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Abstract

Ion heating by application of rotating magnetic fields (RMF ) to a prolate field-reversed config-

uration (FRC) is explored by analytical and numerical techniques. For odd-parity RMF (RMFo),

perturbation analysis shows ions in figure-8 orbits gain energy at resonances of the RMFo fre-

quency, ωR, with the figure-8 orbital frequency, ω. Since figure-8 orbits tend to gain the most

energy from the RMF and are unlikely to escape in the cusp region (where most losses occur),

they are optimal candidates for rapid stochastic heating, as compared to cyclotron and betatron

orbits. Comparisons are made between heating caused by even- and odd-parity RMFs and between

heating in currently operating and in reactor-scale FRC devices.

PACS numbers: 52.50.Qt, 05.45.a, 52.55.Lf, 52.65.Cc
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I. INTRODUCTION

The field-reversed configuration (FRC), relevant to space-plasma,1 plasma-processing,2

spacecraft-propulsion,3 and magnetic-confinement controlled-fusion4 research, is an excellent

system to explore particle dynamics in one, two, or three dimensions. Even with axial

symmetry, a static FRC allows charged-particle orbits that are regular or ergodic,5,6 affecting

the confinement and stability of plasmas contained in it. Early studies of single-particle

orbits in FRCs7 assumed time invariance and spatial symmetries that reduced the problem to

one or two dimensions, necessitating the existence of KAM surfaces and delimiting excursions

in phase space. The addition of a rotating magnetic field (RMF,)8 initially proposed to

generate current,9 breaks the angular invariance of the FRC, creating a three-dimensional

system without bounding KAM surfaces, and opens the possibility for large excursions in

phase space. These excursions may produce beneficial results, such as ion heating,10,11 or

detrimental ones, such as loss of confinement.

In this paper we present analytical and numerical studies of ion orbits in FRCs with RMFs

applied. The goals are to understand the transition to chaotic orbits, to quantify the role of

resonances in the non-linear growth and subsequent saturation of ion energy, to evaluate ion

heating and single-particle confinement in present-day and future RMF/FRC experiments,

and to make the first comparison between heating caused by two classes of rotating magnetic

fields, even and odd parity.12 We show that the same mechanism is responsible for the initial

ion heating and its ultimate saturation.

Single-particle Hamiltonian dynamics, the technique employed in this study, is clearly

appropriate at the low collisionality that exists in low-density space plasmas and high-

temperature magnetic-confinement fusion devices. However, only one RMF/FRC device has

achieved the very low Coulomb collisionality that fully justifies a Hamiltonian analysis.13 As

we shall show, notwithstanding, the time scale for RMF ion heating is often sufficiently short

that the Hamiltonian approach remains valid and useful even for many collisional FRCs.

The analytical analyses herein are restricted to odd-parity RMFs (RMFo) because of the

existence of an invariant subspace that makes the equations tractable. We provide numerical

analysis for both RMFo and even-parity RMF (RMFe).

Earlier papers10,11 which examined the effects of low-amplitude RMFos on ion heating in

reactor-scale FRCs showed that the heating regime was ωR ∼ ωci � ωRci, where ωR is the
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RMFo angular frequency, ωci = qBa/mc is the ion-cyclotron angular frequency in the axial

field at the FRC’s center, Ba, m is the ion mass, q is the ion charge, and ωRci = qBR/mc

is the ion-cyclotron angular frequency in an RMF of amplitude BR. These papers reported

significant ion heating – to fusion relevant energies – for BR/Ba ≥ 5×10−4. In this paper we

consider that frequency regime in depth and also present results for ωR � ωci, characteristic

of one presently operating experiment.

Phase de-coherence of ion orbits, with respect to the periodic electric fields created by

the RMF, is a necessary condition for heating, i.e., velocity randomization. Nulls and strong

gradients in the magnetic field provide locations for phase de-coherence. The existence of

strong field gradients does not preclude the importance of ion-cyclotron resonances (ICRs)

to ion heating. In this paper we show that ICRs are important, though with significant

differences from the standard ICR picture. In numerical analyses we have seen that stronger

heating occurs for ergodic figure-8 orbits than for the clearly resonant interaction between

RMF and some cyclotron orbits. Cyclotron orbits may extract energy from the RMF over

many periods, but only infrequently incur phase de-coherence, break-down of µ conservation,

predominantly at the axial extremes of their orbits – unless they are near a phase-space

separatix that allows their transition to figure-8 orbits. Figure-8 orbits cross the field-reversal

region (twice) every orbit cycle, possibly losing phase coherence at each transversal. Because

figure-8 orbits are representative of a large fraction of ions in hot fusion FRC plasmas, we

focus on them. We have explained14 why very high energy figure-8 orbits (and most betatron

orbits) tend to interact regularly with RMFo, leading, importantly, to a saturation of ion

heating by RMFo and a method for tuning ion energy.

As noted,10,11 even for low BR/Ba, appreciable ion heating occurs over a broad range of

RMFo frequency, |Ω| ≡ |ωR/ωci| = 0.1− 2. (Positive Ω corresponds to RMF rotation in the

direction predicted to drive current.9) We examine whether the broad range for Ω is due to

heating at the changing fundamental ICR frequency as the ion moves through regions with

different field strengths. The answer is no. Instead harmonic and sub-harmonic heating are

occurring. The frequency of the figure-8 orbit is highly nonlinear, greatly changing with

energy. As the energy of a figure-8 orbit decreases, the ratio s ≡ ωR/ω increases because the

ion’s frequency, ω, slows down as it gets closer to the phase-space separatrix, Sp. It follows

that a set of resonances with the RMFo occurs at s = 1, 2, 3, ... as the ion trajectory gets

closer to Sp and s increases.
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The paper is organized as follows: In Section II, the model FRC and RMF fields and the

associated Hamiltonians are presented. The RMF is assumed to be fully penetrated, as has

been recently achieved in an experiment and as is desirable for ion heating throughout the

FRC volume.13 Section III provides detailed derivations for what was announced in a recent

publication.14 The energy gain from RMFo is calculated for a single oscillation of a figure-8

ion in the z = 0 invariant subspace. This approximation is both useful and representative

because many figure-8 orbits, especially higher energy ones, are confined close to the z = 0

plane.15 The energy gained from the RMFo field is then used to derive a condition for

the transition from regular to ergodic orbits by applying the criterion for the exponential

separation of trajectories, hence heating.16 Section IV presents numerical results obtained

with the RMF code.11 First, we compare RMFo heating of figure-8 ion orbits that fill the

FRC volume with those constrained to the z = 0 subspace. Then, numerical studies for

RMFe heating in reactor-scale devices are presented and compared with RMFo heating.

