(ζ; ζ ′) even though it is not trans-
lationally invariant.

That ζD comprises effects that are 1
3 diffusive and

2
3 shear-related was originally noted in the context of

magnetic field lines by Krommes2,25 and has been ex-
ploited in various analogous situations by Hirshman and
Molvig41 and Biglari, Terry, and Diamond.42 In the
present context, one estimates the spread η in κ‖ due
to diffusion over a width ∆ψ [namely η = ∆(ιm − n) ≈
mι′∆ψ] as follows. Let ζnl be the distance (to be deter-
mined) over which nonlinear mixing effects become im-
portant. Over a distance ζnl along an unperturbed refer-
ence line on a rational surface at ψ0, the actual line has
diffused radially an amount ∆ψ2 = 2Dψζnl. But because
of magnetic shear, the line also has moved poloidally ac-
cording to

d∆θ

dζ
= ι(ψ) − ι(ψ0) ≈ ι′∆ψ, (70)

or ∆θ = ι′∆ψζnl. Substantial mixing should occur at
m∆θ ∼ 1, which leads to ζnl = (mι′∆ψ)−1. That im-
mediately gives η = ζ−1

nl . Substituting from the diffusion

law for ∆ψ then determines ζnl ∼ (m2ι′2Dψ)−1/3 ∼ ζD.
Do not confuse the nonlinearly determined ζnl (or the

resonance-broadening width η = ζ−1
nl ) with the quasilin-

ear correlation length ζQL
ac determined from the spectral

width ∆κ‖ = (ζQL
ac )−1. By definition of the quasilinear

regime, one has ζQL
ac � ζnl. ∆κ‖ is related to the number

of excitedm’s and n’s, whereas the ∆ in η = ∆[ι(ψ)m−n]
acts on the ψ coordinate for fixed m and n.

D. Construction of the causal periodic Green’s
function

We must now construct the appropriate periodic
Green’s function from R. Upon omitting the χ depen-
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dence for conciseness, one has

G+
2π(θ, φ; θ′, φ′) =

∑

m

eim(θ−θ′)e−imι(φ−φ
′)G

+

m(φ;φ′).

(71)
The phase factor involving ι arises from the transforma-
tion from the field-line coordinates back to the original
periodic ones. A function that respects the periodicity
constraint (61b) is

G
+

m(φ;φ′) = AmR2π,m(φ;φ′), (72)

where

R2π,m(φ;φ′)
.
=

∞∑

l=−∞

eiβmlRm(φ− 2πl;φ′) (73)

and Am is a constant to be determined from the jump
condition

lim
ε→0

[G
+

m(φ′ + ε;φ′) −G
+

m(φ′ − ε;φ′)] = 1. (74)

Now for any φ′ ∈ IL, where IL
.
= [2πL, 2π(L + 1)),

the only discontinuity in IL arises from R(φ − 2πL;φ′),
which contributes a unit jump (see Fig. 3). Thus the

jump in G
+

is Ame
iβmL, so Am = e−iβmL. We need

work only in the fundamental domain I0, in which case
Am = 1 and contributions from l > 0 do not enter due
to the one-sided (causal) nature of R ∝ H(φ − φ′); for
example, R(φ− 2π;φ′) = 0. Thus

G
+

m(φ;φ′) =
∑

l≤0

eiβmlR(φ− 2πl;φ′) (φ, φ′ ∈ [0, 2π)).

(75)

Upon writing G
+

m(φ;φ′) = G
+>

m (φ;φ′)H(φ − φ′) +

G
+<

m (φ;φ′)H(φ′ − φ) and defining

K2π,m(φ)
.
=
∑

l≤0

eiβmlKm(φ− 2πl), (76)

one obtains

G
+>

m (φ;φ′) = K2π,m(φ)/Km(φ′), (77a)

G
+<

m (φ;φ′) = e−iβmK2π,m(φ+ 2π)/Km(φ′), (77b)

where in obtaining the last expression we noted that the
l = 0 term does not contribute to formula (75) for φ < φ′,
then introduced l

.
= l + 1 to shift the sum from l ≤ −1

to l ≤ 0. Note that

G
+<

m (φ;φ′) = e−iβmG
+>

m (φ + 2π;φ′); (78)

this is illustrated in Fig. 3.
Although the formulas (77) are usable as they stand,

it is instructive to rewrite them in a way that makes
the jump condition and the effects of periodicity more
explicit. Define

D−
m(φ′)

.
= 1 − ∆m(φ′), (79a)

∆m(φ′)
.
= e−iβmK2π,m(φ′ + 2π)/K2π,m(φ′). (79b)

-4Π -2Π 0 2Π 4Π
Φ

10-1-2

< >

FIG. 3: Ilustration of the periodic Green’s function G2π(φ;φ′)
(thick curve) and its constituents (thin solid curves, labeled
by their l values). Each constituent involves the phase fac-
tor eiβml. The vertical dotted lines indicated φ′ + 2πl for
a representative φ′. The fundamental domain I is shown
in gray, and the parts corresponding to G< and G> are
indicated by < and >. The horizontal dotted lines indi-
cate the vertical extent of G<

2π and show that the result
G<

2π(φ;φ′) = e−iβmG>
2π(φ+ 2π;φ′) is valid.

Then one finds

G
+>

m (φ;φ′) =
1

D−
m(φ′)

K2π,m(φ)

K2π,m(φ′)
, (80a)

G
+<

m (φ;φ′) =
∆m(φ)

D−
m(φ′)

K2π,m(φ)

K2π,m(φ′)
. (80b)

The jump condition G+>(φ′;φ′) − G+<(φ′;φ′) = 1 is
then obvious. For the simple model K(ζ) = e−ηζ (no
m dependence, and ι = 0) discussed in Appendix B, the
sum defining K2π can be worked out explicitly by sum-
ming a geometric series [see Eqs. (B18)]; one then finds

K2π(φ) = e−ηφ/D−, ∆ = e−2πη, (81)

which recovers the result (B13).
The ∆ terms arise from the periodicity constraint. The

relative importance of G
>

m and G
<

m therefore depends on
the strength of the diffusion, i.e., on whether ζD is greater
than or less than 2π. This remark should not be con-
fused with our discussion of the quasilinear magnetic dif-
fusion coefficient DQL in Sec. III C 2, where we argued
that periodicity constraints are unimportant for DQL

provided that the Lagrangian correlation length ζac was
less than 2π. [Although a small amount of resonance
broadening ζ−1

D � (ζQL
ac )−1 is necessary in order to prop-

erly define the calculation, the value of DQL does not
sensibly depend on ζD .] In the present calculation of G,
the comparison is instead between ζD and 2π. The differ-
ence is that Gm describes the response of a single Fourier
mode, whereas ζQL

ac describes the phase mixing associ-
ated with the broadband nature of the mode spectrum.
Thus, if ζac . 2π and ζD � ζac, one is in the regime
in which R(ζ) decays little in the fundamental domain
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FIG. 4: R2π(ζ) for various values of the resonance-broadening
parameter ∆ω. The solid curves display the result for the gen-
erating function R(ζ) = H(ζ) exp[− 1

3
(∆ωζ)3]; from bottom

to top, ∆ω = 1, 0.25, and 0.1 . Periodicity corrections are
unimportant for ∆ω = 1. The dashed curves display the gen-
erating function R(ζ) = H(ζ) exp(−ηDζ) with the value of ηD

chosen so that the areas under the generating functions agree.

[0, 2π), R2π differs strongly from R (see Fig. 4), and pe-
riodicity constraints are important for the individual con-
stituents of Gm.

