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Finite Larmor Radius Effects on the Magnetorotational Instability

Nathaniel M. Ferraro

Princeton Plasma Physics Laboratory, Princeton, NJ, 08543-0451

ABSTRACT

The linear dispersion relation for the magnetorotational instability (MRI) is

derived including finite Larmor radius (FLR) effects. In particular, the Braginskii

form of the ion gyroviscosity, which represents the first-order FLR corrections

to the two-fluid equations, is retained. It is shown that FLR effects are the

most important effects in the limit of weak magnetic fields, and are much more

important than the Hall effect when βi À 1, where βi is the ratio of the ion

thermal pressure to the magnetic pressure. FLR effects may completely stabilize

even MRI modes having wavelengths much greater than the ion Larmor radius.

Some implications for astrophysical accretion disks are discussed.

Subject headings: accretion, accretion disks—instabilities—MHD—plasmas

1. Introduction

The magnetorotational instability is a local instability which may be present in accretion

disks having sheared azimuthal flow and a weak magnetic field (Balbus & Hawley 1991).

Turbulence resulting from this instability is thought to play an important role in the radial

transport of angular momentum in such systems (Balbus & Hawley 1998). Here we explore

the modifications to the local, two-fluid theory of the MRI in the linear regime due to finite

Larmor radius (FLR) effects.

Rosenbluth et al. (1962) have shown using kinetic theory that FLR effects can be sta-

bilizing to “weakly unstable” modes—defined as modes having a linear growth rate much

smaller than the ion cyclotron frequency—even when the mode wavelength is much larger

than the ion Larmor radius. It was later shown by Roberts & Taylor (1962) that this result

could be obtained from fluid theory by retaining the gyroviscous stress component of the

ion pressure tensor. In most physical scenarios the MRI is weakly unstable in the sense

of Rosenbluth et al., and indeed we show that the MRI may be completely stabilized by

gyroviscous effects at scales much larger than the ion Larmor radius. In some cases this

stabilization significantly constrains the spectrum of linearly unstable modes.
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The effect of the Hall term, which accounts for differences between the electron and ion

fluid velocities, has been examined previously by Wardle (1999), Balbus & Terquem (2001),

Salmeron & Wardle (2003), and Krolik & Zweibel (2006). In particular, it was found that the

Hall effect may be either stabilizing or destabilizing, depending on whether the equilibrium

magnetic field is aligned or anti-aligned to the equilibrium angular velocity. It was also found

that the Hall effect is important only when the ion cyclotron frequency is comparable to, or

smaller than, the orbital frequency. This situation may occur in early galaxy formation where

the magnetic fields are still weak, or in weakly ionized protostellar disks. Krolik & Zweibel

(2006) have suggested that, in this limit, short-wavelength modes are likely suppressed by

viscous or resistive damping, leaving only slowly growing, long-wavelength modes as the

magnetic field get sufficiently weak. However, their analysis is restricted to low-βi plasmas

as they do not consider FLR effects, which we show to be much more important than the

Hall effect in the weak-field limit. The strong FLR stabilization of the MRI in the weak-field

limit may have important implications for the possible role of the MRI in the amplification

of weak, primordial magnetic fields.

The gyroviscous stress is defined as the traceless, perpendicular part of the ion stress

tensor which does not depend explicitly on the collision frequency (Ramos 2005). In typical

cases, this stress arises primarily from variations in particle drift velocities over the scale of a

Larmor orbit (Kaufman 1960). However, other effects may contribute to this stress, includ-

ing gradients in heat fluxes. Braginskii’s form of the ion gyroviscous stress is appropriate

for collisional plasmas (in the sense that the ion mean-free-path is small compared to the

hydrodynamic perturbation length-scale), and in the limit where the ion cyclotron period is

short compared to collisional and hydrodynamic time-scales (Braginskii 1965). More gen-

eral, but more complicated, expressions for the gyroviscous force have been derived, which

are applicable to a broader range of collisionality regimes and dynamical time scales; Ramos

(2005) and references therein provide derivations and discussions of these alternate forms.

We choose to work with Braginskii’s form here because it is (relatively) simple and applies

to a broad range of astrophysical objects.

The MRI in the collisionless regime, where the collisional mean-free-path is greater

than the mode wavelength, has been explored by Quataert et al. (2002) and Sharma et al.

(2003) using kinetic closures. Islam & Balbus (2005) have extended the single-fluid MHD

treatment to lower collisionality regimes by including the Braginskii (1965) form of the

parallel viscosity, and have obtained results similar to those obtained using kinetic closure.

These various analyses have found the linear growth rate to be enhanced by a factor of order

unity at lower collisionality when an azimuthal component of the magnetic field is present,

but the criterion for instability was found not to differ from the MHD result. We do include

the parallel viscous stress for completeness in our analysis, as formally it may be larger
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than the gyroviscous stress. However, for the sake of simplicity we restrict the MRI mode

wavevector and magnetic field to be normal to the accretion disk, in which case the parallel

viscosity has no effect on the MRI. This case is the most unstable one in the collisional limit,

which is the limit in which we are mainly interested.

2. Linear Theory

2.1. Model

We consider the two-fluid MHD equations:

∂n

∂t
= −∇ · (n~v) (1a)

n
∂~v

∂t
= −n~v · ∇~v +

~J × ~B

c
−∇p−∇ · Π− ng(r)r̂ (1b)

∂ ~B

∂t
= −c∇× ~E (1c)

where

~E = −1
c
~v × ~B + 1

ne
(1
c
~J × ~B −∇pe)

~J = c
4π
∇× ~B; p = pi + pe.