Subsequently, results are presented for earlier and present-day RMF/FRC devices, some of

which operate at BR/Ba ∼ 0.5. Section V concludes and summarizes.

II. BASIC EQUATIONS

We assume the confining magnetic field of the FRC inside the magnetic separatrix is

described by the Solov’ev equilibrium,

Φ = rAφ =
Bar

2

2

(
1− r2

R2
− z2

κ2R2

)
(1)

with r the minor radius coordinate, z the axial coordinate, φ the azimuthal coordinate, R

the FRC’s separatrix radius at z = 0, Z the axial half length, κ ≡ Z/R the elongation,

~A the vector potential, and Φ the flux function. In the numerical simulations, boundary

conditions outside the separatrix are from Zakharov and Shafranov.17

Odd- and even-parity RMF are described by the vector potentials11

(Ar, Az, Aφ)odd =

(2BR/k) (I0 (ρ̂) cos(kz)sin(ψ),−I1 (ρ̂) sin(kz)sin(ψ), I0 (ρ̂) cos(kz)cos(ψ)) (2)

(Ar, Az, Aφ)even =

(2BR/k) (I0 (ρ̂) sin(kz)sin(ψ), I1 (ρ̂) cos(kz)sin(ψ), I0 (ρ̂) sin(kz)cos(ψ)) (3)
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where ψ = φ−ωRt, ρ̂ = kr, k = lπ/κR is the axial wave number of the RMF , l is the axial

mode number, = 1 in this study, and the Im are modified Bessel functions. The resulting

Hamiltonian,

H =
1

2

[
(pr − qAr)

2 + (pz − qAz)
2 +

(pφ

r
− qAφ

)2
]
, (4)

where pi are the canonical momenta and Aφ denotes the sum of the RMF and FRC azimuthal

vector potentials, is now three-dimensional, time-dependent and not conserved. The trans-

formed Hamiltonian,10 K̂ = H − ωRpφ, is conserved so that the dynamics are that of a

three-dimensional autonomous system.

The shape of the effective potential energy surface on which an ion moves depends on z

and on pφ, a conserved quantity in the absence of RMF . Depending on the initial conditions

of kinetic energy, momenta, and position, figure-8 orbits may be confined to the z = 0

subspace, or to a potential-well minimum above or below z = 0, or may oscillate across

z = 0. In the case with no RMF and in the z = 0 subspace, the motion is one-dimensional

and integrable.7 The addition of RMF breaks the angular invariance, creating a nonlinear

two-dimensional system.

Substituting the vector potentials into the Hamiltonian and using the Hamiltonian

equations-of-motion, q̇i = ∂H/∂pi and ṗi = −∂H/∂qi, where qi are the canonical coor-

dinate variables, the equations-of-motion for a single ion inside the FRC in the presence of

RMF are obtained. For RMFo and initial conditions z = 0 and pz = 0, it is straightfor-

ward to verify that z = 0 is an invariant subspace since the z-directed electric field created

by RMFo is zero there. (This is not the case with RMFe.) The existence of an invariant

subspace for RMFo allows for an analytic analysis of trajectories. The question whether

dynamics in this subspace is representative of dynamics throughout the FRC is addressed

numerically in Section IV.

III. ENERGY GAIN FROM RMFo AND STOCHASTICITY OF ORBITS: z=0

We now calculate the RMFo-induced energy gain of a figure-8 orbit in a single half period

of its motion, starting with Eqs. (1), (2) and (4) evaluated in the z = 0 plane. Since the

amplitude of the RMFo magnetic field is small compared to the FRC’s static magnetic field,

an ion’s trajectory is relatively unperturbed in a single oscillation along r. The energy gain

in a single oscillation, caused the the RMFo’s electric field, is calculated as a first-order
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correction to the one-dimensional motion along r. This one-dimensional motion is described

by the Hamiltonian,

H =
1

2m

{
p2

r +

[
pφ

r
− qBa

2
r

(
1− r2

R2

)]2
}
, (5)

showing that the motion is in a one-dimensional effective potential, V (r). For the normalized

canonical azimuthal momentum πφ ≡ 2pφ/qBaR
2 < 0.25, the shape of the potential is a

double well, corresponding to cyclotron orbits inside the phase-space separatrix, Sp, and to

figure-8 orbits outside Sp. For πφ > 0.25, the potential is a single raised well, corresponding

to betatron orbits.15

The figure-8 orbit is approximated by motion in a symmetric double well:

ρ ≡ r

R
= ρ0 + a1cos[ω (t− t0)] + a2cos[3ω (t− t0)], and vr = ṙ. (6)

The amplitudes of oscillation, a1 and a2, are determined by the total energy and by the shape

of the double well; 0.577 < ρ0 < 0.707 with the upper limit corresponding to πφ = 0.25 and

the lower limit to πφ = 0. In general, a1 � a2, especially at higher energies or higher values

of pφ.

The ion’s energy change due to the RMFo’s electric field, ~E , is given by

dH

dt
= q~E · ~v = q (Ervr + Eφvφ) , (7)

with ~E = −(1/c)(∂ ~A/∂t). Inside an elongated FRC, lπ/κ ≤ 1 and ρ < 1, allowing the

RMFo vector potential to be accurately approximated by

(Ar, Az, Aφ)odd = (2BR/k) [
(
1 + b1ρ

2
)
sin(φ− ωRt), 0,

(
1 + b1ρ

2
)
cos(φ− ωRt)], (8)

with b1 = 0.25(kR)2. Using Eqs. (6)-(8), we obtain, after some algebra,

qErvr = −ωH0

(
C0cos (Ψ) +

1

2

9∑
n=1

Cn[sin (Ψ + (t− t0)nω)− sin (Ψ− (t− t0)nω)]

)
(9)

where Ψ = φ − ωRt and the coefficients, Cn, depend on ρ0, a1 and a2. The coefficients Cn

are given in the appendix. H0 in Eq. (9) is given by,

H0 = RωR (2qBR/ck) b1 =
1

2
mR2 kR ωRci ωR, (10)

where kR = lπ/κ was used. Since the amplitude of the RMF is relatively small, BR � Ba,

ωci � ωRci. For ωR ∼ ωci, ωR � ωRci. Integrating Eq. (9) over a single half-oscillation in
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r, we get the energy gain from the interaction with the r component of the RMFo’s electric

field,

4Er =

∫ t0+π/ω

t=t0

qErvrdt (11)

4Er = ωH0

[
−C0

sin(Ψ0)

ωR

+
9∑

n=1

Cn

2

(
cos (Ψ0 + (t− t0)nω)

