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Stabilization of the Vertical Mode in Tokamaks by Localized 
Nonaxisymmetric Fields 

 
A. Reiman 

Princeton Plasma Physics Laboratory, Princeton, NJ  08543 
 
Vertical instability of a tokamak plasma can be controlled by nonaxisymmetric magnetic fields localized 
near the plasma edge at the bottom and top of the torus. The required magnetic fields can be produced by a 
relatively simple set of parallelogram-shaped coils. 
 
The tokamak has evolved from an axisymmetric device with circular cross-section to an 
axisymmetric device with strongly shaped cross-section. It is natural to ask whether it 
would be advantageous to add some nonaxisymmetric shaping. There are already some 
experimental studies in that direction showing that edge localized modes (ELMs) can be 
stabilized using non-axisymmetric fields.[1]  This was also the line of reasoning, in part, 
that motivated the physics design study for the US National Compact Stellarator 
Experiment (NCSX) (Ref. [2] and references therein), presently under construction. In 
this paper we show that vertical instability of the tokamak plasma, which imposes an 
important constraint on tokamak design, can be controlled by nonaxisymmetric magnetic 
fields localized near the plasma edge at the bottom and top of the torus. The required 
magnetic fields can be produced by a relatively simple set of parallelogram-shaped coils. 
 
As we will discuss below, the free energy driving the vertical instability in tokamaks 
increases with increasing vertical elongation of the plasma cross-section.  On the other 
hand, empirically derived global confinement scaling laws for tokamaks find that 
confinement improves with increasing vertical elongation. Similarly, the Troyon scaling 
law for plasma stability predicts an increase in the β limit for ballooning and kink modes 
with increasing elongation. There is evidence that the benefits of increasing elongation 
diminish and perhaps disappear altogether at sufficiently high elongation[3], but the 
elongation at which this occurs is well above that at which the largest present day 
tokamaks can routinely operate. Contemporary tokamaks typically operate in a regime 
where a conducting wall surrounding the plasma stabilizes the vertical mode, with the 
mode remaining unstable on the resistive time scale of the wall. Feedback stabilization is 
used to suppress the resistive mode. Disruptions due to vertical instability (called 
“vertical displacement events” or “VDEs”) are caused by accidental crossing of the ideal 
instability threshold during a shot, failure of the feedback control system, etc. Disruptions 
initiated by other instabilities often culminate in a vertical mode. (See Ref. [4] and 
references therein). 
 
There have been a number of calculations of the stabilization of current-driven ideal 
MHD modes by stellarator fields ([5,6] and references therein). The results have usually 
been expressed in terms of the rotational transform ( = ι = 1/q, where q is the safety 
factor) of the stellarator vacuum field. The nonaxisymmetric fields discussed in this paper 
are not stellarator fields, in the sense that they do not have closed vacuum flux surfaces  
(they do not produce closed flux surfaces in the absence of a plasma current), and they do 
not generate vacuum rotational transform. 
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Three-dimensional magnetic fields provide control over field line properties not available 
in axisymmetric configurations such as tokamaks. In an axisymmetric configuration, field 
lines cannot circle the magnetic axis in the absence of a net toroidal plasma current. The 
generation of vacuum flux surfaces and rotational transform requires global three-
dimensional magnetic fields, which employ the control provided by nonaxisymmetry 
along the entire field line trajectory.  In this paper, we take advantage of the control 
provided by three-dimensional fields to target the physics of the vertical instability more 
directly, providing stabilization by a localized three-dimensional magnetic field. 
Stellarator fields are generally produced either by helical coils that wind around the 
plasma, or by modular coils, which have the appearance of three-dimensionally deformed 
toroidal field coils. The coils that we describe here for generating our localized three-
dimensional field are simpler, and they do not link the plasma. They could potentially be 
installed on existing tokamaks. 
 
The physical mechanism driving the vertical instability in a tokamak can be understood 
by treating the plasma as a large aspect-ratio, current-carrying conductor in a vertical 
magnetic field. (See Ref. [7] and references therein.)  Adopting the conventional 
cylindrical coordinates (R,φ, z), φ is the toroidal angle, and R is the radial coordinate. If 
the conductor is displaced slightly in the vertical direction, the sign of the resulting force 
is determined by the sign of /RB z∂ ∂ . The quadrupole component of the externally 
generated field exerts a pressure that controls the ellipticity through the magnitude and 
sign of /zB R∂ ∂ . For an axisymmetric quadrupole field the sign of /RB z∂ ∂  is determined 
by the sign of /zB R∂ ∂ , so that a field that increases the vertical elongation produces a 
destabilizing change in /RB z∂ ∂ . 
 