However, it is not necessarily the case that the ∆m cor-
rections find their way into the final solution for 〈µ〉. In
the translationally invariant exponential-damping model

discussed in Appendix B, the contributions of G
+>

m

and G
+<

m sum in just such a way that the ∆m correc-
tion disappears; see Eq. (B10). The same behavior can
be argued to occur here, at least approximately. Upon
introducing ωmn

.
= n− ιm = −κ‖mn, Fourier transform-

ing the generalization of Eq. (B15), then interchanging
the order of integration, one obtains

〈µ̂〉+mn =

∫ 2π

0

dφ einφ

[∫ φ

0

dφ e−imι(φ−φ)

(
K2π,m(φ)

Km(φ)

)
+

∫ 2π

φ

dφ e−imι(φ−φ)

(
e−iβmK2π,m(φ+ 2π)

Km(φ)

)]
〈f̂〉m(φ) (82a)

=

∫ 2π

0

dφ einφ〈f̂〉m(φ)

[∫ 2π

φ

dφ eiωmn(φ−φ)

(
K2π,m(φ)

Km(φ)

)
+

∫ φ

0

dφ eiωmn(φ−φ)

(
e−iβmK2π,m(φ+ 2π)

Km(φ)

)]
(82b)

=

∫ 2π

0

dφ einφ〈f̂〉m(φ)

∫ φ+2π

φ

dφ eiωmn(φ−φ)

(
K2π,m(φ)

Km(φ)

)
(82c)

=

∫ 2π

0

dφ einφ〈f̂〉m(φ)Jmn(φ), (82d)

where

Jmn(φ)
.
=

∫ ∞

0

dζ eiωmnζ

(
Km(ζ + φ)

Km(φ)

)
. (83)

In obtaining Eq. (82c), we used the substitution φ̂ =
φ + 2π in the last integral of Eq. (82b) and noted that
exp(−2πiωmn) = exp(iβm). Equation (82d) then follows
from the definition (76).

A qualitative understanding of Eq. (82d) may be ob-
tained by modeling the exp(−φ3) dependence of K(φ) by
exp(−ηDφ), where ηD is chosen to match the ω = 0 val-
ues of R(ω) (i.e., to match the area under the generating
function); such an argument was first made by Dupree.28

Note that with ∆ω
.
= ζ−1

D , one has

R̂m(ω) =

∫ ∞

0

dζ eiωζe−
1
3
(∆ωζ)3 (84a)

= π∆ω−1 Hi(iω/∆ω), (84b)

where Hi(z) is the Airy function w(z) that obeys43

w′′ − zw = π−1 (85a)

with the initial conditions

w(0) =
2

3
Bi(0), w′(0) =

2

3
Bi′(0) (85b)

(Bi being another Airy function). The real and imag-
inary parts of πHi(iω) are displayed in Figs. 5 and 6.
Thus ηD/∆ω = [ 23πBi(0)]−1 ≈ 0.78 ≡ ηD. For the

exponential-damping model, one has K(ζ + φ)/K(φ) =
K(ζ) = exp(−ηDζ) (happily independent of φ). The
φ integral is then elementary and leads (cf. Sec. B 2 a) to
the result [−i(ωmn + iηD)]−1. The φ integral then takes

the Fourier transform of 〈f̂〉mn, and one obtains

〈µ̂〉+mn ≈
〈f̂〉mn

−i(ωmn + iηD)
. (86)
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FIG. 5: Real parts of the functions πHi(iω) (solid curve) and
[−i(ω + iηD)]−1 (dashed curve). ηD is chosen so that the
ω = 0 values agree.
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FIG. 6: Imaginary parts of the functions πHi(iω) (solid curve)
and [−i(ω+iηD)]−1 (dashed curve). The asymptotic behavior
is ω−1 for large ω.

Upon working backwords through this approximation,
one sees that

〈µ̂〉+mn ≈ R̂m(ωmn)〈f̂〉mn (87)

with R̂m(ω) given by Eq. (84b). Figures 5 and 6 show
that the approximation is not too bad even for nonzero
values of ω.

In fact, formula (87) is more general than its deriva-
tion might suggest. Integration by parts of formula (83)
shows that the nonresonant result Jmn ∼ (−iωmn)

−1

emerges as the first term of an asymptotic expansion
in ω−1

mn, a useful consistency check. For resonant effects
(small ωmn), we consider the physical limit 2πη � 1 (the
periodicity constraint is essential). Now φ is restricted
to [0, 2π), whereas contributions to the ζ integral occur
even for ζ � 2π. One can thus develop Jmn(φ) in a

Taylor series [Jmn(φ) = J
(0)
mn + O(φ)], the lowest-order,

φ-independent term of which is

J (0)
mn =

∫ ∞

0

dζ eiωmnζ [Km(ζ)/Km(0)] = R̂m(ωmn), (88)

since Km(0) = 1. Thus formula (87) is exact for the
exponential-damping model, and it correctly interpolates
between the resonant and nonresonant limits in the im-
portant physical case of weak diffusion.

E. Inclusion of backward motion; final periodic
solution for 〈µ〉

〈µ〉+(θ, φ) is doubly periodic. However, it does not
obey the additional requirement that the physical so-
lution must not depend on the direction of integration.
That is,

〈µ〉+(θ, φ) 6= 〈µ〉−(θ, φ) (89)

in general, where 〈µ〉− is obtained by integrating G back-
ward along the lines. A general solution is

〈µ〉(θ, φ) = α〈µ〉−(θ, φ) + (1 − α)〈µ〉+(θ, φ), (90)

where α is to be determined. Direction independence
requires, for example, that

〈µ〉±(θ, φ) = 〈µ〉∓(θ, φ+ 2π). (91)

Then the periodicity 〈µ〉(θ, φ) = 〈µ〉(θ, φ + 2π) can be
rearranged to

(1 − 2α)[〈µ〉+(θ, φ) − 〈µ〉−(θ, φ)] = 0. (92)

In view of Eq. (89), the unique solution is α = 1
2 , so57

〈µ〉(θ, φ) =
1

2
[〈µ〉+(θ, φ) + 〈µ〉−(θ, φ)]. (93)

It is unnecessary to do an independent calculation
of 〈µ〉− since it is built from the adjoint Green’s func-
tion R†, which is simply related to R according to
R†(θ, φ; θ′, φ′) = R(θ′, φ′; θ, φ). (See the analogous dis-
cussion of a simpler model in Sec. B 3b.) This implies

that the constituents G
−>

m and G
−<

m follow directly from

G
+>

m and G
+<

m ; for example, G
−<

m (ζ; ζ ′) = G
+>

m (ζ ′; ζ).
Equation (93) can be simplified if the system pos-

sesses stellarator symmetry, which is the generalization
of time-reversal invariance to the problem of magnetic
field lines.44 In the present context, that symmetry is

〈µ〉(θ, φ) = 〈µ〉(−θ,−φ), (94a)

〈f〉(θ, φ) = −〈f〉(−θ,−φ). (94b)

Equation (94a) implies that 〈µ̂〉−mn = 〈µ̂〉+∗mn, so 〈µ̂〉mn =

Re〈µ̂〉+mn. Equation (94b) implies that the 〈f̂〉mn are
purely imaginary. To the extent that one can write

〈µ̂〉+mn = Ĝ+
mn〈f̂〉mn for some Ĝ+ [cf. Eq. (87)], the effect

of the inclusion of backward traversal is thus to take the
imaginary part of the forward Green’s function:

〈µ̂〉mn = i(Im Ĝ+
mn)〈f̂ 〉mn. (95)
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For the exponential-damping model (86), one obtains

〈µ̂〉mn ≈

(
−iκ‖mn

κ2
‖mn + η2

D

)
〈f̂〉mn, (96)

which is just the heuristic result (16) suggested at the
beginning of Sec. III B. For nonresonant modes (κ‖mn �

ηD) formula (86) reduces to 〈µ̂〉mn ≈ 〈f̂〉mn/iκ‖mn, in
agreement with Eq. (14). ηD sets the width of the reso-
nance, which scales as D1/3 = O(δB2/3).

V. NUMERICAL CALCULATION OF
THREE-DIMENSIONAL EQUILIBRIA WITH

STOCHASTIC REGIONS

In this section we remark on a numerical procedure for
finding the equilibrium B. The discussion also serves as a
summary of the ideas described in the previous sections.

For the numerical calculation of 3D equilibria with
stochastic field lines, it is convenient to write the equilib-
rium equations in the form given by Eqs. (8)–(10), so the
effects of the field-line stochasticity enter entirely through
Eq. (9). This is the form in which the PIES 3D equilib-
rium code13 casts the equations. The PIES code solves
Ampère’s equation by expressing its solution in terms of
that of a Poisson equation, then by inverting a matrix to
solve that equation using finite differences in the radial
direction and Fourier decomposition in the angles. Equa-
tion (9) is solved on good flux surfaces by transforming to
magnetic coordinates.45,46 If the pressure is assumed to
be flattened in stochastic regions, the solution of Eq. (9)
is trivial in those regions. However, PIES calculations
for the W7AS stellarator4 have indicated the presence of
a substantial stochastic region with a nonzero pressure
gradient; for those calculations, the approach described
below was adopted.