ωR − nω
− cos (Ψ0 − (t− t0)nω)

ωR + nω

)]t0+π/ω

t=t0

(12)

The biggest energy change occurs in the presence of a resonance between the RMFo and the

Fourier components of the oscillation. Since the RMFo frequency is close to ωci, it is greater

than the frequency of any figure-8 orbit inside the FRC. We are interested in resonances,

i .e., ωR/ω = s, where s is an integer. Substituting the limits into the Eq. (12), the energy

change in a resonance due to the r component of the RMFo vector potential becomes,

4Er = H0

(
[F0 + Fs] sin(Ψ0) +

9,n6=s∑
n=1

Fn(ω)cos(Ψ0)

)
(13)

where Ψ0 = φ− ωRt0 and the coefficients are given by:

Fn(ω) = Cn

[
(−1) + (−1)s+n

] n

s2 − n2
; (14)

F0 = −C0

s
[(−1) + (−1)s] ; and Fs =

π

2
Cs (15)

Equations (13), (14) and (15) give the energy gain from the Ar component of the RMFo in

a single half-oscillation for an ωR/ω = s resonance.

A similar procedure is used to calculate the energy gain from the interaction of the ion

with Aφ during a half-period of the ion’s r motion. To calculate the qEφvφ term in Eq. (7),

we first need to determine vφ. Equation (5) is for a one-dimensional system with a potential

that is a function of r. Since the total kinetic energy in a static magnetic field is conserved,

the potential term in Eq. (5) is actually the kinetic energy of azimuthal motion, giving

mvφ =
pφ

r
− qBa

2
r

(
1− r2

R2

)
. (16)

Using the definitions of ρ and πφ, vφ may be written as

vφ =
1

2
ωciR

(
πφ

ρ
− ρ

(
1− ρ2

))
. (17)

Expanding the πφ/ρ term and keeping only terms up to the second order gives

vφ =
1

2
ωciR [G0 +G2cos (2ω (t− t0)) +G4cos (4ω (t− t0))] (18)
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where

G0 =
πφ

ρ0

− ρ0 + ρ3
0 +

a2
1

2

(
πφ

ρ3
0

+ 3ρ0

)
, (19)

G2 =

(
a2

1

2
+ a1a2

)(
πφ

ρ3
0

+ 3ρ0

)
, and G4 = a1a2

(
πφ

ρ3
0

+ 3ρ0

)
. (20)

The coefficient G0 gives the drift of the figure-8 orbit. Since the a2
1 term makes a posi-

tive contribution to G0, higher energy figure-8 orbits – which have a higher amplitude of

oscillation, a1 – have a greater counter-clockwise drift than lower energy ones.

The work done by the RMF due to interaction with azimuthal motion is given by

4Eφ =

∫ t0+π/ω

t=t0

qEφvφdt. (21)

Using Eqs. (7), (8) and (18) in the above equation and following the same procedure as

before, the energy change over a single half oscillation is given by

4Eφ = ωciH0

[
K0

cos(Ψ0)

ωR

+
8∑

n=1

Kn

2

(
cos (Ψ0 + (t− t0)nω)

ωR − nω
+
cos (Ψ0 − (t− t0)nω)

ωR + nω

)]t0+π/ω

t=t0

.

(22)

The Kn coefficients, functions of the azimuthal angular momentum and ion energy, are in

the appendix. To find the energy change due to Aφ during a resonance, we follow the same

procedure as was used to obtain Eq. (13),

4Eφ = H0

(
Qs(ω)sin(Ψ0) +

8,n6=s∑
n=0

Qn(ω)cos(Ψ0)

)
, (23)

where

Qn(ω) = Kn

[
(−1) + (−1)s+n

] s

s2 − n2

ωci

ω
(24)

Qs(ω) =
π

2

(ωci

ω

)
Ks (25)

From Eqs. (13) and (23), the total energy change in one r oscillation due to an interaction

with a low-amplitude RMFo is

4E = H0

(
[F0(ω) + Fs(ω) +Qs(ω)]sin(Ψ0) +

9,n6=s∑
n=0

[Fn(ω) +Qn(ω)]cos(Ψ0)

)
, (26)

where F8(ω) = Q9(ω) = 0. For odd resonances, coefficients Fn(ω) and Qn(ω) are non-zero

for even n values, so that Eq. (26) becomes

4Es−odd = H0

(
[F0(ω) + Fs(ω) +Qs(ω)]sin(Ψ0) +

4∑
n=0

[F2n(ω) +Q2n(ω)]cos(Ψ0)

)
. (27)
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Likewise, for even resonances, only odd values of n result in nonzero values of Fn(ω) and

Qn(ω), and F0 = 0 [see Eq. (15)], so that Eq. (26) reduces to

4Es−even = H0

(
[Fs(ω) +Qs(ω)]sin(Ψ0) +

4∑
n=0

[F2n+1(ω) +Q2n+1(ω)]cos(Ψ0)

)
. (28)

The coefficients in Eqs. (27) and (28) depend on a1 and a2. The condition for confinement

inside the FRC is: ρ0 + a1 + a2 < 1 which leads to a1 < 0.35. Since the value of a2 is about

an order of magnitude smaller than the value of a1, higher n coefficients are significantly

smaller. Thus K6 is of order 10−4, two orders of magnitude smaller than K2. The biggest

term in Eq. (26), used when considering odd resonances only, is

F0(ω) ≈ (2/s)(a1/b1) ≈
8

s

(
1

kR

)2

. (29)

All of the other terms are at least an order of magnitude smaller. Combined with the fact

that Cn and Kn decrease exponentially as n increases, the greatest heating occurs for s−odd

resonances and Ψ0 = π/2.

Using Eq. (27), where the dominant term is approximated by Eq. (29), we get the

maximum approximate energy gain in a single oscillation:

max4Eodd ≈
8

s

(
1

kR

)2

H0. (30)

Approximating the total energy as H ∼ 1
2
m(Rωa1)

2, ωR ∼ ωci, and ωRci = (BR/Ba)ωci ∼

ωsBR/Ba, the maximum relative energy fluctuation in a single oscillation is

max4Eodd

H
≈ 8

sa2
1

(kR)
(ωRci

ω

)(ωR

ω

)
≈ s

(
8

a2
1

)(
1

kR

)(
BR

Ba

)
. (31)

For the typical RMF wavelength and elongations used, i.e., l = 1 and κ = 5, 8κ/lπ ∼ 10.