Allowing the magnetic field to be nonaxisymmetric decouples /RB z∂ ∂  from /zB R∂ ∂ . To 
stabilize the vertical mode, we add a nonaxisymmetric field whose appropriately 
averaged value of /RB z∂ ∂  in the plasma is stabilizing. 
 
Fu has analytically calculated the stabilization of the vertical mode by a stellarator field 
for a large aspect-ratio, low β, elliptically shaped plasma using the stellarator 
expansion[5]. The analytical stability criterion has been found to agree well with 
numerical calculations[6]. The analytical calculation assumed a uniform current density, 
and it assumed a nonaxisymmetric vacuum field that generates a spatially uniform 
rotational transform. The stability criterion was expressed in terms of the fraction of 
vacuum rotational transform, f ≡ ιvac / ι, needed for stabilization. 
 
The calculation described in this paper differs from that of Ref. [5] in using a localized 
nonaxisymmetric magnetic field that does not produce vacuum rotational transform. As 
in Ref [5] (and as in much of the analytical work on tokamak vertical instabilities (Ref. 
[7] and references therein)) we assume a large aspect ratio plasma that is well 
approximated by a cylindrical plasma with periodic boundary conditions at z=0 and 

02z L Rπ= = , we take β = 0, and we assume a uniform equilibrium current density in the 



3 

plasma. In the following, when we use the term “nonaxisymmetry” in the context of the 
large aspect ratio limit it should be taken to mean “z-dependent”. We pursue the 
analytical calculation with these simplifying assumptions for the purpose of 
demonstrating the physics of the stabilization, and to obtain an estimate of the required 
magnitude of the nonaxisymmetric field for stabilization. 
 
To construct coils, we first consider surface currents on two ribbons defined by y = ± yc, -
w/2 ≤ x ≤ w/2, where we take the y axis to be in the vertical direction, the x axis in the 
horizontal direction, and the z axis to be parallel to the cylindrical plasma. Letting K 
denote the surface current, we can write K in terms of a current potential, K = ˆ( )uy∇× . 
We will focus primarily on the surface current on the upper ribbon and the field produced 
by that current. The surface current on the lower ribbon and the associated field will 
follow by imposing stellarator symmetry. This symmetry property, which is generally 
satisfied by stellarators, dictates that u-(x,z) = u+(x,-z), where the “+” and “-“ subscripts 
denote the current potentials on the upper and lower ribbon respectively. We will 
suppress the “+” subscript in the following when we are focusing on the upper ribbon. 
We will be interested in relatively localized fields, whose magnitude dies off rapidly as a 
function of distance from the coil, so that the nonlinear effects of the magnetic fields 
produced by the two sets of coils will be important in nonoverlapping regions, allowing 
us to calculate the nonlinear effects due to the two sets of coils separately. 
 
In the interior of the upper ribbon we take u(x,z) = u(x - α z), where α is a constant. Let N 
be the number of periods in the toroidal direction. That is, u is periodic in z with 
periodicity length 02 /R Nπ , N ≥ 1. Fourier decomposing with respect to z, and taking u 

to be even in z, we get 
0

( , ) cos[ ( )]n x zn
u x z u n k x k z∞

=
= +∑  where 0/zk N R= , /x zk k α= − . 

If 0 0u ≠ , the delta function current on each edge has a nonzero axisymmetric component. 
which may be canceled by nearby axisymmetric poloidal field coils if desired. 
 
The vacuum field produced by the surface current can be expressed in terms of a scalar 
potential, χ= ∇B , 2 0χ∇ = . For y < yc, and w/2 - |x| sufficiently large relative to |yc-y|, the 
nonaxisymmetric part of the scalar potential is 

1
exp( )cos[ ( )]n x zn

nky n k x k zχ∞

=
+∑ ,                                     (1) 

where xk and zk  are as defined above, 2 2 1/ 2( )x zk k k= + , and 0 exp( ) / 2n n cu nkyχ μ= − . We 
will make the simplifying assumption that w is sufficiently large that we can use this 
expression throughout the region of interest in the plasma. 
 