As discussed in Sec. III B 3, Eq. (9) cannot in practice
be accurately solved along stochastic field-line trajecto-
ries if ∇p 6= 0. We do expect, however, that the field-line
integration will preserve the statistical properties of ap-
propriately averaged quantities, and this has led us to
adopt statistical methods to study an appropriately av-
eraged 〈µ〉. If we write the magnetic field as a sum of
two pieces, B = B0 + δB, where B0 has nested flux sur-
faces, Eq. (9) can be rewritten in terms of the magnetic
coordinates of B0 as Eq. (19). (We have assumed here

that Bφ0 � Bθ0 and that the three components of δB
are of the same order, so the term containing δBφ in the
magnetic differential equation can be neglected.) Fourier
decomposing Eq. (19) on the flux surfaces of B0, we get

i[ι(ψ)m− n]µ̂mn(ψ) +

(
δBψ

Bφ0

∂µ

∂ψ

)

mn

+

(
δBθ

Bφ0

∂µ

∂θ

)

mn

= f̂mn(ψ), (97)

where f is defined in Eq. (12). Retaining a finite set of
Fourier harmonics for the numerical calculation, −N ≤

n ≤ N and 0 ≤ m ≤M (i.e., setting to zero Fourier am-
plitudes where m or n lie outside these limits), amounts
to a coarse graining, which we represent by the bracket
average 〈. . . 〉:

i[ι(ψ)m− n]〈µ̂〉mn(ψ) +

〈
δBψ

Bφ0

∂µ

∂ψ

〉

mn

+

〈
δBθ

Bφ0

∂µ

∂θ

〉

mn

= 〈f̂〉mn(ψ). (98)

For δB/B sufficiently small, the O(δB/B) terms can be
neglected for nonresonant modes, recovering Eq. (14).
For resonant modes, 〈µ̂〉mn increases rapidly in magni-
tude as the resonance surface is approached, and the
∂µ/∂ψ term must be retained in a narrow boundary
layer near the rational surface. Only the resonant Fourier
mode and its harmonics need to be retained in this term.
The ∂µ/∂θ term remains negligible relative to the other
terms. It is often a good approximation to retain only
the lowest Fourier harmonic of the resonant mode.

In the preceding sections of this paper we have repre-
sented the solution for 〈µ〉 in terms of Greens functions,
and we have argued that if those functions are appropri-
ately defined the term containing δBψ can be approxi-
mated by a diffusion term,

〈
δBψ

Bφ0

∂G±

∂ψ

〉
≈ ±Dψ ∂

2G±

∂ψ2
, (99)

where Dψ is the magnetic field-line diffusion coefficient.
The quasilinear approximation to Dψ was discussed in
Sec. III C2. For the study described in Ref. 4, the dif-
fusion coefficient was calculated numerically by field-line
following.

If the resonant Fourier components of 〈µ〉 have rela-
tively high mode number, their amplitude is generally
small, except possibly in a region near the resonant sur-
face. In this context, the resonance broadening plays the
role of keeping the amplitude of the resonant components
small, and it is adequate to use a simplified model for the
resonance broadening, such as the exponential damping
model discussed in Sec. IV. The calculation is insensi-
tive to the precise form of the broadening as long as the
model preserves the width of the resonance-broadening
region. In the more general case where low-order rational
surfaces are present, the second-order ODEs determining
〈µ̂〉mn can be solved numerically.

In stellarator equilibria, the toroidal mode number of
the resonances is a multiple of the number of periods Np.
In the W7AS stellarator equilibria studied in Ref. 4,
Np = 5 and ι/Np ≈ 0.1, and the resonant Fourier com-
ponents of the equilibrium current density are small. As
expected from the above considerations, the properties
of the calculated equilibria (width of the stochastic re-
gion, etc.) were found to be insensitive to the form of the
resonance-broadening model.
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VI. FINAL REMARKS

We have described a theory and numerical procedure
for calculating the plasma equilibrium in a toroidal device
that includes regions of stochastic magnetic field lines
with nonzero pressure gradient. The magnetic differen-
tial equations for pressure p and µ

.
= j‖/B are singular at

the rational surfaces. Resonance broadening by stochas-
tic field-line diffusion permits finite solutions that do not
require p or µ to be flattened in the stochastic regions.
Technical problems that were addressed include the pe-
riodicity constraints in a torus, the invariance of the an-
swer to the direction of traversal of the field lines, and
the justification of certain approximations to a nonlinear
Langevin equation for µ. We focused on calculation of the
equilibrium magnetic field for specified pressure and cur-
rent profiles. Although we discussed how those profiles
are ultimately determined by solution of the transport
problem, we did not treat that problem.

At the level of fundamental nonlinear physics, the
problem is conceptually challenging because in its most
general form it involves all of the statistical closure issues
of turbulence theory. We have not faced up to all of those.
The true problem is statistically self-consistent, but we
studied a passive model. In lieu of performing a fully sta-
tistical treatment of Ampère’s law, we employed a hybrid
statistical/Langevin approach, but then were forced to
ignore nonlinear contributions to the fluctuating p and µ
that enter on the right-hand side of ∇×B = j. Although
we believe that those terms are small in the practical ap-
plications of interest, a complete numerical implementa-
tion of such a hybrid scheme would be a major under-
taking and has not been done. In general, the problem
of plasma equilibrium in the presence of stochastic re-
gions poses interesting and complex questions. Although
we have addressed many of those in the present work,
further research would be desirable.

The models discussed in this paper are consistent with
a simple intuitive picture. For field lines diffusing ra-
dially, there is a scale length along the field line, ζD,
such that the radial excursion becomes large enough to
produce a significant change in the pitch of the field
line, and in turn a significant change in phase. Par-
allel wavelengths short compared to ζD see little effect
from the field-line stochasticity. Fourier modes with par-
allel wavelength long compared to ζD see a substantial
reduction in amplitude due to phase mixing. This is the
resonance-broadening effect. In many cases of practi-
cal interest, particularly those involving only high-order
rational surfaces, the resonance broadening serves the
role of preventing near-rational Pfirsch-Schlüter currents
from having a significant effect on the equilibrium field.
In those cases the equilibrium solution is not sensitive
to the details of the resonance-broadening model, and it
is mainly important to have a reasonably accurate esti-
mate of ζD. This was the case for the equilibria of the
W7AS stellarator discussed in Ref. 4. In other cases,
such as those involving low-order rational surfaces em-

bedded in B0 (a nearby field with good surfaces), the
near-rational Pfirsch-Schlüter currents may play a signif-
icant role, and it may be desirable to fully implement the
detailed solution discussed in Sec. IV, or even to develop
the numerical model further, as discussed in the previous
paragraph.
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APPENDIX A: STATISTICAL CLOSURE
THEORY FOR PASSIVE RANDOM MAGNETIC

FIELDS

In this section we consider aspects of the statistical
properties of Eq. (9), illustrating the issues with a simple
stochastic model. To formulate that model, we recall
from Sec. III B 3 that Eq. (9) can be written in terms of
a time-like coordinate φ and two space-like coordinates ψ
and θ. That is of course complicated, so we seek to derive
a model that depends solely on a single variable, which we
choose to be time t. (We write the model in terms of time
to make contact with standard turbulence literature.) To
that end, note that Eq. (9) can be written as

B0 · ∇µ+ δB · ∇µ = −∇ · j⊥. (A1)

If one divides this equation by B0
.
= |B0| and defines

b
.
= δB/B0, it can be written as

∂ζµ+ b · ∇µ = f ext, (A2)

where ζ is the length along the unperturbed field lines
and f ext .