With the amplitude of oscillation a2
1 ∼ 10−1, the relative fluctuations in energy during an

oscillation are of order
max4Eodd

H
≈ O

(
102s

(
BR

Ba

))
. (32)

Equation (32) predicts significant energy fluctuations for figure-8 orbits over a single oscilla-

tion even for a relatively low relative RMFo amplitude, BR/Ba ∼ 10−3. The relative heating

in Eq. (32) shows a linear dependence on the resonance, s, for odd values of s, and a linear

dependence on BR.
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For s−even resonances, the energy change is given by Eq. (28). It was found numerically

that the odd coefficients, F2n+1(ω)+Q2n+1(ω), in the summation in Eq. (28) are significantly

smaller than the even coefficients Fs(ω) + Qs(ω), except for the s = 8 resonance, where it

was found that F8 and Q8 are negligible compared to other coefficients. Using Eqs. (15),

(25), (28) and ωR = ωci, the maximum energy gain for the s − even resonance can be

approximated as

4Es−even ≈ H0 (Fs(ω) +Qs(ω)) =
π

2
H0 (Cs + sKs) , (33)

where max (Cs + sKs) ∼ O(1/2), so that

max4Es−even ≈
1

2
H0. (34)

Comparing Eqs. (30) and (34)

max4Eeven ≈
s

16
(kR)2max4Eodd. (35)

Using Eqs. (31) and (35), the percent energy fluctuation for an s− even resonance becomes

max4Eeven

H
≈ (kR)

(
s2

a2
1

)(
BR

Ba

)
∼ O

(
10s2BR

Ba

)
. (36)

In summary, the energy gain for s− even resonances has an s2 dependence, while s− odd

energy gain has a linear dependence on s. Resonances with an odd value of s show better

heating than s− even resonances, especially at lower values of s, where ion energy is higher.

(Since resonances with odd-s values show better heating, particularly at higher ion energies,

the chaotic heating observed for figure-8 orbits at higher energies may result primarily from

an overlap of odd-s resonances.)

Using the condition for exponential separation of trajectories,16 we now investigate the

ergodicity of ion trajectories, essential to stochastic heating. The change in energy over an

oscillation can be used to map the dynamics,

Ej+1 = Ej +4E(tj) and tj+1 = tj +
π

ω(Ej+1)
, (37)

where tj is the time of the start of successive ion oscillations at ρ = ρmax ≡ ρ0 + a1. Given

the initial conditions, t0 and E0, Eq. (37) allows a recursive determination of Ej and tj.

4E(tj) is given by Eq. (26),

4E(tj) = H0

(
[F0 + Fs +Qs]sin(Ψj) +

9,n6=s∑
n=0

[Fn +Qn]cos(Ψj)

)
, (38)
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where Ψj = φ − ωRtj. It was found numerically that stochastic heating for figure-8 orbits

depends on the amplitude of the RMFo. Figure 1 shows energy fluctuations for BR/Ba =

10−4 and 10−3. For the larger BR/Ba ratio, chaotic fluctuations of high amplitude, ca.

±100%, are observed; there are only regular oscillations of order ±12% for the smaller ratio.
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FIG. 1: Time evolution of ion energy in the RFRC under the influence of RMFo. a) BR/Ba = 10−4.

b) BR/Ba = 10−3.

To measure if the dynamics are chaotic we evaluate the exponential separation of trajec-

tories using the strong-chaos condition16

K = max

∣∣∣∣dtj+1

dtj
− 1

∣∣∣∣ & 1. (39)

K > 1 indicates exponential separation of trajectories, resulting in chaotic motion. Applying

Eq. (39) to Eq. (37) yields

max
π

ω2(E)

∣∣∣∣dω(E)

dE

d4E
dtj

∣∣∣∣ & 1. (40)

From Eq. (38), we obtain

d4E
dtj

= −ωRH0

(
[F0(ω) + Fs(ω) +Qs(ω)]sin(Ψj) +

9,n6=m∑
n=0

[Fn(ω) +Qn(ω)]cos(Ψj)

)
. (41)
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Using Eqs. (30) and (34), we get

max

∣∣∣∣d4Eodd

dtj

∣∣∣∣ ≈ 8

s

(
1

kR

)2

(ωRH0) ; max

∣∣∣∣d4Eeven

dtj

∣∣∣∣ ≈ 1

2
(ωRH0) . (42)

The above equations are to be substituted into Eq. (40) depending on whether the resonance,

s, is even or odd.

To estimate dω(E)/dE, it is useful to work in dimensionless variables: H̃ = (m/b2R2)H,

where b = mωci/2 and pρ = pr/bR. The resulting dimensionless frequency, ω̃ = mω/b =

2ω/ωci is in units of half the cyclotron frequency. In dimensionless variables,

dω(E)

dE
=
dω̃(Ẽ)

dẼ

( m

b2R2

)( b

m

)
=

(
1

2
mωciR

2

)−1
dω̃(Ẽ)

dẼ
. (43)

Substituting Eqs. (42) and (43) into Eq. (40) and using Eq. (10), we get the following

strong-chaos thresholds for odd and even resonances, respectively,

Kodd ≈ 8πs

(
1

kR

)(
BR

Ba

)
dω̃(Ẽ)

dẼ
and (44)

Keven ≈
π

2
s2 (kR)

(
BR

Ba

)
dω̃(Ẽ)

dẼ
. (45)

Based on Eqs. (44) and (45), increasing the wavelength of the RMF would make s − odd

resonances more chaotic, while decreasing the heating from s−even resonances. Since s−odd

resonances seem to be heated more effectively by the RMF (have higher K), except for low

energy figure-8 orbits when s is high, increasing the wavelength should increase stochastic

heating for a range of BR/Ba values. This is borne out by numerical simulation.

Figure 2 shows dω̃(Ẽ)/dẼ vs. Ẽ for figure-8 orbits having πφ = 0.15. It was obtained by

calculating ω’s for a list of closely spaced E values, fitting those points to obtain a curve of

ω vs E, then taking the derivative of that curve.

The value of s in a resonance decreases with increasing energy. There is a growth in

dω̃(Ẽ)/dẼ as the energy decreases; for energies very close to Sp, dω̃(Ẽ)/dẼ grows as (Ẽ −

Ẽh)
−5/6, where Ẽh is the energy at Sp i.e., at the peak separating the double potential

wells. The continuing growth in dω̃(Ẽ)/dẼ approaching Sp corresponds to increasing non-

linearity as the energy of a figure-8 orbit falls. A cyclotron orbit, on the other hand, does

not transverse the potential barrier so that an energy increase has a much lesser affect on its

orbital frequency, resulting in a more regular interaction with the RMF during a resonance.
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FIG. 2: dω̃(Ẽ)/dẼ vs Ẽ for figure-8 orbits having πφ = 0.15.