For values of k that are of interest, at most a few of the low order Fourier modes in Eq. 
(1) have a significant effect on the field in the plasma. The magnitudes of the higher 
harmonics decrease rapidly as a function of distance from the coils. A particularly simple 
set of coils can be obtained if u is taken to have the form of a square wave, 

1( , ) ( / 4) {sgn[cos( )] 1}x zu x z u k x k zπ= + − , where sgn(s) is 1 for s>0, -1 for s<0. This 
gives a set of filamentary coils in the shape of parallelograms. Fig. 1 is a view from 
above. 
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For the plasma equilibrium, we use the stellarator expansion.[10]  Let Bc be the field 
produced by the nonaxisymmetric coils, Bp the field produced by the plasma current and 
axisymmetric poloidal field coils in the absence of Bc, and tB z�  the field produced by the 
toroidal field coils. The stellarator expansion assumes t c pB B B>> >> . To zeroth order, 
the magnetic field line trajectories are straight lines in the z direction. To first order, each 
field line sees a sinusoidally varying cxB  and Bcy along its path, causing the field lines to 
spiral helically about the unperturbed orbit. The order 2

cB  effect arises from the fact that 
the helical field line trajectories see a larger Bc perturbation when they are at larger values 
of y. This produces a net drift of the field lines in the ˆ±x  direction. The method of 
averaging handles this secular contribution by averaging the second order effects over a 
period and constructing an effective axisymmetric field that includes these effects[11]. 
We will denote this averaged field by cB . The validity of this treatment requires that Δx, 
the drift of the field line over one period, satisfy 1xk xΔ � . This gives an additional 
condition for the validity of the stellarator expansion: ( / )( / ) 1x z ck k B B � . 
 
To simplify the stability analysis, we take ( ) 1ck y a− >> , where a is the minor radius of 
the plasma, so that only the lowest harmonic of Eq. (1) needs to be retained in the plasma. 
The averaged nonaxisymmetric field is then calculated to be ˆc cψ= ∇ ×B z , with 

2
c 1exp(2 ) /(2 )x z tky k k k Bψ χ= − . 

 
Taking Bt > 0, the averaged nonaxisymmetric field is in the x̂∓  direction, depending on 
the sign of /x zk k , and its magnitude increases with increasing y. From the discussion of 
the physics of the vertical instability, above, we expect that this will be stabilizing for the 
vertical mode if / 0z x zj k k > , where jz is the z component of the current density. To 
provide a more rigorous and quantitative evaluation of the vertical stability, we use the 
energy principle[12] in the form vpW W Wδ δ δ= + , where 

( )2 3
0(1/ 2) /p p

W Q d xδ μ= − ⋅ ×∫ ξ j Q  is an integral over the plasma volume, 
(1) 2 3

V V 0V
(1/ 2) [( ) / ]W B d xδ μ= ∫  is an integral over the vacuum region, ( )≡ ∇× ×Q ξ B , 

ξ is the plasma displacement, and (1)
VB  is the field perturbation in the vacuum region. In 

evaluating VWδ , we take the boundary condition at infinity, with no stabilization due to 
conductors outside the plasma. 
 
It follows from the work of Johnson and Greene [13] that, under the assumptions of the 
stellarator approximation, the equilibrium field B can be replaced by p c+B B  in the 
above expression for pWδ . The vacuum field perturbation in VWδ  can be determined 
from the averaged perturbed plasma boundary, which is determined by p c+B B and ξ . 
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We will assume that the boundary of the plasma cross-section is approximately circular, 
with a small elliptical perturbation of the boundary shape and a small perturbation of the 
boundary shape due to the nonaxisymmetric field. It is convenient to use both cylindrical 
coordinates ( , , )r zθ  and Cartesian coordinates ( , , )x y z in the stability calculation. The 
algebra is simplified somewhat by taking 0θ =  to lie along the y axis, so that 

cos( )y r θ= , sin( )x r θ= − . 
 