= −∇ · j⊥/B0. Of course, the simple form
of Eq. (A2) is somewhat illusory; in field-line-following
coordinates, the expressions of periodicity in the origi-
nal angular coordinates becomes more complicated; see
Eqs. (61). Nevertheless, Eq. (A2) is similar in form to
the equation for forced 2D passive advection

∂tψ̃(x, t) + Ṽ (x, t) · ∇ψ̃ = f̃ ext(x, t). (A3)

(See the discussion of self-consistency in the next para-
graph.) To achieve a model dependent only on time,

make the unwarranted assumption that Ṽ is space-
independent. Then Eq. (A3) can be rigorously Fourier-
transformed to

∂tψ̃k(t) + ik · Ṽ (t)ψ̃k(t) = f̃ ext
k (t). (A4)

Upon dropping the k subscript, defining

b̃(t)
.
= k · Ṽ (t), (A5)

and adding a damping term ∝ ν that models the long-
time dissipative effects contained in the transport prob-
lem and facilitates later discussion, one obtains the final
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stochastic equation

∂tψ̃(t) + νψ̃ + ĩb(t)ψ̃(t) = f̃ ext(t). (A6)

To complete the specification of the model, one must

state whether the problem is passive (δb̃/δψ̃ = 0,

δf̃ ext/δψ̃ = 0) or self-consistent (b̃ = b̃[ψ̃], f̃ ext = f̃ ext[ψ̃],
where brackets denote functional dependence); if it is
passive, one must also state the joint statistical distri-

bution of b̃ and f̃ ext. The physics problem discussed in
the body of the paper is actually self-consistent since the
magnetic field determined by Ampère’s law depends on µ,
and that field feeds back into f ext. We shall, however,
ignore this complication and assume that the problem is

passive. We shall assume jointly Gaussian statistics for b̃

and f̃ ext, taking 〈b̃〉 = 0 but allowing for a nonzero 〈f̃ ext〉.

1. The direct-interaction approximation for passive
statistics

With the restriction to passive statistics, Eq. (A6) be-
comes a generalization to include dissipation and random
forcing of the famous stochastic oscillator model studied
by Kubo47 and Kraichnan48; see Ref. 3 for additional dis-
cussion and references. Although it is dynamically lin-
ear, it is nonlinear in random variables and thus exhibits
the familiar statistical closure problem that ensemble av-
erages of Eq. (A6) or of similar equations for products

of ψ̃, b̃, and f̃ ext (involving at least one power of ψ̃) lead
to an unclosed hierarchy of equations coupling cumulants
of various orders. Usually the stochastic oscillator is dis-
cussed in the absence of random forcing. Including a

forcing that is statistically independent of b̃ is not diffi-
cult; however, as we noted in Sec. III B 3, in the physics
problem of interest one must allow for statistical corre-

lations between f̃ ext and b̃. This introduces additional
complexity to the statistical analysis.

Let the correlation time of δb be called τ bac and its rms
level be called β. (τ bac must be distinguished from the in-
ternal correlation time τac that describes the decay of δψ
correlations.) From β and τ bac, one can build the dimen-
sionless parameter K

.
= βτ bac known as the Kubo number.

Another dimensionless parameter is the Reynolds number

R
.
= β/ν, which is a measure of the relative importance of

the (nondissipative) nonlinear term and the (dissipative)
linear term. In general, the 2D R–K parameter space
contains a variety of regimes, as thoroughly discussed
in Refs. 49 and 3. Here we shall assume that R � 1.
For arbitrary K, the standard closure of Eq. (A6) is the
direct-interaction approximation (DIA), originally pro-
posed for the self-consistent Navier–Stokes equation by
Kraichnan,50 later studied in the context of the stochas-
tic oscillator by Kraichnan48 and in the context of Vlasov
stochastic acceleration by Orszag and Kraichnan.29 The
DIA has an extensive literature; see Ref. 3 for references.
Although the DIA was originally shown to be the ex-
act description of a random coupling model,48 it can also

be obtained by an iteration-renormalization approach or
from a stochastic Langevin equation. The DIA for pas-
sive advection is stated in Ref. 3 for the special case of
vanishing mean field. In the presence of a mean field, the
DIA for the stochastic oscillator is as follows. Following
the notation of Ref. 3, p. 143, define

C(t, t′)
.
= 〈δψ(t)δψ∗(t′)〉, (A7a)

V (t, t′)
.
= 〈δψ(t)δb∗(t′)〉, (A7b)

W (t, t′)
.
= 〈δψ(t)δf ext∗(t′)〉, (A7c)

X(t, t′)
.
= 〈δb(t)δf ext∗(t′)〉, (A7d)

B(t, t′)
.
= 〈δb(t)δb∗(t′)〉, (A7e)

F ext(t, t′)
.
= 〈δf ext(t)δf ext∗(t′)〉. (A7f)

(In Ref. 3, B was called S. In the present model, δb is
real, but it is useful to retain the complex conjugate for
comparison with more general equations.) Also define
the zeroth-order Green’s function R0, which obeys

(∂t + ν)R0(t; t
′) = δ(t− t′). (A8)

The solution of Eq. (A8) is R0(t; t
′) = H(τ)e−ντ , where

τ
.
= t− t′ and H(τ) is the Heaviside unit step function:

H(τ)
.
=





0 (τ < 0)

1/2 (τ = 0)

1 (τ > 0).

(A9)

Finally, define the mean response function R
.
= 〈R̃〉,

where

R−1
0 R̃(t; t′) + ĩb(t)R̃(t; t′) = δ(t− t′). (A10)

Coupled equations for the two-point quantities and the
mean field 〈ψ〉 define a particular statistical closure. The
unknown quantities are R, C, V , and W ; X , B, and F ext

are supposed to be given. In the stochastic oscillator, δb
(hence B) is real. C enjoys the symmetry C(t, t′) =
C∗(t′, t), or in steady state C(τ) = C∗(−τ). The exact
equation for the mean field is

∂t〈ψ〉 + ν〈ψ〉 + i 〈δb δψ〉︸ ︷︷ ︸
V (t,t)

= 〈f ext〉. (A11)

The passive DIA is

R−1
0 R(t; t′) + Σ ? R = δ(t− t′), (A12a)

R−1C(t, t′) + iV †(t, t′)〈ψ〉(t) + (Σ′ ? V †)(t, t′)

= (F int ? R†)(t, t′) +W †(t, t′), (A12b)

R−1V (t, t′) + iB(t, t′)〈ψ〉(t) + (Σ′ ? B)(t, t′)

= X†(t, t′), (A12c)

R−1W (t, t′) + iX(t, t′)〈ψ〉(t) + (Σ′ ? X†)t, t′)

= F ext†(t, t′), (A12d)

where the adjoint of a two-point function A is defined
by A†(t, t′)

.
= A∗(t′, t) and the ? denotes convolution:
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(A ? B)(t, t′)
.
=
∫∞

−∞dtA(t, t)B(t, t′). The functions Σ,

Σ′, and F int are defined by

Σ(t; t)
.
= R(t; t)B(t, t), (A13a)

Σ′(t; t)
.
= R(t; t)V (t, t), (A13b)

F int(t, t)
.
= C(t, t)B(t, t) + V (t, t)V †(t, t). (A13c)

The superscript int denotes internal, i.e., a contribution
arising from the stochastic nonlinearity.

This passive DIA has an underlying Langevin represen-
tation. That is, there exists a stochastic Langevin equa-
tion whose one- and two-point statistics are described by
the DIA equations written above. This is important con-
ceptually because it guarantees that the solution of the
DIA is realizable (corresponds to a positive-semidefinite
PDF). One consequence is that the steady-state fluc-
tuation level remains positive. Kraichnan emphasized
the importance of realizability throughout his long re-
search career. The Langevin representation for the self-
consistent DIA was given by Leith51 and Kraichnan.52

For the stochastic oscillator, the Langevin model adjoins
to the exact mean-field equation (A11) the fluctuating
equation

∂tδψ + νδψ + Σ ? δψ + Σ′ ? δb = −iδb〈ψ〉+ δf int + δf ext.
(A14)

Here Σ and Σ′ are given by formulas (A13a) and (A13b)
and are said to describe coherent response. The incoher-
ent noise δf int is realized by

δf int(t)
.
= −iδb(t)δξ(t), (A15)

where δξ is a centered Gaussian random variable, sta-
tistically independent of δb and δf ext, whose two-point
correlation functions (with itself and with δb and δf ext)
are constrained to be equal to the ones that follow from
the statistical solution of the Langevin model. (It may
be helpful to envision how realizations of δξ could be con-
structed in an explicit numerical time-stepping scheme.)

Because δb and δξ are statistically independent Gaus-
sian fields, one can verify that

〈δf int(t)δf int∗(t′)〉 = B(t, t′)C(t, t′) + V (t, t′)V †(t, t′)
(A16a)

= F int(t, t′). (A16b)

Thus F int is the variance of the internal incoherent
noise. This fact can be used to verify that Eq. (A14)
leads to Eq. (A12b) for C(t, t′). To that end, multiply
Eq. (A14) by δψ∗(t′) and average. The result involves
〈δf int(t)δψ∗(t′)〉. That can be worked out by moving
the Σ′ term to the right-hand side of Eq. (A14), noting
that R is the Green’s function for the remaining left-hand
side, solving for δψ, and using 〈δf int(t)δb(t′)〉 = 0 and
Eq. (A16b). That leads to the F int term of Eq. (A12b);
the other terms are reproduced directly from the defini-
tions (A7). The V and W equations also follow directly.