The greatest rate of stochastic heating is expected to occur for lower energy figure-8

orbits where the values of s and dω̃(Ẽ)/dẼ are higher. As BR is increased, the stochastic

region above Sp will spread. Close to Sp, even very low amplitudes of BR should produce

chaotic orbits. Equations (44) and (45), combined with Fig. 2, can be used to estimate

the relative amplitude of BR needed to produce chaotic heating. For example, the s = 3

resonance occurs near Ẽ ≈ 0.0185, corresponding to dω̃(Ẽ)/dẼ ≈ 22, see Fig. 2. Using

Eq. (44) and kR ∼ 1, for Ω ∼ 1, the assumption used in the derivation, chaotic trajectories

are expected for all s − odd resonances with s ≥ 3 and BR/Ba ≥ 5 × 10−4. These findings

approximately agree with the numerical findings. Changing the value of the normalized

canonical azimuthal angular momentum, πφ, changes the scale of Ẽ, but does not have a

substantial effect on the value of dω̃(Ẽ)/dẼ at different resonances. Thus πφ determines

the energy range over which figure-8 orbits get heated, with greater energy range for lower

values of πφ, while not affecting the approximate structure of phase space. In Fig. 2, all

s > 4 resonances are located to the left of Ẽ ≈ 0.013, while lower s resonances are much

more spread out. Thus the s = 3 resonance occurs around Ẽ ≈ 0.0185 while all s > 4

resonances occur over the approximate interval of δE = 0.003. This leads to much greater

chaos closer to Sp where the closely spaced resonances overlap. Thus, lower-energy figure-8

orbits are more chaotic and much better heated by the RMF than the higher energy ones.
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IV. NUMERICAL RESULTS FOR ION HEATING

In this section we present numerical results not readily attainable by analytic means.

(Our previous publication14 provided numerical simulations that supported the analytic

results announced therein and derived in detail herein, in Section III.) All simulations were

performed with the RMF code10,11 and assumed full RMF penetration, as recently achieved

in experiment.13 Simulations performed for reactor-scale FRCs used R = 10 cm, Ba = 20

kG, and κ = 5, previously named the reference FRC (RFRC).10 Its size and axial field

strength are about the smallest necessary to produce reactor-grade plasmas, that is, to

contain deuterium ions with energies up to 200 keV, the upper limit of temperature needed

for advanced, so-called aneutronic, fuels. (See Table I for the parameters of the all the FRC

devices studied in this section.)

To test the validity of assumptions made in Section III, Section IV.A compares ion energy

gained from RMFo in the range |Ω| < 3 for trajectories in the z = 0 subspace versus

trajectories free to sample z 6= 0 regions of the RFRC volume. Section IV.B compares ion

heating and confinement for RMFe and RMFo, again for |Ω| < 3. This is representative of

both the reactor regime and many RMF experiments that have operated over the last 40

years. Simulations range from reactor-relevant cases, where BR/Ba < 10−2, to BR/Ba ∼ 0.5,

as encountered in many research-scale RMF devices and far from the validity range of the

perturbation-technique analyses presented in Section III. Section IV.C presents results for

Ω � 1, characteristic of one currently operating device.13

A. RMFo ion heating in and out of the z = 0 plane

Figure 3a) shows the time-averaged ion energy, 〈E〉, versus Ω for three values of RMFo

amplitude (2, 16 and 128 G) for ions initiated at 1-keV in the z = 0 plane of the RFRC with

either initial vz,0 = 0 or 6= 0. Simulations were run to τ = (2π)5000/ωci. If an ion made a

radial excursion to twice R or an axial excursion to twice κR, the ion was considered lost

from the RFRC, the simulation terminated, and τmax recorded. Qualitatively, the results

for ion trajectories having z = 0 and 6= 0 are very similar, providing justification for z = 0

subspace analysis of ion heating presented in Section III.

For BR = 2 G and both vz,0 = 0 and 6= 0, regular motion occurs when −1 > Ω > 1 or

−0.1 < Ω < 0.1; the average energy stays within a few percent of the initial energy. For

0.1 < Ω < 1 and −0.1 > Ω > −1, many ions experience some energy gain, to ∼ 1.3 keV.
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For BR = 16 G, regular motion also occurs at high and low Ω, |Ω| > 1.7, though even in

these frequency regions 〈E〉 has climbed by ∼ 30%. Figure 3b), the inverse of the duration,

τmax, of each simulation versus Ω, shows that no particles were lost from these 4 simulations,

vz = 0 and 6= 0 and BR = 2 and 16 G.
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FIG. 3: (Color) Comparison of the Ω-dependence of ion heating and confinement under the influ-

ence of RMFo for ions constrained to the RFRC z = 0 subspace (black lines) and those free to

move throughout the RFRC (red lines). Three different RMFo amplitudes were used: 2, 16, and

128 G.

On average, ions that strayed from the z = 0 plane achieved slightly lower average energies

than those that remained in the z = 0 subspace but slightly higher peak energies (not

shown). When heating occurs, the maximum energy achieved is about 3 times the average.

The higher average energy achieved by ions in the z = 0 plane can be explained by the

greater volume inside the phase-space separatrix for a given value of pφ. The separatrix

phase-space volume shrinks as ions move out of the z = 0 subplane. This means that for

given energy along r, the figure-8 orbit has higher frequency, resulting in a lower s value

and less nonlinearity, dω̃/dẼ. Based on Eqns. (44) and (45), this would lead to less chaotic

motion, resulting in less heating as ions move out of the z = 0 subplane. Since the upper
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limit on heating for figure-8 orbits is determined by the exponential separation of nearby

trajectories, which depends on the s value and nonlinearity of orbits, the greatest heating

occurs in the z = 0 subspace where the s value and the nonlinearity are the greatest for a

given figure-8 orbit.

We have ascertained that little heating results from Speiser scattering at the FRC’s axial

extrema. Cyclotron orbits, generally of lower energy than figure-8 or betatron orbits, feel a

force towards larger |z|, eventually entering a region where the barrier between the double

wells is low enough for them to traverse it, thereby becoming figure-8 orbits. These are

scattering events whereby ions may redistribute energy from the Eφ, Ez and Er components

of the RMF. But because cyclotron orbits are of lower energy when they arrive at the axial

extrema, they have less energy to randomize, hence contribute less to the overall ion heating.

The three primary general features of Fig. 3a) can be understood from the discussion in

Section III. Low heating in the range |Ω| < 0.1 is due to the weak electric field, E ∝ ωRBR.