Stability is determined by the sign of Wδ , with the equilibrium unstable if 0Wδ < . For 
the zeroth order equilibrium, a cylindrical plasma with circular cross-section, we Fourier 
transform ξ  with respect to z and θ. The cross terms in Wδ between the nmξ  with 
different m and/or n vanish, and Wδ can be evaluated independently for each nmξ , where 
m is the poloidal mode number and n is the toroidal mode number. For an equilibrium 
with uniform current density, 0Wδ >  for n = 0, m > 1. For n = 0, m = 1, the 0,1( )rξ which 
minimizes Wδ corresponds to a rigid shift of the plasma, and gives 0Wδ = . 
 
Introducing a small nonaxisymmetric field, as described above, plus a small 
axisymmetric elliptical distortion of the plasma boundary, the averaged equilibrium field 
is ˆ ˆp c tBψ+ = ∇ × +B B z z , where [ ]{ }2 2

0 e c1 2 cos(2 ) exp[2 ( )]r a k y aψ ψ ε θ ε= − + − , 

0ψ  is a constant, and 2 2
0 c 1exp(2 ) /(2 )x t zka k k B a kψ ε χ= − . 

 
For c 0ε = , the equilibrium is vertically unstable when e 0ε > , corresponding to vertical 
elongation of the plasma.[7]  To calculate the stability for c 0ε ≠  we evaluate pWδ  and 

vWδ . The averaged equilibrium field that goes into these expressions is axisymmetric, so 
we can Fourier transfer ξ  as a function of 0/z Rφ =  and analyze the stability 
independently for each nξ . We are interested in 0n = . 
 
It can be expected that the displacement ξ  that minimizes Wδ  will depend on cε . For 

0cε = , 0eε = , restricting consideration to n = 0 displacements, the rigid displacement 
gives a local (and global) minimum of Wδ . It follows that if we add an O( )ε  
perturbation to 0 ˆξ=ξ y , the resulting change in Wδ  is 2O( )ε . On the  other hand, we will 
see that an O( )ε  perturbation of ψ  produces an O( )ε  change in Wδ . It follows that we 
can evaluate the O( )ε  change in Wδ  using 0 ˆξ=ξ y . This result is closely related to the 
well known property of the variational formulation of eigenvalue equations that an O( )ε  
error in the eigenfunction gives an 2O( )ε  error in the eigenvalue. 
 
The perturbed field in the plasma produced by the displacement 0 ˆξ=ξ y  is 

(1) (1)
p p ˆ( )ψ= = ∇×B Q z , where (1)

p 0 / yψ ξ ψ= − ∂ ∂ . The continuity of ˆ ⋅n B  at the plasma-
vacuum interface (where n̂  is the unit normal to the interface) is equivalent to requiring 

(1) (1)
V pψ ψ=  at the interface, where (1) (1)

V V ˆ( )ψ=∇×B z . In the vacuum region, 2 (1)
V 0ψ∇ = , so 
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that (1) (1)
V V0

( / ) cos( )m
mm

r a mψ ψ θ∞ −
=

=∑ . To lowest order, matching (1) (1)
V pψ ψ=  at the plasma 

boundary gives (1) 2
V 0 02 ( / ) cosa rψ ξ ψ θ= − . The 1m ≠  terms in (1)

Vψ  are O(ε). It is 
straightforward to verify that the contributions of the 1m ≠  terms to VWδ  are O(ε2). It 
follows that we need only concern ourselves with the 1m =  term in (1)

Vψ . Having 
calculated the perturbed field in the plasma and in the vacuum region, we can evaluate 

Wδ . We find 
( ){ }2

0 0 1 0 24 ( ) exp( 2 )[2 2 (2 ) 2 (2 )]p c eW V ka kaI ka I ka I kaδ ξ ψ ε ε= − − − − , 

where Ij is the modified Bessel function of the jth kind. For large ka, Ij(2ka) ≈ exp(2ka) / 
(4πka)1/2, giving 2 1/ 2

0 04 ( ) ( / )p c eW V kaδ ξ ψ ε π ε⎡ ⎤≈ −⎣ ⎦ . 
 
Expressing the stability condition in terms of the maximum value of Bc/B in the plasma ≡ 
maxp(Bc/B), we get  
 2 1/ 2

0max ( / ) ( / )( / )( ) /p c z x eB B a R k k ka qπ ε>  
for stability.  With the condition on the validity of the stellarator expansion that 
( / )( / ) 1x z ck k B B � , we get 1/ 2

0max ( / ) ( / )( ) /p c eB B a R ka qπ ε� . For 0 / 3R a ≈  and 
3q ≈  we need max ( / ) 0.1p cB B ≥  to see a substantial stabilization effect. 