As will become clearer in the next section, Dupree-
style resonance-broadening theory ignores the incoherent

noise δf int, and that is what we also propose to do in
the problem of stochastic magnetic field lines discussed
in the body of the text. However, justification of this
approximation is not immediate, so we continue with a
detailed examination of a special tractable case.

2. The white-noise limit

We are interested in the limit in which the mag-
netic fluctuations are small, i.e., K � 1. In that
limit, the problem becomes Markovian and diffusive, i.e.,∫ t
t′
dtΣ(t; t)R(t; t′) ≈ [

∫ t
−∞

dtΣ(t; t)]R(t; t′). That is true

because the B(τ) inside Σ [see Eq. (A13a)] falls to zero
much more rapidly than R itself (at least for large R). In

steady state, the quantity
∫∞

0
dτ Σ(τ) = Σ̂(0) defines a

nonlinear frequency broadening η. [Here Σ̂(ω) is the in-
tegral Fourier transform; for conventions, see Eqs. (B2).]
For K � 1, one has

η ≈

∫ ∞

0

dτ B(τ ) =

∫ ∞

0

dτ β2e−τ/τ
b

ac = β2τ bac ≡ d.

(A17)
In terms of the random velocity of the passive-advection
problem (A3), one finds, upon using Eq. (A5), that

d = k2D, D
.
= 〈δṼ 2〉τ bac. (A18)

D is a conventional diffusion coefficient that would follow
from Fokker–Planck theory in the limit of small τ bac. In

this limit, R(τ) ≈ exp[−(ν+η)τ ] or R̂(ω) = {−i[ω+i(ν+
η)]}−1. Thus η ≈ d describes a resonance broadening, the
“resonance” occurring, for this model that lacks linear
waves, at ω = 0.

The essence of the Markovian limit is adequately cap-
tured by the white-noise limit

B(τ) ≈ 2dδ(τ), (A19)

and we shall examine the structure of the DIA in that
limit in order to illustrate the role of the cross correlations
between b̃ and f̃ ext. To be consistent with Eq. (A19), we
also assume

F ext(τ) = 2F0δ(τ), X(τ) = 2X0δ(τ). (A20)

Because the theory is causal, δψ(t) depends functionally
only on δb(t) and δf ext(t) for t ≤ t. Thus

V (t, t′) = 〈δψ[δb(t ≤ t)]δb(t′)〉 = 0 (t′ > t). (A21)

W is similarly causal. The fact that V and W are one-
sided functions simplifies the theory considerably. Also,
it can be seen by iteration that those functions are not
singular at t = t′. Therefore, some terms vanish. For
example, the V V † terms in F int [formula (A13c)] van-
ish, since one or the another of V or V ∗ vanishes in the
construction V (t, t)V ∗(t, t). (Any possible contribution
at the single point t = t is negligible since t is integrated
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over.) Similarly, Σ′ vanishes because it involves the com-
bination R(t; t)V (t, t) and R is causal.

With these simplifications, the equations become

∂t〈ψ〉 + ν〈ψ〉 + iV (t, t) = 〈f ext〉, (A22a)

R−1C(t, t′) = −iV ∗(t′, t)〈ψ〉(t) +W∗(t′, t)

+ F int(t, t′), (A22b)

R−1V (t, t′) = −i2dδ(t− t′)〈ψ〉(t)

+ 2X∗
0 δ(t− t′), (A22c)

R−1W (t, t′) = −2iX0δ(t− t′)〈ψ〉(t)

+ 2F0δ(t− t′), (A22d)

where

R−1(t; t)
.
= (∂t + ν + d)δ(t− t), (A23a)

F int(t, t)
.
= 2dδ(t− t)C(t, t). (A23b)

In general, solution of these equations from arbitrary ini-
tial conditions is complicated for 〈ψ〉 6= 0 and would best
be done numerically. (The equations predict a nonvan-
ishing mean field, even for 〈f ext〉 = 0, in the presence of
nonvanishing cross correlations X0; for X0 = 0, a self-
consistent solution is V = 0 and 〈ψ〉 = 0.) However, the
steady-state solution can be obtained analytically. From
Eq. (A22d),

W (t, t′) = R(t; t′)(−2iX0〈ψ〉 + 2F0). (A24)

Because R(τ) is real, R̂†(ω) = R̂(−ω) = R̂∗(ω). Simi-
larly,

V (t, t′) = R(t, t′)(−2id〈ψ〉 + 2X∗
0 ), (A25)

One can obtain V (t, t) by again noting that R(t; t) =
H(0) = 1

2 . Thus

V (t, t) = −id〈ψ〉 +X∗
0 . (A26)

Upon inserting this into the steady-state version of
Eq. (A22a) and solving, one gets

〈ψ〉 = (〈f〉 − iX∗
0 )/(ν + d). (A27)

The steady-state two-point equations can be solved by
Fourier transformation. Define C0

.
= C(t, t). The Fourier

transform of the C equation is

R̂−1(ω)Ĉ(ω) = −iV̂ †(ω)〈ψ〉 + Ω̂†(ω) + F̂ int(ω) (A28a)

= −iR̂†(ω)(2id〈ψ〉∗ + 2X0)〈ψ〉

+ R̂†(ω)(2iX∗
0 〈ψ〉

∗ + 2F0)

+ 2dC0R̂
†(ω), (A28b)

= 2[d |〈ψ〉|
2

+ 2 Im(X0〈ψ〉) + dC0 + F0]

× R̂∗(ω), (A28c)

or

Ĉ(ω) = 2|R̂(ω)|2[d |〈ψ〉|
2

+ 2 Im(X0〈ψ〉) + dC0 + F0].
(A29)

One can solve for the fluctuation level C0 by integrating
over ω and using

∫∞

−∞
dω a/(ω2 + a2) = π. One finds

C0 = ν−1[d |〈ψ〉|
2

+ 2 Im(X0〈ψ〉) + F0]. (A30)

For 〈ψ〉 = 0, this reduces to C0 = F0/ν, which describes
the balance between external forcing and linear dissipa-
tion. In the context of the classical Brownian motion
of an unmagnetized test particle in a Gibbsian thermal
bath, this result is equivalent to the Einstein relation be-
tween the velocity-space diffusion coefficient (∼ F0) and
polarization drag (ν).

One can also arrive at the result (A30) by directly
considering the steady-state form of the spectral balance
equation for C(t, t): 0 = ∂tC(t, t) = · · · .

It is important to note that in the manipulations
leading to Eq. (A30) a near-cancellation occurred be-
tween the size of the C term on the left-hand side of
Eq. (A29) and the dC0 term on the right-hand side, the
size of the latter term being [d/(ν + d)]C0 after inte-
gration over ω. That term arose from F int. Had that
term been arbitrarily neglected, the result for 〈ψ〉 = 0
would have been C0 = F0/d, i.e., the external forc-
ing would have been incorrectly balanced by the non-
linear diffusion rather than the linear dissipation. The
correct formalism understands that the diffusive effect
arises from a time-reversible (Hamiltonian) term in the
primitive amplitude equation. Although diffusion leads
to the decay of two-time correlation and response func-
tions (via what is sometimes called nonlinear scram-

bling), the stochastic nonlinearity does not dissipate the
mean-square fluctuation level. Thus, the simplified equa-
tion ∂tδψ + i(δb δψ − 〈δb δψ〉) = 0 leads to

∂t〈
1
2 |δψ|

2
〉 = Re〈δψ̇ δψ∗〉 = Re(−iδb |δψ|

2
) = 0. (A31)

In more complicated physical problems, this nonlinear
conservation of scalar variance generalizes to the conser-
vation of quadratic quantities like the fluctuation energy
or enstrophy, well known to be crucial in the theory of
spectral cascades.