Saturation of heating for 0.15 < |Ω| < 1.5 is due to the reduction in s and dω̃(Ẽ)/dẼ at

higher ion energy. The highest energy ions, betatron orbits, also interact regularly with the

RMF, setting an upper limit for the heating of all ions in the FRC. The decrease in heating

at |Ω| > 1 occurs as the resonances, s, move to higher values and the energy gain coefficients

decrease. An increase in RMF frequency requires different s resonances between the RMF

and the figure-8 orbit to occur for higher energy figure-8 orbits, whose frequency is higher to

match the higher frequency of the RMF . These resonances, however, are more separated in

phase-space and are less chaotic, based on Eqns. (44) and (45), due to a fall in nonlinearity

of a figure-8 orbit as the energy increases, e.g., Fig. 2. In summary, there is an optimal

range of RMF frequencies for which the greatest heating occurs as a result of interaction

between the RMF and the figure-8 orbits, especially those orbits close to the phase-space

separatrix. This range is bounded at its low end by the strength of the RMF electric field

and at its upper end, near the cyclotron frequency, by overlap of resonances.

Figure 3b) shows that ions may be quickly (t ∼ 1 µs) driven out of the RFRC even for

BR/Ba ∼ 0.006. The maximum gyroradius of a 200 keV D+ at Ba = 20 kG is ρD ∼ 5

cm, which is larger than the distance between the O-point line and R. Note, though, that

Fig. 3b) shows losses to be greater for ions not confined to the z = 0 subspace, so the

gyroradius is not the complete explanation of the prompt losses. Viewing individual particle

trajectories has shown that the losses predominantly occur in the cusp region of the external
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magnetic field, near the X point, unique to the boundary conditions described in Ref. 16

and implemented in the RMF code. Fusion reactors which are intended to burn advanced

fuels requiring very high ion temperatures might require somewhat higher B field and larger

R than the RFRC. To reduce losses, they would benefit by operation at lower Ω values,

below 0.5, and with the magnetic field shape tailored to avoid the aforementioned cusp.

Fusion reaction products would not be well confined in a device as small as the RFRC.

However, losses of these energetic particles is not inherently bad if high efficiency energy

recovery systems are used. Moreover, the negative plasma potential that would result from

fusion-product losses might improve confinement of the lower energy fuel ions.

The numerical finding that the losses occur predominantly near the cusp region rather

than close to the z = 0 subplane shows an advantage for figure-8 heating. As previously

mentioned, the largest fraction of figure-8 orbits is heated close to the z = 0 subplane where

the nonlinearity of such orbits is highest. Since figure-8 orbits tend to stay close to the

midplane, most of the losses near the cusp region are due to either low energy cyclotron

orbits or orbits which have a significant z component in their velocities. As discussed in the

next section, RMF heating along the z direction does not have a substantial affect on the

over-all heating. This indicates that figure-8 orbits can be heated well by the interaction

with the RMFo, without resulting in significant losses. That is, the energy gains from RMFo

should not result in significant loss of confinement, provided the energy gains are primarily

along the radial and azimuthal components of motion.

B. RMFo and RMFe heating for |Ω| < 3

1. BR/Ba << 1

We first consider deuteron heating in the RFRC, with BR/Ba < 0.02. (Low BR/Ba is

desirable in a reactor to reduce circulating power; high BR/Ba is desirable to aid stability

and to increase heating and RMF penetration. BR/Ba ∼ 0.01 satisfies these criteria.)

Simulations were run for t = 104π/ωci, i.e., τ = 5000. Deuterons were initiated with 1 keV

and vz 6= 0 at r = 0.85R in the z = 0 plane. If an ion made a radial excursion to twice

R or an axial excursion to twice κR, the ion was considered lost from the RFRC and the

simulation was terminated. The time-average D+ energy, 〈E〉, maximum energy, Emax, and

the duration of a simulation, τmax, were tabulated. Typically, Emax ' 3〈E〉.

Figures 4a) and 4d) show 〈E〉 as a function of RMF frequency for even and odd parity
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respectively. The general features shown in Figs. 4a) and d) have been previously explained

in Section IV.A and a previous publication.14
3.

0
4.

0
5.

0

Ω

Lo
g 1

0 <
E>

 (e
V

)

-3
.0

-2
.0

Lo
g 1

0 1
/τ

m
ax

Ω

RMFe

3.
0

4.
0

5.
0

Lo
g 1

0 <
E>

 (e
V

)

r0 = 0.92R

r0 = 0.78R

RMFeRMFe

-3 -2 -1 0 1 2 3

3.
0

4.
0

5.
0

-3 -2 -1 0 1 2 3

-3
.0

-2
.0

-1
.0

Lo
g 1

0 <
E>

 (e
V

)

Lo
g 1

0 1
/τ

m
ax

RMFoRMFo RMFo

0.5 1.0 1.5 2.0 2.5

3
4

5
6

Log10 BR

Lo
g 1

0 <
E>

 (e
V

)

a) b)

f)e)d)

c)

r0 = 0.78R

r0 = 0.92R

BR = 128 G

= 16 G
= 2 G

Ω = 0.9

Ω = 0.9r0 = 0.85R

r0 = 0.85Rr0 = 0.85R

r0 = 0.85R

FIG. 4: (Color) Even- and odd-parity RMF ion heating in the RFRC, parts a) and d), and inverse

confinement times, parts b) and e), versus Ω. In a), b), d) and e) three BR values were used: 2 G

(green), 16 G (blue), and 128 G ( red). Parts c) and f) show the average energy versus BR for two

initial radial positions and fixed Ω.

Three RMFo amplitudes were used: BR = 2, 16 and 128 G. At BR = 2 G, neither RMFe

nor RMFo increased the ion energy substantially over the entire Ω range investigated, -3 to

3. When BR was raised to 16 G, RMFo did cause the average ion energy to increase above

3 keV if −1 < Ω < −0.2 or 0.1 < Ω < 1.3. At BR = 16 G, even parity produced lesser

though still notable heating. Of the 400 deuterons initiated in each these even-parity and

odd-parity simulations at BR = 2 and 16 G, not one was lost due to a large radial or axial

excursion, see Fig. 4b) and Fig. 4e). At BR = 128 G, odd-parity RMF caused substantial

heating, to 〈E〉 > 105 eV, and even-parity RMF to 〈E〉 > 30 keV. The frequency range

for odd-parity heating was broader, showing heating to above 6 keV even for −2 > Ω > 2.

RMFo at BR = 128 G resulted in frequent deuteron losses, see fig. 4e). RMFe at BR = 128

G resulted in fewer losses, in part attributable to the smaller ρD at the lower attained

energy. For both parities, loss rates were greater for Ω < 0. RMF at negative Ω pushes πφ

to lower, eventually negative, values which results in axial losses across the separatix.15 For

even parity, loss rates were less for positive Ω.

