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Spectral asymmetry due to magnetic coordinates
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Abstract

The use of magnetic coordinates is ubiquitous in toroidal plasma physics, but the distortion in

Fourier spectra produced by these coordinates is not well known. A spatial symmetry of the field

is not always represented by a symmetry in the Fourier spectrum when magnetic coordinates are

used because of the distortion of the toroidal angle. The practical importance of spectral distortion

is illustrated with a tokamak example.
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Magnetic coordinates simplify and clarify the theory of toroidal plasmas confined by a

magnetic field [1–5]. Assuming the existence of flux surfaces [6, 7], ψ(~x) with ~B · ~∇ψ = 0,

magnetic coordinates describe three-dimensional space by (ψ, ϑ, ϕ), where ψ is a radial

coordinate, ϑ is a poloidal, and ϕ is a toroidal angle. The two angles and ψ are defined, so

the magnetic field has the representation

~B = ~∇ϕ× ~∇ψ + q(ψ)~∇ψ × ~∇ϑ, (1)

where q(ψ) is called the safety factor. Since ~B · ~∇ψ = 0 and ~B · ~∇(ϑ− ϕ/q) = 0, magnetic

field lines are given in magnetic coordinates by ψ = ψ0 and ϑ = ϑ0 + ϕ/q, where ψ0 and ϑ0

are constants. The coordinate Jacobian is J ≡ (~∇ψ × ~∇ϑ · ~∇ϕ)−1 = ( ~B · ~∇ϑ)−1.

Magnetic coordinates are not uniquely defined for a given magnetic field. If (ϑ, ϕ) are

the angular coordinates of one set of magnetic coordinates, then (θ, φ) are also magnetic

coordinates [2] if

ϑ = θ +
ω

q
and ϕ = φ + ω, (2)

where ω is an arbitrary function of position. In an axisymmetric tokamak, the arbitrary

function ω is naturally restricted to having only ψ and ϑ dependence. If φ is the ordinary

polar angle, distortions in the Fourier spectra arise from the ϑ dependent distortion in the

toroidal angle if a transformation is made to a different set of magnetic coordinates. If the

Jacobian of (ψ, ϑ, ϕ) coordinates is J = 1/ ~B · ~∇ϑ and the Jacobian of (ψ, θ, φ) coordinates

is J = 1/ ~B · ~∇θ, then
∂ω

∂ϑ
=

(
1− J

J

)
q. (3)

If a tokamak is top-bottom symmetric, the Jacobians are even functions of ϑ and ω is an

odd function of ϑ. It is the feature that ω is top-bottom antisymmetric when a tokamak is

top-bottom symmetric that leads to the spectral distortion.

Suppose a top-bottom symmetric perturbation is applied to a top-bottom symmetric

tokamak. If the ordinary polar angle of cylindrical coordinates is used as a magnetic coor-

dinate, then the function that describes the perturbation obeys f(θ, φ) = f(−θ, φ) and its

Fourier spectrum is

Fm,n ≡ 1

(2π)2

∮
f(θ, φ)ei(nφ−mθ)dθdφ = F−m,n. (4)

However, if the perturbation is described using (ψ, ϑ, ϕ) magnetic coordinates, Equation (2),
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the Fourier spectrum is (ϑ, ϕ)

Fm,n ≡ 1

(2π)2

∮
f(θ, φ)ei(nϕ−mϑ)dϑdϕ, (5)

which need not have the symmetry Fm,n = F−m,n.

The asymmetry of the Fourier spectrum in (ψ, ϑ, ϕ) is proven by the simple example

f = exp(−inφ), which clearly satisfies f(θ, φ) = f(−θ, φ). In (ψ, θ, φ) coordinates the only

non-zero Fourier term is F0,n = 1. However,

Fm,n =
1

(2π)2

∮
ei(nϕ−nφ−mϑ)dϑdϕ

=
1

(2π)

∮
e−i(nω+mϑ)dϑ. (6)

Therefore

Fm,n −F−m,n = − i

(2π)

∮
e−inω sin(mϑ)dϑ; (7)

Fm,n −F−m,n =

∮
sin(nω) sin(mϑ)dϑ

2π
, (8)

which is non-zero since the integrand is the product of two odd functions of ϑ. In general

f(θ, φ) =
∑

µ fµ cos(µθ) exp(−inφ), so the spectral shift is given by the Fourier decomposi-

tion of cos(µθ) exp(−inφ), but cos(µθ) = cos{µ(ϑ− ω/q)} is an even function, so

Fm,n −F−m,n =

∮
cos{µ(ϑ− ω/q)} sin(nω) sin(mϑ)dϑ

(2π)
. (9)

That is, the symmetry in (θ, φ), Fm,n = F−m,n is broken in (ϑ, ϕ), Fm,n 6= F−m,n, if nω 6= 0.