For 〈ψ〉 6= 0 and nonvanishing cross correlationX0, the
right-hand side of Eq. (A30) is not manifestly positive-
definite, yet that must be so if the realizability argument
based on the Langevin representation is correct. In order
to check that, note that without loss of generality one can
write the Gaussian white-noise fluctuation δf ext as

δf ext(t) = αδb(t) + δf̂(t), (A32)

where δf̂ and δb are uncorrelated. (Since they are Gaus-
sian, they are in fact statistically independent.) The co-
efficient α sets the size of the cross correlation X , i.e.,

X(t, t′) = 〈δb(t)δf ext∗(t′)〉 (A33a)

= α∗〈δb(t)δb∗(t′)〉 (A33b)

= 2α∗d δ(t− t′). (A33c)
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Thus X0 = α∗d and, from Eq. (A27), 〈ψ〉 = (〈f ext〉 −
iα)/(ν + d). Straightforward manipulations using these
results reduce Eq. (A30) to

C0 =
1

ν

(
d

(ν + d)2

∣∣〈f ext〉 + iαν
∣∣2 + F̂0

)
, (A34)

which is positive-definite. This is an important consis-
tency check. Note that for 〈f ext〉 = 0 the contribution of
the cross correlation to Eq. (A34) is O(R−1) and is thus
very small.

If time dependence were retained in the equation for
∂tC(t, t), one would learn that C0 evolves to its steady
state on the long, dissipative time scale. For times in-
termediate between the turbulent autocorrelation time
and the dissipative time, it evolves linearly. This is just
the physics of a diffusive random walk transposed to the
present model. An exact analogy is to the evolution of
the mean-square weights in collisionless δf particle simu-
lation, which were observed to increase linearly in simu-
lations. Those observations were explained by Krommes
and Hu53 with the aid of both statistical modeling and
physical arguments; that reference provides useful back-
ground for the present discussion. An important point
made by those authors was that the turbulent transport
can saturate on the autocorrelation time scale even in
the face of the short-time increase in the mean-squared
weights (that both can happen simultaneously was called
the entropy paradox by Krommes and Hu); if that were
not true, the entire rationale for δf simulations of micro-
turbulence would be in jeopardy. In the present passive
model, the turbulent transport (d) is stationary on the
short time scale to the extent that 〈δb2〉 is.

Although the incoherent noise must be retained for dis-
cussion of the long-time balances, it is possible that it is
unimportant on the short time scale. The criterion in-

volves a comparison of the dC0 and F̂0 terms in equations
like Eq. (A29) on the time scale on which the diffusion
(and mean field) saturate. In terms of an arbitrary source
S(t), consider the solution of

(∂t + 2ν)C0(t) = 2S(t). (A35)

At short times, the ν term is negligible and one finds
C0(t) ≈ 2tS(0). At the short saturation time τ bac, this is
C0 ≈ 2τ bacS(0). The size of the dC0 term at short times is
thus relatively dC0 = O(dτ bac) = O(K2), where Eq. (A17)
was used. Thus the incoherent noise is bounded and
small on the short time scale.

The principal conclusions of this Appendix are (i) the
magnetic differential equation for j‖/B can be approxi-
mately treated as a problem of passive advection; (ii) a
white-noise model captures the essence of the statistical
closure problem; (iii) the statistical closure can be repre-
sented in terms of a nonlinear Langevin model; (iv) in-
coherent noise is unimportant on the short time scale
on which the magnetic diffusion coefficient saturates, al-
though it is crucial on the longer, dissipative transport
time scale (which is included in the white-noise model

studied here but is not considered in the treatment of
plasma equilibrium in the body of the paper).

APPENDIX B: GREEN’S FUNCTIONS

In this section we discuss Green’s formalism for solving
linear ODEs, placing particular emphasis on periodicity
constraints. Various formulations are shown to be math-
ematically equivalent.

1. Fourier transforms and the shifted-sum
representation of periodic functions

In the discussion we will need to refer to functions pe-
riodically extended from the semiclosed fundamental do-
main I

.
= [0, 2π) to the real line R

.
= (−∞,∞). We shall

indicate the T -periodic extension by the subscript T (e.g.,
T = 2π). Periodic functions can be created by a discrete
Fourier-series representation; we shall use the transform
pair (with a time-like convention)

F2π(φ) =

∞∑

n=−∞

F̂ne
−inφ, (B1a)

F̂n =
1

2π

∫ 2π

0

dφ einφF (φ). (B1b)

We will also require the Fourier integral representation

F (τ) =

∫ ∞

−∞

dω

2π
e−iωτ F̂ (ω), (B2a)

F̂ (ω) =

∫ ∞

−∞

dτ eiωτF (τ). (B2b)

In Eq. (B1b), F (φ) may be viewed as having support
only on I; the inverse transform then replicates F (φ)
on each of the intervals Il

.
= [2πl, 2π(l + 1)) (note that

I ≡ I0) to produce the periodic extension F2π(φ). The
identity underlying this transformation is the expression
for a periodic delta function

δ2π(φ)
.
=

∞∑

l=−∞

δ(φ − 2πl) =
1

2π

∞∑

n=−∞

e−inφ. (B3)

Given an arbitrary function F (φ) defined on I, or

equivalently an arbitrary set of Fourier coefficients F̂n,
the extension from I to R via the inverse Fourier trans-
form (B1a) obeys F2π(φ+2π) = F2π(φ); however, it is not
necessarily continuous at the boundary points 2πl. That
is, F2π(0−) 6= F2π(0+) in general. We shall call such
possibly discontinuous but periodic solutions “periodic,”
using the quotation marks for emphasis. An example
of a “periodic” function is shown in Fig. 7. Of course,
in physical applications involving toroidal topology the
boundary points φ = 0 and φ = 2π are identical, so
physical solutions must be continuous and differentiable
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there. We shall call those solutions periodic; they are a
special case of “periodic” solutions.

An alternate approach generates a periodic represen-
tation from the shifted-sum representation

F2π(φ) =

∞∑

l=−∞

R(φ− 2πl), (B4)

where the generating function R(φ) is absolutely inte-
grable on R. Fourier-series analysis of formula (B4)
shows that

F̂n = (2π)−1R̂(ω = n). (B5)

[The Fourier-series transform pair is a special case of this
construction in which the support for F (φ) lies only in I;

one obtains Eq. (B3) from R(τ) = δ(τ), R̂(ω) = 1.] This
use of generating functions defined on R underpins the
ballooning transformation frequently used for the linear
eigenmode analysis of toroidal systems; a useful ped-
agogical article that cites the original references is by
Thyagaraja.54 Here we are not interested in eigenvalues
per se but rather in the construction of periodic Green’s
functions. (Of course, representations of Green’s func-
tions in terms of infinite sums over eigenvalues are well
known, but we will not have to use those explicitly.)

2. Green’s functions for periodic systems

Let L be a linear operator and φ be a 2π-periodic an-
gle, and consider the solution of Lu(φ) = f2π(φ), where
u is required to be both periodic and continuous. The
simplest formal solution of this problem introduces the
function G2π(φ;φ′) that obeys

LG2π(φ;φ′) = δ2π(φ− φ′) (B6)

subject to the periodicity constraint

G2π(0;φ′) = G2π(2π;φ′). (B7)

Then

u(φ) =

∫

Il

dφG2π(φ;φ)f2π(φ) (φ ∈ Il). (B8)

Usually this formula is written for l = 0, i.e., for the
fundamental domain I.

a. An example problem

As an example, consider the problem

∂φu+ ηu = f(φ) (B9)

on I. This example is related to the magnetic-field-line
problem discussed in the main text; φ is a proxy for the

distance along a field line (here having rotational trans-
form ι = 0), and η is a measure of the irreversible dif-
fusion induced by field-line stochasticity. The utility of
this model is that it can be immediately solved by Fourier
transformation:

u(φ) =

∞∑

n=−∞

f̂n
−i(n+ iη)

e−inφ. (B10)

We now show how to recover this result from Green’s
formalism. We shall use the standard notation

G(φ;φ′) =

{
G>(φ;φ′) (φ > φ′)

G<(φ;φ′) (φ < φ′).
(B11)

From Eq. (B7) and the jump condition

G>(φ′;φ′) −G<(φ′;φ′) = 1, (B12)

one finds

G>2π(φ;φ′) = e−η(φ−φ
′)/D−, (B13a)

G<2π(φ;φ′) = e−2πηe−η(φ−φ
′)/D−, (B13b)

where

D± .
= 1 ± e−2πη. (B14)

On I, formula (B8) is explicitly

u(φ) =

∫ φ

0

dφG>2π(φ;φ)f(φ) +

∫ 2π

φ

dφG<2π(φ;φ)f(φ).

