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An expression for the temperature gradient in chaotic fields

S.R. Hudson
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A coordinate system adapted to the invariant structures of chaotic magnetic fields

is constructed. The coordinates are based on a set of ghost-surfaces, defined via

an action-gradient flow between the minimax and minimizing periodic orbits. The

construction of the chaotic coordinates allows an expression describing the temper-

ature gradient across a chaotic magnetic field to be derived. The results are in close

agreement with a numerical calculation.

Introduction : We continue [1] the study of anisotropic heat transport across a chaotic

magnetic field, B, where the heat flux vector is given

q = κ‖b b · ∇T + κ⊥∇T, (1)

for b = B/|B|, and T is the temperature. The parallel and perpendicular transport are

characterized by the diffusion coefficients, κ‖ and κ⊥, which we take to be constants. In

a region with no significant sources or sinks, the steady-state temperature is determined by

the second-order differential equation

∇ · q = 0. (2)

For fusion relevant plasmas [2], the heat transport is highly anisotropic, κ⊥/κ‖ ≈ 10−10.

It is instructive to consider the “ideal-limit”, where the parallel transport is infinite compared

to the perpendicular transport, κ⊥/κ‖ = 0. The condition ∇ · q = 0 then requires that

along each field-line B · ∇T = αB2, where α is a constant, and the only acceptable value is

α = 0. To see this, consider integrating along a field-line from some initial point, where

T = T (0), to obtain T (η) = T (0) + α
∫ η

0
B2dη, where η parameterizes distance along a field-

line, ∂η ≡ B · ∇. If the field-line returns to the initial point after a non-zero distance ηp/q,

for the temperature to be a single valued position of space we require T (ηp/q) = T (0). So,

for periodic orbits we must have α = 0. An irrational field-line that lies on a flux surface

comes arbitrarily close to the initial point after an arbitrarily long distance, and irregular
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field-lines come arbitrarily close to any point in a finite volume, including the initial point.

So we must have α = 0 almost everywhere, and in the limit that κ⊥/κ‖ = 0 the temperature

is invariant under the field-line-flow, B · ∇T = 0.

This paper will explore the hypothesis that if coordinates, (s, θ, φ), can be adapted to

the invariant structures of the magnetic field, the steady state temperature will take the

form T = T (s). This is justified a posteriori, by deriving an expression for the temperature

gradient and showing that this expression leads to an accurate description of the temperature

profile, as compared to a numerical solution.

Chaotic coordinates : Generally, the temperature is represented as a function of

three-dimensional space. For example, in toroidal geometry T = T (ψ, θ, φ), where ψ is an

arbitrary radial coordinate (eg. ψ labels flux surfaces of a nearby integrable field), and θ, φ

are poloidal and toroidal angles. If the field possesses a smooth set of nested flux surfaces

(ie. the field is integrable), labeled with radial coordinate ψ, magnetic coordinates can be

constructed globally so that B · ∇ψ = 0. The temperature is then constant on the flux

surfaces, T = T (ψ). For slightly chaotic fields, flux surfaces with sufficiently irrational

rotational-transform are guaranteed to survive sufficiently small perturbation by virtue of

the KAM theorem [3, 4], and these can be used as a framework for the radial coordinate.

An irrational surface is the closure of an irrational field-line, and so in the limit κ⊥/κ‖ = 0

the temperature must be constant on the KAM surfaces. In a region where no true invariant

surfaces exist a more esoteric construction of radial coordinate surface is required.

Previously [1], numerical evidence was given suggesting that the steady state temperature

contours in a chaotic field will coincide with a set of so-called ghost-surfaces [5], which are

a class of almost-invariant surface [6, 7]. Motivated by this result, here we extend the

construction of magnetic coordinates to chaotic magnetic fields.

The chaotic coordinates that we construct are adapted to structures invariant under the

field-line flow, namely the periodic orbits and the irrational field-lines. We consider fields

with the so-called twist condition, so the shear is nowhere zero. When an integrable field

is destroyed by perturbation, the Poincaré – Birkhoff theorem [4] states that at least two

periodic orbits will survive, which for small perturbation are the stable and unstable periodic

orbits. Additionally, the Aubry-Mather theorem [4] tells us that the irrational field-lines

will also survive perturbation. If the irrational field-line ergodically covers a surface, the

surface is a KAM surface. If not, the irrational field-line is called an Aubry-Mather set [8, 9]



3

or a cantorus [10]. The irrational field-lines may be approximated arbitrarily closely by

suitably chosen rational field-lines, and so from practical perspective we need only consider

adapting the chaotic coordinates to the periodic orbits. This is achieved by constructing

a set of rational ghost-surfaces. (The importance of the irrational field-lines, the cantori,

will be discussed below.)

Ghost-surfaces are defined using the Lagrangian formulation of magnetic field-line dynam-

ics: magnetic field-lines are extremal curves, C, of the action integral [11], SC =
∫
C
A · dl.