 
When adding nonaxisymmetric fields to an axisymmetric device, loss of flux surfaces 
and of good particle drift trajectories are concerns. By taking ka large, we localize the 
effect to the plasma edge region. Experiments indicate that some loss of flux surfaces and 
of confinement near the edge is helpful for suppressing edge localized modes (ELMs)[1]. 
It is not known at this time what the optimal magnitude of the nonaxisymmetric 
perturbation is for this purpose. It is also of note that for a tokamak with a double-null 
divertor, localizing the perturbation near the x-points tends to minimize its effect on the 
Melnikov integral, reducing the width of the stochastic region produced near the 
separatrix.[14] 
 
It is instructive to consider the addition of nonaxisymmetric parallelogram-shaped coils 
on the sides of the plasma rather than on the top and bottom. cψ  is then a function of x 
rather than of y, and 0 ˆc cξ× = ×ξ B y B  vanishes, so the coils have no effect on the vertical 
mode. 
 
Next consider a configuration that has sets of parallelogram-shaped coils both on the 
sides of the plasma and on the top and bottom.  We again assume that ka is sufficiently 
large that the nonlinear effects of the magnetic fields produced by the different sets of 
coils are significant in nonoverlapping regions. The field produced by the coils on the 
sides does not affect the vertical stability. Constructing the side coils so that their 
filaments along the edges of the winding surface overlap filaments of the bottom and top 
coils, and adding also an axisymmetric filamentary current (which can be canceled by a 
nearby poloidal field coil), we can construct a set of nonaxisymmetric coils which is 
equivalent to a helical stellarator winding. Removing the overlapping filaments whose 
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currents cancel, what remains is a set of conventional stellarator windings, wrapped on a 
prism with rectangular cross-section, which produce vacuum surfaces and a vacuum 
rotational transform. Their effect on the vertical mode is the same as that of the simpler 
sets of parallelogram-shaped coils lying on the top and bottom. 
 
By combining the top and bottom coils with the parallelogram-shaped coils on the outer 
(right) side only, and adding the axisymmetric filamentary current on the upper right edge, 
we can construct a set of Furth-Hartman coils[8] whose vertical stability properties are 
the same as those for the top and bottom coils alone. 
  
Finally, we can conjecture about the nonlinear behavior of the vertical instability in the 
presence of the nonaxisymmetric field.  The Wδ analysis calculates the response to an 
infinitesimal perturbation, and it depends on /cxB y∂ ∂ . A finite vertical excursion of the 
plasma sees an exponential increase in cxB , and this suggests that the nonaxisymmetric 
field can prevent large vertical excursions of the plasma even for equilibria that are 
linearly unstable to the vertical mode. This also suggests that, although the linear 
stabilization described here can be obtained with only a single set of nonaxisymmetric 
coils either at the top or bottom of the plasma, it is likely desirable to have both sets of 
coils for suppression of finite vertical excursions. 
 
In conclusion, the analysis of this paper finds that the addition of a relatively simple set 
of parallelogram-shaped nonaxisymmetric coils can improve the stability of tokamaks to 
vertical modes, providing stable equilibria with more highly elongated cross-sections and 
potentially leading to devices with improved performance in terms of beta limits and/or 
confinement. Furth-Hartman coils are calculated to have essentially the same vertical 
stabilization effect as the simple parallelogram-shaped coils described here, so that the 
vertical stabilization demonstrated experimentally by Furth-Hartman coils [9] supports 
the feasibility of stabilizing vertical modes by the simpler coil set. The physical picture 
that we have presented for the stabilization suggests that the stability properties do not 
depend on the precise shape of the coils, so that the coil winding surface can be curved to 
conform to the local shape of the plasma, if desired, or curvature of the coils can be 
introduced to optimize relative to other considerations. 
 
This work was supported by DOE contract DE-AC02-76CH03073. 
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Figure Captions 

 
Fig. 1.  View from above showing parallelogram-shaped coils above a length of 
cylindrical plasma, with portions of the coils below the plasma also visible. The arrows 
indicate the direction of current flow in the coils. 
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