(B15)
If f is expanded according to Eq. (B1a), the integrals
can readily be performed and one recovers Eq. (B10).
[The simple form (B10) arises because Eq. (B9) contains
no angle-dependent coefficients, so each of G> and G<

is translationally invariant. In more general cases, the
representation (B15) may be more useful.] Note that
although the correction term e−2πη controls the ratio of
G<2π to G>2π , it disappeared from the final solution.

b. Interpretion of the example periodic Green’s function
using the method of shifted sums

Instead of solving directly for the periodic Green’s
function, an alternate approach exploits a shifted-sum
representation to construct a periodic function from a
generating function defined on R. We shall illustrate the
technique by reconsidering the previous example.

The calculation to follow will involve the familiar
causal response function G+(τ) that obeys

(∂t + η)G+(t; t′) = δ(t− t′) (B16)

on R, subject to G+(−∞) = 0. With τ
.
= t− t′, one has

G+(τ)
.
= H(τ)K(τ), K(τ)

.
= e−ητ , (B17)
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where H(τ) is the unit step function [see Eq. (A9)].
The periodic Green’s function that obeys Eq. (B6) may

be constructed by using G+(φ) as the generating function
for the shifted-sum representation (B4). Within I, the
value of the causal G>2π is then the sum of contributions
from all domains Il with l ≤ 0:

G>2π(φ;φ′) =
∑

l≤0

K(φ− φ′ − 2πl) (B18a)

= e−η(φ−φ
′)
∑

l≥0

(e−2πη)l (B18b)

= e−η(φ−φ
′)/(1 − e−2πη). (B18c)

Furthermore, one has G<2π(φ;φ′) = G>2π(φ + 2π;φ′), as
illustrated in Fig. 3. These results agree with Eqs. (B13).

Since the periodicity constraint can be enforced di-
rectly, as was done in Sec. B 2 a, it is not necessary to
employ a shifted-sum representation for this example.
However, that approach does have an intuitive physi-
cal interpretation as a superposition of contributions, it
clearly demonstrates the origin of the denominator D−,
and it shows why the periodicity constraint is important
for η � (2π)−1. For the problem of magnetic field lines
with nonzero rotational transform discussed in the body
of the paper, the periodicity constraint is more compli-
cated and the shifted-sum representation is very useful.

c. Remarks on the direct construction of periodic Green’s
functions

The mathematics of the previous two subsections is el-
ementary. However, it masks several important issues:
(1) When applied to the physical problem of magnetic
field lines, how do Eq. (B9) and the resulting periodic
solution relate to the fact that the solution should be ir-
reversible no matter whether one moves forward or back-
ward along the lines? (2) For situations in which the
integrals required in Eq. (B15) cannot be performed an-
alytically (either because the forms of G> and G< are
too complicated or because they are only known numeri-
cally), are the separate G> and G< integrals numerically
well-behaved? Note that in the example the denomina-
tor D− enters; at small η, that function nearly vanishes
(the periodicity constraint is important), so that each of
the G> and G< integrals is nearly infinite. To arrive at
Eq. (B10), a cancellation occurred between the G> and
G< terms such that the remaining terms involved the
ratio D−/D− = 1, i.e., the ratio of two very small terms.

Both of these issues can be discussed within the more
general framework of boundary-value problems, the tra-
ditional way in which Green’s functions are usually
presented.55 This helps with the discussion of issue (1)
because it permits treatment of initial-value problems.
It also enables one to address issue (2) because in this
method a periodic and continuous solution can be found
as a special case of more general “periodic” ones. Because
homogeneous rather than periodic boundary conditions

are used for Green’s function in this approach, it turns
out that the separate G> and G< pieces of the forcing
integral remains O(1) in the limit η → 0.

3. General formalism for boundary-value problems

Let L be a linear operator and x be a generic inde-
pendent variable (later we examine the particular cases
where x is either time t or a periodic angle φ) and
consider the solution of Lu(x) = f(x) in the open do-
main I

.
= (a, b) subject to the boundary-value constraints

u(a) = ua and u(b) = ub. Green’s solution of this prob-
lem introduces the function G(x;x′) that obeys

LG(x;x′) = δ(x− x′) (x, x′ ∈ I) (B19)

subject to the homogeneous boundary conditions

G(a;x′) = G(b;x′) = 0; (B20)

it also refers to the bilinear concomitant or conjunct
C(u, v) defined by

C(u, v) =

∫
dx (uLv − vL†u) (B21)

(L† being the adjoint operator), i.e., it is the boundary
term left over after an integration by parts. Then it can
be shown55 that in I

u(x) = − C(u(x), G(x;x))|
b
a+

∫ b

a

dxG(x;x)f(x). (B22)

For second-order equations, one usually has no diffi-
culty constructing Green’s function. For first-order equa-
tions, the construction is not generally possible, as the
problem is overconstrained by the two boundary condi-
tions. Two exceptions are semi-infinite domains, e.g.,
t ∈ (0,∞), and “periodic” solutions on φ ∈ R. As an
important example of the first type that will ultimately
be relevant to the problem of magnetic lines, consider

L ≡ ∂t + η (B23)

with the initial condition u(a) = ua. One readily deduces

L† = −∂t + η, (B24a)

C(u, v) = uv. (B24b)

The natural Green’s function to use for the initial-value
problem is the causal one G+ introduced in Sec. B 2b, for
then the conjunct term is −u(t)G+(t; t)

∣∣∞
a

= G+(t; a)ua.
The solution

u(t) = G+(t; a)ua +

∫ t

a

dtG+(t; t)f(t) (B25)

coincides with the solution of the initial-value problem
obtained with the aid of an integrating factor.
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FIG. 7: Illustration of a family of “periodic” solutions (dashed
curves) that includes a periodic and continuous one (heavy
solid line). The family is generated from the solution to Lu =
f with L

.
= ∂t + η, η = (2π)−1, and constant forcing f(t) =

A = 1. It is parametrized by the value u
.
= 1

2
[u(0+)+u(2π−)]

(horizontal dotted lines). As η → 0, the periodic solution
u(φ) = u∗ = A/η approaches ∞ while the “periodic” solution
with u = 0 (heavy dashed line) approaches a periodically
extended ramp, a solution to ∂φu(φ) = A.

a. The relationship between periodic solutions and the
initial-value problem

Suppose one wants to solve the previous problem in
the domain (a, b) subject to the periodicity constraint
ub = ua. The solution (B25) defines a family of solutions
parametrized by ua. The final value ub is given by

ub = G+(b; a)ua +

∫ b

a

dtG+(b; t)f(t). (B26)

Now the special solution satisfying ub = ua can be found
by setting ua = ub = u∗; thus

u∗ = [1 −G+(b; a)]−1

∫ b

a

dtG+(b; t)f(t). (B27)

If this solution were extended to R by a shifted-sum for-
mula, it would be both T -periodic (T

.
= b− a) and con-

tinuous. (An example of this construction is shown in
Fig. 7.) Also, by calculating the derivative of formula
(B25) at ua+ ε and ub− ε, one finds that the first deriva-
tive is continuous as well provided that f(t) is periodic.

The representation (B25) with ua = u∗ has a form dif-
ferent from Eq. (B8), although it must be equivalent (as
we will show in the next paragraph). One advantage of
formula (B25) is that the convolution integral is well be-
haved in the limit η → 0, unlike the individual pieces G>2π
and G<2π of formula Eq. (B15). It is true that in that limit
u∗ involves the small denominator 1 − G+(b; a)

.
= D−,

but that is unavoidable; D− (∼ 2πη for small η) must
appear in the solution somewhere because the periodic

solution for constant forcing (f = f̂0 = A) is u = A/η.
The present representation removes division by a pos-
sibly small quantity from the convolution integral. In

Sec. B3 c we discuss a variation of this construction that
may be even more convenient numerically.