Constraining attention to (p, q) periodic curves, where θ = θ(φ) satisfies θ(2πq) = θ(0)+2πp,

the stable and unstable periodic field-lines are the minimax curve (a saddle point of the ac-

tion) and the minimizing curve respectively [4]. (Note that for sufficiently large perturbation

the minimax orbit also becomes unstable.) At the minimax curve, there exists a single

direction in configuration space along which the action integral decreases. By perturbing

the minimax orbit in this direction, then allowing the curve to flow down the action-gradient

to the minimizing periodic orbit, the curve will trace out a surface, the (p, q) ghost surface

[1, 6].

Numerical evidence indicates that different ghost-surfaces, as identified by their periodic-

ity (p, q), do not intersect [1, 6]. A selection of ghost-surfaces may be used as the framework

for a radial coordinate. The ghost-surfaces are Fourier decomposed, and a piecewise linear

interpolation of the Fourier harmonics ensures that the interpolated surfaces do not inter-

sect. Note that each ghost-surface passes through its respective island chain and necessarily

“captures” the minimax and minimizing periodic orbits. Also, by selecting ghost-surfaces

of sufficiently high periodicity, the chaotic coordinates may be adapted to the cantori.

The cantori are the action-minimizing, irrational field-lines. They may be approximated

arbitrarily closely by the action-minimizing rational field-lines. Near-critical cantori are

particularly important for understanding transport in chaotic fields. By near-critical it is

meant that perturbation slightly exceeds the value at which the irrational field-line no longer

traces out a smooth surface, ie. when the KAM surface is destroyed. Irregular (chaotic)

field-lines may pass across the cantori; however, field-line transport across near-critical can-

tori can be extremely slow and so these cantori are effective partial barriers to transport

[12]. Just as the most irrational (noble) KAM surfaces are most likely to survive pertur-

bation [13], the noble cantori typically have locally minimal field-line flux and present the

most significant impediment to anisotropic heat transport in chaotic fields. Furthermore,



4

the existence of near-critical cantori (and also the regions of regular trajectories near stable

periodic orbits) violates the assumptions underpinning the random-walk, diffusive model of

field-line transport in chaotic fields [14], and one is led to a fractional-diffusion approach [15].

(It is only when the field is “uniformly” chaotic, ie. well above the stochastic threshold, that

one may approximate field-line transport as a random process.

Comparison with numerical solution : To see that the ghost-surfaces coincide with

isotherms, the steady state solution to the anisotropic heat transport equation is solved

numerically. A model magnetic field is considered, B = ∇ × A, with vector potential

A = ψ∇θ − χ∇φ, where χ(ψ, θ, φ) is the field-line Hamiltonian,

χ = ψ2/2 +
∑
mn

χm,n(ψ) cos(mθ − nφ). (3)

This magnetic field is stellarator symmetric, which allows several simplifications( eg. periodic

orbits lie on symmetry lines [16]), but does not alter the characteristic properties of the

chaotic field. For non-zero χm,n, magnetic islands form around the stable periodic orbit,

and irregular field-lines emerge from near the unstable periodic orbits. To excite islands

at the ψ = 1/2 and ψ = 2/3 rational surfaces, we set 22χ2,1 = 32χ2,3 = k, where k is a

perturbation parameter. For large enough k, the region between the (1, 2) and (2, 3) island

chains is dominated by irregular field-lines and island chains. A Poincaré plot of the field,

with k = 4.5 × 10−3 is shown in Fig.1.

A temperature gradient across the chaotic field between the (1, 2) and (2, 3) islands is

enforced by inhomogeneous boundary conditions, namely that T = 1.0 on ψ = 0.50 and

T = 0.0 on ψ = 0.65, and we study the case where the ratio of transport coefficients is given

κ⊥/κ‖ = 10−10. The strong parallel transport is separated from the weak perpendicular

transport by employing locally field aligned coordinates. The steady state temperature is

solved iteratively using finite-differences on a high-resolution numerical grid. The numerical

approach is identical to the approach used in Ref[1].

In Fig.1, 72 ghost-surfaces between the (1, 2) and (2, 3) islands are shown. This selec-

tion includes low-order rational ghost-surfaces, eg. (p, q) = (3, 5), (4, 7), (5, 8), which pass

through the corresponding island chains. The low order islands are typically larger (than

the higher order islands), and if an island exceeds a critical width, ∆w ∼ (κ⊥/κ‖)
1/4, the

temperature will tend to flatten inside the island [2]. Also, ghost-surfaces with period-

icities approximating various noble irrationals were selected, eg. (p, q) = (37, 66), (41, 71),
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(44, 75). These “irrational” ghost-surfaces form coordinate surfaces that “fill-in-the-gaps”

in the near-critical cantori. In addition, high-order ghost-surfaces that lie adjacent to

the chaotic separatrices of the low order islands are selected. In the strongly anisotropic

limit, the temperature will flatten across the islands and will also adapt closely to the these

“boundary” surfaces lying just outside the chaotic separatrix, giving the temperature a frac-

tal structure. (The term “boundary circle” was introduced to describe the closest KAM

surface next to a chaotic separatrix [17, 18].) The near-fractal structure of coordinates

matches the near-fractal structure of the temperature, and this allows a simple expression

for the temperature gradient in chaotic coordinates to be derived.

Semi-analytic solution of temperature profile : To a remarkable degree, the ghost-

surfaces coincide with isotherms, so we may use the approximation T = T (s), where s labels

the ghost-surfaces (and their interpolates). To derive an expression for the temperature

gradient consider the following integral over a volume bounded by a surface s = const.,

d

ds

∫
V

∇· q dV ≡ d

ds

∫
∂V

q · dS = 0, (4)

where dS =
√
g∇s dθdφ. An expression for the temperature gradient, T ′ = dT/ds, is

derived using Eq.(1):

dT

ds
=

c

κ‖ϕ+ κ⊥G
, (5)

where ϕ is the squared field-line flux across a coordinate surface and G is an averaged metric

quantity,

ϕ =

∫∫
dθdφ

√
g B2

n, (6)

G =

∫∫
dθdφ

√
g gss, (7)

for Bn ≡ B · ∇s/|B| and gss = ∇s · ∇s. The integration constant, c, and a second

integration constant that appears when Eq.(5) is integrated to obtain T (s), are determined

from T (a) and T (b), the average of the numerical solution on the lowermost and uppermost

ghost-surfaces shown in Fig.1. This allows the profile defined by Eq.(5) to be directly

compared with the numerical solution, as shown in Fig.2. Good agreement with the

numerical solution is obtained.

With κ‖ À κ⊥, the temperature gradient given by Eq.(5) is dominated by surfaces

with minimal ϕ. In our construction of chaotic coordinates, local maximum temperature
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gradients will coincide with the noble cantori. In the ideal limit, infinite gradients are

supported on any KAM surfaces that exist (where ϕ = 0), and the profile will approach

a devil’s staircase. If κ⊥ is non-zero, T ′ will everywhere be finite, and so T (s) will be

smooth.

Comments : This paper has presented evidence suggesting that the numerically

intensive task of solving highly anisotropic heat transport in chaotic fields may be reduced to

the task of constructing chaotic-coordinates. Computationally, this is much simpler. There

are, however, several questions that remain outstanding: for a given chaotic field, what is

the best selection of ghost-surfaces to serve as the coordinate framework? The selection of

ghost-surfaces shown in Fig.1 was empirical – a set of surfaces was chosen that resulted in a

good fit to the temperature profile. To be of practical value however, it is required to a priori

determine which set of ghost-surfaces is optimal. Implicit in the introductory discussion

was that the perpendicular diffusion κ⊥ is negligible, so the temperature exactly adapts to

the fractal structure of the field, and thus also to the chaotic coordinates. However, the

fine-scale structure of the temperature is smoothed out as κ⊥ increases. The temperature

will not completely flatten across islands less than the critical island width, and accordingly

the temperature will not exactly coincide with boundary ghost-surfaces that are too close

to these islands’ separatrices. It would be beneficial to know how the optimal selection

of ghost-surfaces depends on the ratio κ⊥/κ‖. These questions are the topic of ongoing

investigation.

The agreement between the ghost-surfaces and the isotherms shown in Fig.1, and the

agreement between the numerical and reconstructed temperature profile, Fig.2, is qualita-

tive. A detailed quantitative comparison will be deferred until a systematic selection of an

optimal set of ghost-surfaces has been derived. We expect to show that the error between

the “exact” numerical profile and the reconstructed profile can be reliably and systematically

reduced.

There exist other constructions of almost invariant surfaces that may be suitable for use

as the radial framework for chaotic-coordinates. Ghost-surfaces have been chosen here as

they fit neatly with Lagrangian integration methods, which provides a robust approach to

the construction of cantori in strongly chaotic fields [19]; however, the quantity ϕ bears a

striking resemblance to the quadratic-flux functional [7, 20]. This suggests that quadratic-

flux minimizing surfaces may be more suitable for organizing anisotropic heat transport.
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Finally, we note that Eq.(5) is quite general and independent of the construction of

chaotic-coordinates. If there is no local source, the isotherms form a set of nested surfaces

which may themselves be used as coordinate surfaces. In this case, the approximation

T = T (s) is exact, and so therefore is Eq.(5).

This work was supported in part by U.S. Department of Energy Contract No. DE-AC02-

76CH03073 and Grant No. DE-FG02-99ER54546.

FIG. 1: (color online): Ghost-surfaces (red lines) and corresponding isotherms (black lines, only

for θ > 0) are shown for a near-critical chaotic field. A Poincaré plot is shown with grey dots.
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