18



Though RMFe is predicted to open field lines and RMFo should not, the loss rates shown

in Fig. 4 imply that this effect is not important to ion particle confinement, at least at these

low BR/Ba values, large ion energies, short time scales, and large Ω values.

The effect of initial position and a wider range of BR values on deuteron heating in the

RFRC was explored. Figures 4 c) and f) show the average energy attained when the initial

deuteron position was shift radially by ∼ ±10%, to ro/R = 0.78 and 0.92, still outside the

O-point line located at ro/
√

2. Those initiated closer to the separatrix get heated at lower

values of BR. However, when BR > 100 G, these ions are lost more readily and end up

achieving a lower 〈E〉.

One feature in the RMF code is the ability to shut off Eφ, Ez, and/or Er arbitrarily, to

explore which electric field components cause appreciable heating. Figure 5 shows results

for both even and odd parity in the RFRC with BR = 128 G. In these simulations deuterons

were initiated at 100 eV out of the z = 0 plane at r = 0.71R. For even parity and |Ω| < 1,

Fig. 5a), shutting off Ez causes very little change in Emax while shutting off the Er or Eφ

components drops the energy considerably, up to a factor of 10. Similarly, for RMFo, Ez has

little effect on Emax while Eφ and Er are both of considerable importance, though in different

regions of Ω. There are a number of caveats. 1) Because heating is non-linear, simulations

of the heating caused by separate components are not additive. 2) These conclusions are not

to be extended to a different frequency (Ω) range, e.g., for electrons. 3) The electric fields

obtained by shutting off a particular component are not self-consistent. Notwithstanding,

the results do support the interpretation that in a highly prolate FRC with RMF, Speiser

scattering at the axial extrema is less important to heating than crossing the phase space

separatrix.

A substantial amount of heating occurs due to an interaction between RMFo and figure-8

orbits – a case we analytically investigated in the previous sections for the z = 0 subplane.

As already mentioned, these orbits tend to stay close to the mid-plane, and are thus unlikely

to gain substantial amounts of energy due to interaction with the z component of the electric

field. This may, in part, explain the numerical results in Figure 5, indicating that the heating

in the z component of ion dynamics is negligible for the over-all ion heating. Since figure-8

orbits also show good confinement, tending not to escape in the cusp region, these energy

gains should remain inside the FRC rather than leaking out – at least on the time-scale that

collisions can be neglected.
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FIG. 5: (Color) Maximum D+ energy achieved in the RFRC at BR = 128 G vs. Ω for a) even-

and b) odd-parity RMFs with various electric field, E , components removed.

We conclude this sub-section with a closer look at low frequencies, Ω << 1, outside the

range of validity of earlier MHD RMFe studies which assumed ions unmagnetized by BR.

Low Ω is a natural operating point for an RMF-driven FRC reactor because the relatively

high density needed for fusion power and large R needed for confinement reduce the ωR

required for synchronous current drive, thus lowering Ω.

Figure 6 shows the maximum and average energies for D+ and He+2
3 ions versus ΩHe3

in the RFRC at BR = 128 G. (The frequency values for the D+ data have been shifted by

a factor of 4/3 so that each value of ΩHe3 corresponds to the same physical frequency for

both the He+2
3 and the D+.) Initiating ions at different radii, from 0.71R to 1.31R, had

little effect on the results. The duration of each simulation was 3000τ . No ions were lost

in this time period, as expected from Fig. 4. Though at each ωR value, Ω for He3, is less

than for D, i.e., ΩHe3 = 3/4ΩD, at this value of BR He+2
3 ions gets accelerated to about 50%

higher average and maximum energy than D+ ions. This ratio of ion energies will increase

the aneutronic fusion component of a D −He3 reactor.

To understand the reason for the higher energy, consider Fig. 7, which shows details
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FIG. 6: (Color) Frequency dependence of the maximum and average energy of D+ and He+2
3 ions

heated by RMFo in the RFRC. BR was fixed at 128 G. The abscissa (frequency axis) for D has

been multiplied by 4/3 so that the physical frequency on the abscissa is the same for both ions.

from one simulation of D+ acceleration in the RFRC. Part a) shows D+ energy versus time

for Ω = 0.1 and BR = 128 G. (The data is color coded according to time.) Part b) is an

expansion of the early time of part a). The energy is seen to rise and fall with regularity,

reaching a peak of 32 keV. This type of behavior has already been observed for electrons and

explained in detail.11 It arises because electrons also have Ω << 1. (In brief, the energy gain

and loss are due to acceleration along the O-point line by the RMFo-generated Eφ.) Part

c) is a histogram of ion energy for the entire simulation. Part d) show the ion trajectory

in the r-z cross section. Good confinement, particularly in the axial direction, is evident.

Part e) shows two short sections of a D+ trajectory, viewed along the z axis. The trajectory

is predominantly a betatron orbit, with short-duration cyclotron behavior evident at x =

1, y = -6. When viewed in a frame-of-reference rotating at ωR (part f), the ion is seen to

move, on average, azimuthally with the RMF. This is also clear in part g). The blowup

in part g) shows a 50τ segment of the azimuthal position; steps are evident. The “risers”

of the steps have azimuthal angular speeds which are greater than ωR; nevertheless, the

average azimuthal angular ion speed is ωR. (An ion’s speed and energy only rise slightly

with increasing BR.) The same synchronous motion occurs for He+2
3 . Thus, at low Ω,

heated ions — in betatron orbits — nearly co-rotate with the RMF, hence their energy is

proportional to their mass.
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FIG. 7: (Color) D+ heating by RMFo in the RFRC: Ω = 0.1, BR = 128 G. a) and b) D+ energy

vs. time. c) D+ energy distribution function. d) D+ trajectory in r-z plane. e) segments of D+

trajectory in x-y plane. f) D+ trajectory in x-y plane rotating at ωR. g) azimuthal position, φ, vs.

time.

2. BR/Ba = 0.1− 0.5

We now consider Ω ∼ 1 ion heating at higher BR/Ba values, relevant to some cur-

rently operating machines, particularly TCS. The TCS parameters in Table I, taken from a

publication,18 are for one of its best performing RMFe discharges, having achieved a steady-

state electron temperature near 50 eV at n̄e = 1.3× 1013 cm−3. Measurements showed that

the RMFe only penetrated ∼ 10 cm into the plasma, to about the O-point line. To take this

behavior partially into account, the initial D+ radius, ri, used in the RMF simulations was

outside the O point. Figure 8 shows the maximum energy achieved as well as the inverse of

the ion confinement time, in units of τ ∼ 6 µs. At BR values consistent with the experiment,

ca. 50 G, most ions were accelerated quickly to 1 keV and promptly lost, i.e., in a few RMFe

cycles, ca. 20 µs. The strength of the RMF-generated electric field is large, ∼ 2 kV/m. At

E = 2 keV, the ion gyroradius is over 40 cm, hence prompt loss is readily understandable.

Collisions with ions and neutrals and electron drag will reduce this effect but we estimate

that a consider number of the ions are still accelerated to near keV energy and lost. This

predicted phenomenon, keV ions impacting the TCS wall, should be considered when trying

to evaluate the source of impurities in TCS discharges.
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for TCS.

We have made a limited number of RMF simulations to search for an RMF parameter

space in TCS where ion losses are less rapid. Going to a moderately higher Ω, from 1.55 to

near 10, even while maintaining BR = 50 G , results in far lower ion losses. Operation at

higher RMFe frequency would require lower plasma density to be consistent with current

drive parameters.

C. Ω � 1 and BR/Ba ∼ 0.1

A limited number of simulations were made for the parameter range of the PFRC ex-

periment. Using the parameters in Table I, hydrogen ions were lost within a few τ ’s if the

cusp boundary condition17 was implemented. However, adding a mirror field representative

of the PFRC device increased the ion confinement time to above 30 µs and predicted an

average ion energy of ∼ 15 eV. The experiment13, however, shows average hydrogen neutral

energies near 0.5 eV. This is consistent with a high charge-exchange rate at the large neutral

density present in the PFRC.
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TABLE I: Parameters of PFRC, TCS and RFRC.

Parameters PFRC TCS RFRC

pB0 (kG) 0.12 0.13 20
Mirror ratio, Rm 60 4 10
Z (cm) 15 120 50
Flux conserver radius, RFC (cm) 4 47 20
Plasma radius, R (cm) 3 37 10
BR (G) 10 50 400
BR/pB0 0.08 0.39 0.02
Working gas H2 D2 D2

ne (1013 cm−3) 0.13 1.3 15
Fill pressure, pn (mT) 1 2
RF heating power (kW) 5 1000 500
Te (eV) 200 50 104

mEi (eV) measured 0.6 2

cEi (eV) calculated 0.9 103 − 104 5× 104

ωR (106 rad/s) 88 0.96 11
ωpe (1011 rad/s) 0.6 2 7
ωce (109 rad/s) 2 2 350
ωci (106 rad/s) 1.15 0.62 90
Ω ≡ ωR/ωci 76 1.55 0.15
νe,n 4× 105 2× 106 3× 102

νe,i 2× 104 1.6× 106 6× 103

νi,i at Ei measured 2× 106 107

Ion gyroradius (cm) at mEi 0.8 2
3.6 MeV α gyroradius, ρα, (cm) 10
Electron gyroradius (cm) 0.02 0.01 0.01
Penetration criterion, γc/λ,19 100 13 140

V. CONCLUSION

The conditions for ion heating in the FRC in the presence of rotating magnetic fields were

investigated using analysis and numerical simulation. Both odd- and even-parity RMFs were

considered using numerics. It was found that odd-parity fields show greater heating for a

wider range of RMF frequencies, Ω. Since figure-8 orbits are heated by RMF field more

than other orbits classes, we analyzed the heating of a figure-8 orbit in the miplane in the

presence of odd-parity RMF. It was found that even low amplitude fields, BR/Ba ∼ 10−3,

can result in significant energy gains, particularly in the case of resonant figure-8 orbits
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that are close to the phase-space separatrix. The results explain the efficacious heating for

0.1 < Ω < 1.3 frequency range by resonances of the RMF with the lower energy figure-8

orbits. A criterion for strong chaos was used to show that such orbits are more chaotic

due to increased nonlinearity, dω̃(Ẽ)/dẼ and a higher s value. Numerical simulations show

that the heating in z = 0 subplane and throughout the FRC is similar, allowing for the

extension of the analytic results obtained for heating in the midplane. Analysis indicates

that the greatest heating of figure-8 orbits occurs close to the midplane – a result that agrees

with numerics. Based on simulations, it was found that most of the ions escape in the cusp

region. The z component of the RMF electric fields, which may contribute to cusp losses

by accelerating the ions axially, was found to have little impact on heating. Since figure-8

orbits tend to stay confined close to the midplane and are unlikely to escape along the cusp

or gain much energy from the z component of the electric fields, the numerical results futher

validate the use of figure-8 orbits as optimal for FRC heating. Simulations for the TCS

experiment show rapid ion acceleration to keV energies and prompt loss because Ω ∼ 1 and

BR/Ba ∼ 0.3.

This work was supported, in part, by U.S. Department of Energy Contracts Nos. W-

7405-ENG-36 and DE-AC02-76-CHO-3073.

APPENDIX A: Energy-gain expansion coefficients

The coefficients are given by:

C0 = (a1/b1) + ρ2
0 + (1/2)

(
a2

1 + a2
2

)
(A1)

C1 = −(1/4)a2
1 (a1 − a2) ; C2 = ρ0a1 (a1 + 2a2) (A2)

C3 = (1/4)
(
a3

1 − 3a3
2

)
; C4 = 4ρ0a1a2; C5 = (5/4) (a1a2) (a1 + a2) (A3)

C6 = 3ρ0a
2
2; C7 = (7/4)a2

2a1 (A4)

C8 = 0; C9 = (3/4)a3
2 (A5)

K0 = (1/2)G0C0 + (1/4)G2

(
a2

1/2 + a1a2

)
+ (1/4)G4(a1a2) (A6)

K1 = G0(ρ0a1) +G2ρ0 (a1/2 + a2/2) + (1/2)G4ρ0a2 (A7)

K2 = G0

(
a2

1/4 + a1a2/2
)

+G2 (C0/2 + a1a2/4) + (1/2)G4 (a1/2 + a2/2)2 (A8)

K3 = G0(ρ0a2) + (1/2)G2(ρ0a1) + (1/2)G4(ρ0a1) (A9)
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K4 = G0(a1a2/2) + (1/2)G2 (a1/2 + a2/2)2 + (1/2)G4C0 (A10)

K5 = G2(ρ0a2/2) +G4(ρ0a1/2) (A11)

K6 = G0(a
2
2/4) +G2(a1a2/4) +G4

(
a2

1/8 + a1a2/4
)

(A12)

K7 = (1/2)G4(ρ0a2); K8 = G2(a
2
2/8) +G4(a1a2/4) (A13)
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