With ua replaced by u∗, Eq. (B25) can be rearranged
to have the form of a convolution between a periodic
Green’s function GT and the source, i.e.,

u(t) =

∫ t

a

dtG>T (t; t)f(t) +

∫ b

t

dtG<T (t; t)f(t). (B28)

To do so, note that for first-order problems the
causal Green’s function enjoys the semigroup prop-
erty G+(t; t′) = G+(t; t)G(t; t′) for arbitrary t inter-
mediate between t′ and t. If one writes G+(t; t′) =
H(t− t′)K(t; t′), the semigroup property holds also for
the K’s without restriction on t′. This is obvious for the
specific, constant-η solution (B17), but it holds also for
time-dependent generalizations. Upon defining

D− .
= 1 −K(b; a), (B29)

one has

u(t) =
1

D−

(
K(t; a)

∫ b

a

dtK(b; t)f(t)

+ [1 −K(b; a)]

∫ t

a

dtK(t; t)f(t)
)

(B30a)

=
1

D−

(
[K(t; a)K(b; t) + 1 −K(b; a)]

×

∫ t

a

dtK(t; t)f(t)

+K(t; a)K(b; t)

∫ b

t

dtK(t; t)f(t)
)
, (B30b)

where K(b; t) = K(b; t)K(t; t) was used. (One needs
to use K rather than G because in the last integral
one has t ≤ t and G+ itself is causal.) Upon using
K(t; a)K(b; t) = K(b; a), the formula (B30b) is seen to
have the form (B28) with

G>T (t; t′) = K(t; t′)/D−, (B31a)

G<T (t; t′) = K(b; a)K(t; t′)/D−. (B31b)

This generalizes the specific example solution (B13).

b. The role of anti-causal Green’s functions

Although we have shown how to construct a periodic
solution, we have not yet addressed the consequences of
an important symmetry: microscopic dynamics are time-
reversible. Consider a = 0 and b = T for simplicity.
If one views the equation (∂t + η)u = f as a Langevin
equation coarse-grained on a microscopic autocorrelation
time τac, then the positive dissipation η represents the
effects of statistical phase mixing that becomes complete
for t > τac and damps an initial disturbance as time
increases. In a time-reversed world, disturbances should
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damp as one moves backwards in time. Thus, with t = 0
being the arbitrary origin at which the velocity of a test
particle is specified, a Langevin equation valid for both
signs of time is56

[∂t + sgn(t)η]u = f(t), (B32)

where

f(−t) = −f(t). (B33)

The latter symmetry is required so that a delta-function
kick produces the same jump ∆u moving either forward
or backward in time: ∆u = u(t+ ∆t) − u(t) = u(−(t +
∆t)) − u(−t).

For t < 0, Eq. (B32) can be solved in terms of the
adjoint Green’s function G† that obeys [see Eq. (B24a)]

−∂tG
†(t; t′) + ηG† = δ(t− t′). (B34)

It is well known and can be easily proven that G†(t; t′) =
G(t′; t). For the final-value problem, it is natural to use
the boundary condition G†(t′+; t′) = 0; then G† is the
anti-causal (or advanced) Green’s function G− such that

G−(t; t′) = G+(t′; t) or Ĝ†(ω) = G∗(ω). For t < 0, one
then finds

u(t) = G−(t; 0)u0 +

∫ t

0

dtG−(t; t)f(t) (t < 0) (B35)

and it can be readily verified that with the symmetry
(B33) one has

u(−t) = u(t). (B36)

(The analogous symmetry in magnetic-field problems is
called stellarator symmetry44; see Sec. IV E.) Of course,
the solution Eq. (B35) can be made periodic as well by
the proper choice of u0.

Motivated by the problem of magnetic lines, now sup-
pose that the interval [−T, 0) is physically identified with
[0, T ). That is, imagine picking up the interval [−T, 0)
and laying it on top of [0, T ) without reversing it left and
right (this operation is distinct from time reversal). With
u±

.
= H(±t)u(t), the most general periodic solution is

u(t) = (1 − α)u+(t) + αu−(t), (B37)

where α (the fraction of the advanced solution that is
included) is to be determined. Imposing the condition
(B36) leads to the condition

(1 − 2α)[u+(t) − u−(t)] = 0. (B38)

Since u−(t) 6= u+(t) in general, the unique solution is
α = 1

2 ; thus57

u(t) =
1

2
[u+(t) + u−(t)] =

1

2
[u+(t) + u+(−t)]. (B39)

In terms of the Fourier components, this becomes

ûn = Re û+
n = Re

(
f̂n

−i(ωn + iη)

)
. (B40)

Equation (94b) implies that f̂n is purely imaginary. Thus

ûn =

(
iωn

ω2
n + η2

)
f̂n. (B41)

Compare the analogous result (96).

c. Construction of periodic solutions from the
boundary-value formulation

The boundary-value formulation may be used to con-
struct periodic solutions, both discontinuous and, as an
important special case, continuous. This provides an al-
ternate route to the directly periodic approach discussed
in Sec. B 2 that may be advantageous in situations in
which the periodicity constraint is strong.

In the presence of discontinuities, one may define the
value of a function at a point by its mean value: u(φ) =
1
2 [u(φ−) + u(φ+)]. The boundary condition (B20) be-
comes

G(0+;φ′) +G(2π−;φ′) = 0, (B42)

and one also has the jump condition

G(φ′+;φ′) −G(φ′−;φ′) = 1. (B43)

Green’s solution in I is

u(φ) = − u(φ)G(φ;φ)
∣∣2π−

0+
+

∫ 2π

0

dφG(φ;φ)f(φ)

(B44a)

= G>(φ; 0)u(0+) −G<(φ; 2π)u(2π−) + F (φ),
(B44b)

where the convolution integral has been called F (φ).
u(φ) may be periodically extended to R. In general,
that extension is discontinuous at φ = 2πl. To deter-
mine the size of the jumps, one must solve Eq. (B44b)
for u+

.
= u(0+) and u−

.
= u(2π−). Those follow from the

self-consistency conditions

u+ = G>(0; 0)u+ −G<(0; 2π)u− + F (0), (B45a)

u− = G>(2π; 0)u+ −G<(2π; 2π)u− + F (2π). (B45b)

This is a linear system to be solved for u0
.
= (u+, u−)T :

M · u0 = F . (B46)

Manipulations using the two constraints (B42) and (B43)
show that M can be written as

M =

(
−G< −G>

G< G>

)
, (B47)

where

G< ≡ G<(0; 0), G> ≡ G>(2π; 2π). (B48)
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The nature of the solution depends on the structure of M.
It is straightforward to find that the eigenvalues λ, the
(unnormalized) left eigenvectors l, and the right eigen-
vectors r of M are

λ = 0: l0 =

(
1
1

)
, r0 =

(
G>

−G<

)
; (B49a)

λ = 1: l1 =

(
G<

G>

)
, r1 =

(
−1
1

)
. (B49b)

(These are properly orthogonal.) The nonzero eigenvalue
is actually G> −G<, which equals 1 from the jump con-
dition (B43). The fact that M possesses a nonempty null
eigenspace means that one must consider the Fredholm
alternative. In order that Eq. (B46) be solvable, F must
be orthogonal to l0, i.e., it must be proportional to r1.
That follows from the boundary condition (B42). Thus
one can write F = Fr1 [F = F (2π)] and expand u0 as

u0 = 2ur0 + br1, (B50)

where u and b are constants to be determined. By adding
the components of u0, one sees that u = 1

2 [u(0+) +
u(2π−)]. By applying M to Eq. (B50) and equating the
result to F , one finds that b = F whereas u is undeter-
mined. Thus the formalism generates a family of “pe-
riodic” solutions parametrized by u (see Fig. 7). The
special continuous solution can therefore be found by ad-
justing u to the special value u∗ that makes the jump
∆u

.
= u+ − u− vanish; one finds

u∗ = F/(G< +G>), (B51)

and one can readily check that Eq. (B50) reduces to u+ =
u− = u∗, i.e., u0 = u∗(1, 1)T .

As an example, again consider the problem (B9). For
homogeneous boundary conditions, one finds

G>(φ;φ′) = e−η(φ−φ
′)/D+, (B52a)

G<(φ;φ′) = −e−2πηe−η(φ−φ
′)/D+, (B52b)

where D+ is defined by formula (B14). Thus

G> +G< = (1 − e−2πη)/D+. (B53)

In conjunction with the expression for F (2π), formula
(B51) can be seen to be identical to the result (B27).

For identical endpoints, formula Eq. (B44b) can be
written as

u(φ) = A(φ)u∗ + F (φ), (B54)

where A(φ)
.
= G>(φ; 0)−G<(φ; 2π). Theoretically, with

u∗ given by Eq. (B51), the representation (B54) should
be periodic. However, in cases where F (φ) cannot be
manipulated analytically, and particularly for small η,
it may be better to determine u∗ by requiring that the
values of u(0) and u(2π) are identical, i.e.,

u∗ = −

(
F (2π) − F (0)

A(2π) −A(0)

)
. (B55)

This guarantees the periodicity even in the face of nu-
merical errors, and the construction again works with
integrals whose individual pieces are O(1) in the limit of
small η.
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