In a similar way, the antisymmetry in (θ, φ), Fm,n = −F−m,n, for a top-bottom antisymmetric

perturbation is broken in (ϑ, ϕ), Fm,n 6= −F−m,n, if nω 6= 0. The extent of the breaking

of the symmetry or the antisymmetry depends on the magnitude of ω(ϑ). Note that the

property of the symmetry is preserved for the n = 0 Fourier terms.

The spectral asymmetry is important in practical applications, such as studies of toka-

maks subjected to magnetic perturbations [8–19]. Most of the external coils in a tokamak

have the top-bottom symmetry or antisymmetry, so the components of the magnetic field

are also often either top-bottom symmetric or antisymmetric unless the application is espe-

cially on the purpose of the correction for an intrinsic error field. Here only a top-bottom

symmetric component of the field will be illustrated since an antisymmetric component can

be discussed in a similar way. For a top-bottom symmetric component f(θ, φ) = f(−θ, φ)
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FIG. 1: Constant lines of the poloidal angles ϑ with intervals of 36◦ for (a) PEST (b) Boozer (c)

Hamada magnetic coordinates in a NSTX plasma, with a single lower null divertor. Note the strong

distortion of the poloidal angle when ϕ = φ in (a) compared with the other coordinate systems.

if the toroidal angle φ is the cylindrical angle. The symmetry implies the symmetry in the

Fourier spectrum, Fm,n = F−m,n, but the spectrum does not have this symmetry in other

magnetic coordinate systems.

Magnetic coordinate systems can be defined by the Jacobian, which for the standard

coordinate systems can be written as [20]

J = λ(ψ)
Ri

|~∇ψ|jBk
, (10)

where R is a major radius and λ(ψ) is a normalizing function. The magnetic coordinates

that use the cylindrical angle φ as the toroidal angle are called PEST [21] coordinates

and have the Jacobian JP ∝ R2. The relation between PEST and cylindrical coordinates

allows a simple description of external coils and conductors. More theoretically important

coordinates are given by JB ∝ 1/B2 and JH ∝ 1, called Boozer [3, 4] and Hamada [5]

coordinates, respectively. These coordinates have toroidal angles ϕ that are distorted from

the cylindrical angle φ. Using Equation (1) and ~B = ~∇ψ × ~∇φ + RBφ
~∇φ, the deviation is

shown to be

ω = φ− ϕ =

∫ ϑ

0

JBφ

R
dϑ− qϑ. (11)

Magnetic coordinates have a complicated relation to ordinary space. When one of the

two angles (ϑ, ϕ) has a simplified relation to ordinary space, the other angle must become
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FIG. 2: The distortions of toroidal angle ϕ− φ = ω(ψ, ϑ) for (a) Boozer and (b) Hamada coordi-

nates, at radial positions ψ/ψmax = 0.1, 0.3, 0.5, 0.7 and 0.9. The amplitude of ω(ψ, ϑ)’s increase

with ψ/ψmax. The same NSTX plasma as in Figure 1 is used. Note ω(ψ, ϑ) = −ω(ψ,−ϑ) and also

the slight deviations from it due to the lower separatrix.

more complicated. This is illustrated by Figure 1. Figure 1 (a) shows the strong distortion

of the poloidal angle of PEST coordinates in which the toroidal angle is the cylindrical

angle. The example that is illustrated is the National Spherical Torus eXperiment (NSTX)

device [22] and is almost top-bottom symmetric with a small deviation by a single lower null

divertor. Boozer coordinates in (b) and Hamada coordinates in (c) represent poloidal angles

that better represent the cross section, but the toroidal angles are complicated. Figure

2 shows the deviations ω(ϑ) in five different radial positions ψ/ψmax = 0.1 ∼ 0.9 for the

NSTX plasma. Although the example is illustrated with a spherical torus such as NSTX, the

considerable variation of ω in the small ψ/ψmax, where the aspect ratio of the surface becomes

small, implies that the breaking of the symmetry can be significant also in a conventional

tokamak.

The breaking of the symmetry of the Fourier spectrum that occurs when a magnetic

perturbation is described in magnetic coordinates with distorted toroidal angles is illustrated

in Figure 3 and 4. Here an n = 3 external field is applied from the midplane Error Field

Control (EFC) coils [23] to the NSTX plasma shown in Figure 1. The external flux (Figure

3) and field (Figure 4) is decomposed at q = m/n = 12/3 = 4 rational surface, but as

in any flux surface, the symmetry in PEST coordinates is not preserved in other magnetic

coordinates with ϕ 6= φ, and the deviation from the symmetry increases with ω(ϑ), or with

the deviation of Jacobian from the PEST Jacobian JP ∝ R2. Boozer coordinates have
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Φ spectrum at q=4
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FIG. 3: Comparison of poloidal Fourier spectra of the flux Φ ≡ δ ~B · ~∇ψ/~B · ~∇ϑ decomposed on

q = 12/3 = 4 surface using PEST (black), Boozer (blue) and Hamada (red) magnetic coordinates

in a NSTX plasma with n = 3 applied field. The symmetry in PEST magnetic coordinates is not

preserved. The dotted-line shows shows the resonant Fourier harmonics of Φ are independent of

the choice of magnetic coordinates.