The terms representing two-fluid effects are the Hall term ( ~J × ~B/nec) and the electron

pressure gradient in the definition of ~E. We assume barytropic pressure variations of the

form

dps = ΓTsdn (2)

for each species s where, for example, Γ = 5/3 for an adiabatic equation of state. For Π we

use the leading order terms in the Braginskii (1965) closure:

Π = Πv + Πgv,

where

Πv = η0
pi
2νi

(

I− 3b̂b̂
)(

b̂ ·W · b̂
)

(3)

Πgv =
pi
4ωci

{

b̂×W · (I+ 3b̂b̂) +
[

b̂×W · (I+ 3b̂b̂)
]>
}

(4)

where b̂ = ~B/B, ωci = eBz0/mic is the ion cyclotron frequency, νi is the ion collision

frequency, and the coefficient η0 ≈ 0.96 is a factor determined by kinetic analysis (Braginskii
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1965). The rate-of-strain tensor is

W = ∇~v + (∇~v)> − 2
3
I∇ · ~v.

Πv is the parallel viscosity term considered by Balbus (2004) and Islam & Balbus (2005),

which represents the lowest-order in ∂t/νi correction to the fluid equations. (It will be shown,

however, that the parallel viscosity plays no role in the MRI in the configuration we choose

to examine.) Πgv is the gyroviscous force, which represents the lowest-order FLR correction

to the fluid equations. This form of Π is appropriate in the limit where ωci À νi. Together

with the short mean-free-path condition (k‖λmfp ¿ 1, where λmfp ∼ vt/νi) necessary to

justify the fluid closure, this restricts the validity of our results to the parameter regime

where

k‖vt ¿ νi ¿ ωci. (5)

In the case of an accretion disk where k‖ & 1/d is limited by the disk height d ∼ vt/Ω, this

validity condition becomes Ω¿ νi ¿ ωci.

2.2. Equilibrium

We consider a cylindrical equilibrium, using the standard coordinates (r, θ, z), and as-

sume axisymmetry in the azimuthal coordinate (∂θ = 0). For simplicity, we assume the

equilibrium magnetic field is of the form ~B0 = Bz0ẑ, and that the equilibrium fluid velocity

is of the form ~v0 = rΩ(r)θ̂. Without loss of generality, we orient our coordinate system so

that Ω(r) > 0 at the radius of interest. For such a configuration, radial force balance is

satisfied when

g(r) = rΩ2(r) +
ρ2
iωci
2r2

∂

∂r

[

r3Ω′(r)
]

, (6)

where ρi = vt/ωci is the ion Larmor radius, and vt =
√

Ti/mi is the ion thermal velocity. We

neglect any equilibrium structure in the z-direction. In the following derivation, we choose

to use equation (6) to eliminate g(r) in favor of Ω(r) (hereafter we will drop the explicit

dependence of Ω on r).

2.3. Local Linear Dispersion Relation

We consider linear perturbations about this equilibrium having scale lengths 1/k much

smaller than the equilibrium flow gradient scale length L = Ω/Ω′, so that δ = 1/|kL| ¿ 1.

In this limit, we may assume that the normal modes of the system are plane waves to lowest
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Fig. 1.— Contours of the growth rate of the unstable solution to equation (7) are plotted

versus kvA/Ω. Left: The growth rate is plotted for various values of F , which measures the

importance of FLR effects, in the limit where Ω/ωci ¿ 1 (no Hall effect). F = 0 is the ideal

MHD result. Right: The growth rate is plotted for various values of Ω/ωci, which measures

the importance of the Hall effect, in the limit where F ¿ 1 (no FLR effects). Ω/ωci = 0 is

the ideal MHD result.

order in δ. We restrict our analysis to perturbations ∝ ei(kz−ωt) for simplicity, as this is the

most unstable case in both the MHD and collisionless limits (Quataert et al. 2002). Carrying

out the linearization of equations (1) yields the following dispersion relation, to lowest order

in δ:

0 = (W 2 +W
8iη0

3

ωci
νi

A− C)×

×
{

W 4 −W 2 [2(2 +R +K)− 2A(4 +R− 2A) +H(R +H)] + (7)

+ [K − A(R + 2H) + 2(R +H)] [K − A(R + 2H) +H(2 +R)]} .

We define the dimensionless quantities

W = ω/Ω (8a)

K = (vAk/Ω)
2 (8b)

A = Kβi(Ω/ωci)/4 ≡ KF (8c)

H = K(Ω/ωci) (8d)

C = (csk/Ω)
2 (8e)

R = rΩ′/Ω (8f)
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and characteristic velocities v2
A = B2

z0/4πn0mi and c2
s = Γ(Te+Ti)/mi. Here βi = 8πpi0/B

2
0

is the ratio of ion thermal pressure to magnetic pressure. The dimensionless parameter A

measures the importance of the gyroviscous force, and setting A = 0 is equivalent to omitting

∇ · Πgv in the ion force equation. Similarly, H measures the importance of the Hall term in

Ohm’s law, and K measures the importance of magnetic tension. R is the ratio of the radial

coordinate to the equilibrium flow gradient scale length, and is taken to be ∼ O(1). For a
Keplerian disk, R = −3/2. For convenience we have also defined

F =
βi
4

Ω

ωci
,

which is the ratio of the gyroviscous force to the magnetic tension force.

Equation (7) contains two uncoupled modes. The first factor contains the acoustic

mode, which may be damped by the parallel viscosity when A 6= 0, and is not of interest
here. (While ωci/νi is generally large, Aωci/νi ∼ CΩ/νi ¿ C in the collisional regime, so

the effect on the acoustic mode is small.) The second factor, enclosed in braces, contains

the MRI. In the limit where A→ 0 (no FLR effects), H → 0 (no Hall effect), and Ω/νi → 0

(collisional regime), the dispersion relation of Balbus & