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On 1D diffusion problems with a gradient-dependent diffusion 
coefficient 
 
S. C. Jardin1, G. Bateman2, G. W. Hammett1, L. P. Ku1 
 
In solving the 1D (flux surface averaged) transport equations for the temperatures and 
densities in a tokamak[1], one increasingly encounters highly nonlinear thermal 
conductivity and diffusivity functions, such as GLF23[2], that have a strong dependence 
on the temperature gradients.  These arise from a subsidiary microstability based 
calculation in which the growth rates and hence transport coefficients are sensitive 
functions of these gradients [3].  When these nonlinear functions are interfaced with a 
standard transport framework that uses a Crank-Nicholson [4] time advancement, large 
non-physical oscillations and numerical instabilities can develop.  Here we describe a 
relatively simple modification to the Crank-Nicholson method that cures this difficulty. 
 
To illustrate the method, we start with a simple diffusion equation in cylindrical polar 
coordinates: 
 

( )1T Tr T S
t r r r

χ∂ ∂ ∂⎡ ⎤′= +⎢ ⎥∂ ∂ ∂⎣ ⎦
                                                 (1a) 

 
Now, define a new independent variable,Φ , corresponding to the area (or the toroidal 
magnetic flux if a uniform longitudinal magnetic field is present), that is defined 
as: 2rπΦ ≡ .    With this substitution, equation (1) becomes  
 

( )4T TT S
t

π χ∂ ∂ ∂⎡ ⎤′= Φ +⎢ ⎥∂ ∂Φ ∂Φ⎣ ⎦
                                               (1b) 

 
Here we have denoted  by T T ′∂ ∂Φ . Consider the unit circle so that 0 π≤ Φ ≤ . Note that 
this has a steady-state solution for 1, 4 , 1 .S Tχ π= = = −Φ    
 
We apply a boundary condition of T=0 at Φ=π, keep S=4π, and use the above solution as 
an initial condition.  Now, define a function that mimics the critical gradient thermal 
diffusivity model GLF23: 
 

( ) ( ) 0

0

for  

                     for  
c c
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k T T T T
T

T T

α
χ

χ
χ

⎧ ⎫′ ′ ′ ′− + >⎪ ⎪′ = ⎨ ⎬
′ ′≤⎪ ⎪⎩ ⎭

                                              (2) 

 
For definiteness, let 0χ =1.0, α=0.5, k = 10, and 0.5cT ′ = . 
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In order to finite difference  Eq. (1b), we define a mesh going from 0 to 1.  We make jT  a 
cell centered quantity, in which j goes from 1 to N.  The temperature jT  is centered at 
location 1

2( )j jΦ = − ΔΦ .  Thus, the temperature at j=1 corresponds to a cell center 
located at 1

1 2Φ = ΔΦ .   There is no need for a ghost zone at j=0, since the corresponding 
flux where it would be used is multiplied by zero.   We first try solving this with the θ-
implicit method (Crank-Nicholson corresponds to θ=0.5):  with s= 2tΔ ΔΦ  
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( ) ( ) ( ) ( ) ( ){ }

1 1 1 1 1
1/ 2 1/ 2 1 1/ 2 1/ 2 1

1/ 2 1/ 2 1 1/ 2 1/ 2 11

n n n n n n n n
j j j j j j j j j j

n n n n n n
j j j j j j j j

T T s T T T T T T

s T T T T T T tS

θ χ χ

θ χ χ

+ + + + +
+ + + − − −

+ + + − − −

⎡ ⎤ ⎡ ⎤′ ′= + Φ − − Φ −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤′ ′+ − Φ − − Φ − + Δ⎣ ⎦ ⎣ ⎦

     (3) 

Or, in tridiagonal form, 
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Fig. 1a:  T vs time at zone 10
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Figure 1:  Initial solution of Eq. (1) using Crank-Nicholson method.  Left plot is temperature vs time 
at zone 10, and right is temperature vs time at  zone 90. 
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Figure 2: Initial solution of Eq. (1) using Crank-Nicholson method.   Left plot is dT/dΦ at zone 10 vs 
time and right plot is at zone  90. 
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The illustrations in Figs 1 and 2 are the result of solving this with n=100 zones, with a 
time step Δt=0.1, implicit parameter θ=1.0 for 100 time steps.  We plot the time history 
of the function and derivative at locations 10 and 90. 
 
This is seen to be very noisy, with a large amplitude oscillation.   In order to improve the 
solution, we investigate a nonlinearly implicit method that would seek to evaluate the χ 
functions multiplying the advanced time derivatives also at the advanced times, i.e.: 
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     (5) 

 
We can derive a Newton’s iteration to solve this by defining the modified coefficients 
corresponding to Newton iteration i (out of N): 
 

/ / /
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+ −− + + =                                        (6) 
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         (7)          

The results of solving the equation using the coefficients in (7) with a single Newton 
iteration, rather than those in (4) are shown in Figures 3 and 4. We see that the solution 
converges to a mean result (compared to Figs 1 and 2) and without oscillations. 
Note that if we apply only a single Newton iteration, we can rewrite Eq. (7) as: 
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                     (8) 

 
 

Fig. 3a:  T vs time at zone 10
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Fig. 3b:  T vs time at zone 90
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Figure 3: Temperatures at zone 10 (left) and zone 90 (right) corresponding to Figure 1 using Newton 
Iteration as defined by Eq. (8) 

 
Fig 4a:  T-prime vs time at zone 10
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Fig. 4b:  T-prime vs time at zone 90
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Figure 4: Temperatures derivatives at zone 10 (left) and zone 90 (right) corresponding to Figure 2 
using Newton Iteration as defined by Eq. (8) 
 
 
 
The finite difference equation (8) corresponds to the differential equation: 
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( )T T TT T T S
t T T

χ χχ∂ ∂ ∂ ∂ ∂ ∂ ∂⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤′ ′ ′= Φ + − Φ +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥′ ′∂ ∂Φ ∂ ∂Φ ∂Φ ∂ ∂Φ⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭
                     (9) 

 
where the first term on the right is evaluated θ-centered in time and the second term is 
evaluated at the old time level.   A multi-iteration Newton method is equivalent to 
repeating the timestep but using the most recent values of  and Tχ χ ′∂ ∂ in (9). 
 
We have incorporated this method in two existing production tokamak transport codes 
with only minor modification.  Thus, in the existing numerical method in TSC [5] or in 
PTRANSP [6], the first term can just be treated as a modified thermal conductivity: 

( ) ( )T T T
T
χχ χ ∂′ ′ ′→ +
′∂

                                                     (10a) 

and the second term can be treated as a modified source term: 
 

TS S T
T
χ∂ ∂ ∂⎧ ⎫⎡ ⎤′→ − Φ⎨ ⎬⎢ ⎥′∂Φ ∂ ∂Φ⎣ ⎦⎩ ⎭

                                            (10b) 

Extending this to two temperatures T and Te gives: 
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⎧ ⎫⎡ ⎤∂ ∂ ∂ ∂∂ ∂⎪ ⎪⎡ ⎤′ ′ ′= Φ + + Φ⎨ ⎬⎢ ⎥ ⎢ ⎥′ ′∂ ∂Φ ∂ ∂Φ ∂ ∂Φ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭
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e
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χ⎧ ⎫⎤ ∂ ∂ ∂⎪ ⎪⎡ ⎤′+ Φ +⎨ ⎬⎢ ⎥ ⎢ ⎥′∂Φ ∂ ∂Φ⎣ ⎦⎪ ⎪⎦⎩ ⎭

                        (11) 

 
Here, again, the first term on the right of each equation is evaluated θ-centered in time, 
and the second term is evaluated at the old time level.   
 
The algorithm presented here is a variation of an unpublished algorithm first developed 
by one of us for usage in transport codes employing the IFS-PPPL transport model, a  
precursor to the current GLF23 model.  In this note we show it to be in fact a Newton 
iteration and hence it can be iterated each individual time step to improve robustness.  
Variants of this algorithm have also been briefly mentioned in Ref. [7] and [8]. 
 
Application to a JET Discharge 
 
Here we show an example with the method implemented in the PTRANSP code 
(http://w3.pppl.gov/transp/) as part of the finite difference algorithm that is used to 
advance the electron and ion thermal transport equations.  The thermal transport 
equations are a pair of diffusive-convective equations similar to Eq. 11 that are coupled 
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tightly through an equipartition term that is proportional to the difference between the 
electron and ion temperatures.  When the finite difference approximations to the transport 
equations are advanced in time using an implicit technique, the result is a block 
tridiagonal system of algebraic equations similar to Eqs. 3 and 4 that must be solved each 
time step. 
 
Before the implementation of  Newton’s method, time smoothing was used in an effort to 
control the numerical artifact associated with the use of stiff transport models.  The 
results of a simulation using time smoothing together with the GLF23 transport model are 
shown in the left two panels of Fig. 3, where the electron and ion thermal diffusivities are 
plotted as a function of normalized minor radius (electron thermal diffusivity in the 
bottom panel and ion thermal diffusivity in the top panel).  If time smoothing (or 
Newton’s method) were not used, the numerical artifact (ragged behavior shown in the 
left panels of Fig. 3) would be so severe that the simulation could not be run.   
 
Corresponding simulation results are shown in the right panels of Fig. 3 after the 
implementation of Newton’s method (similar to Eq. 7) with time smoothing turned off.  
In this simulation of a JET tokamak discharge using the GLF23 transport model, three 
Newton’s method iterations are used to advance the finite difference equations each time 
step and the implicitness parameter is taken to be unity.   The small remaining lack of 
smoothness in the diffusivity profiles can be attributed to the random Monte Carlo noise 
in the source terms (S in Eq. 12) and the abrupt transition to a steep gradient boundary 
layer that is imposed beyond r/a > 0.95 in these simulations. 
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Figure 5.  Electron and ion thermal diffusivity (bottom and top panels respectively) as a function of 
normalized minor radius, r/a, from a PTRANSP simulation of a JET discharge before and after 
Newton’s method was implemented (left and right panels respectively). 
 
 
Several problems were encountered in the implementation of Newton’s method in the 
TSC and PTRANSP codes when used with the GLF23 transport model.  There are some 
conditions, for example, that result in a negative derivative of the thermal diffusivity with 
respect to the temperature gradient, at least for one of the channels of transport.  The 
negative gradient can be so large that the combination χ+(∂χ/∂T ')T ' can be negative 
(such as could happen at a transport barrier bifurcation), which results in a severe 
numerical instability.  In order to avoid this problem, the magnitude of negative values of 
∂χ/∂T ' had to be limited in order to ensure that the combination χ+(∂χ/∂T ')T ' is always 
positive. 
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