JB ∝ 1/B2 ∼ R2, so the deviation is weak, but Hamada with JH ∝ 1 strongly distorts the

spectrum.

Although different magnetic coordinate systems have different spectra, physical results

must remain unchanged. To illustrate this, consider the important problem of the breaking

of magnetic surfaces by a perturbing magnetic field δ ~B. The perturbed magnetic surfaces

are the constant-ps surfaces where ps(~x) = p + δp, ( ~B + δ ~B) · ~∇ps = 0, and ~B · ~∇p = 0. The

unperturbed magnetic field ~B is assumed to be given in magnetic coordinates, Equation (1),

so p is a function of ψ alone. To lowest order in the perturbation,

(
∂

∂ϑ
+ q(ψ)

∂

∂ϕ

)
δp = −δ ~B · ~∇ψ

~B · ~∇ϑ

dp

dψ
. (12)

This equation is trivially solved if Φ(~x) ≡ δ ~B · ~∇ψ/ ~B · ~∇ϑ is given as a Fourier series,

Φ =
∑

Φmn exp{i(mϑ− nϕ)}, where Φ has units of flux. Although Φ and its Fourier series

depend on the choice of magnetic coordinates, a resonant Fourier harmonic, which means

Φmn with m = nq, does not. Equation (12) is singular when Φmn is resonant and the

resolution of this singularity (III. A. in Ref. [24]) is a magnetic island with a width that

scales as
√
|Φmn|.

To prove the island width is a coordinate independent quantity, the Fourier harmonics of

the flux,

Φmn =
1

(2π)2

∮
ei(nϕ−mϑ) δ

~B · ~∇ψ

~B · ~∇ϑ
dϑdϕ, (13)
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δB spectrum at q=4
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FIG. 4: Comparison of poloidal Fourier spectra of the normal field δB ≡ δ ~B · n̂ decomposed on

q = 12/3 = 4 surface using PEST (black), Boozer (blue) and Hamada (red) magnetic coordinates

in a NSTX plasma with n = 3 applied field. The symmetry in PEST magnetic coordinates is not

preserved. The dotted-line shows the strong dependence of the resonant Fourier harmonics of δB

on the choice of magnetic coordinates.

will be shown to be the same in all magnetic coordinate systems if m = nq. The area

element on a constant-ψ surface is d~a = (~∇ψ)J dϑdϕ, so using Equation (2) for the relation

between different sets of magnetic coordinates

Φmn =
1

(2π)2

∮
ei(nφ−mθ)ei(n−m/q)ωδ ~B · d~a. (14)

Since ω drops out of this equation for a resonant Fourier harmonic, m = nq, and the area

element d~a is a coordinate system invariant, resonant Fourier harmonics are the same in all

sets of magnetic coordinates as illustrated at the dotted line in Figure 3.

A number of papers have discussed the resonant Fourier harmonics of magnetic field

δB ≡ δ ~B · n̂ instead of Φ, assuming the Fourier spectrum is little changed by going to

magnetic coordinates [11–13, 15–19]. But this assumption can be very inaccurate in toroidal

plasmas. The magnetic field is decomposed as

δBmn =
1

(2π)2

∮
ei(nϕ−mϑ)(δ ~B · n̂)dϑdϕ. (15)

Using ei(nϕ−mϑ) = ei(nφ−mθ) at the rational surface,

δBmn =
1

(2π)2

∮
ei(nφ−mθ) (δ

~B · d~a)( ~B · ~∇ϑ)

|~∇ψ|
. (16)

Equation (16) shows that the resonant Fourier harmonics of the magnetic field depend on

the different weighting from ( ~B · ~∇ϑ)/|~∇ψ| and differ between coordinate systems. The
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resonant Fourier harmonics of the flux Φ = (δ ~B · ~∇ψ)/( ~B · ~∇ϑ), however, are independent

of the magnetic coordinate system. The dotted line in Figure 4, shows the resonant Fourier

harmonics, δBm=12,n=3, at the rational surface q = 12/3 are strongly dependent on magnetic

coordinates in toroidal plasmas.

In summary, the distortion of the toroidal angle that can occur in magnetic coordinates

produces a shift in Fourier spectra. When the geometry has top-bottom symmetry, this

symmetry need not be apparent in the Fourier spectra. However, physical quantities, such

as the width of islands, cannot depend on the choice of coordinate system, and this is

connected with the invariance of certain features of the spectra to the choice of magnetic

coordinates.
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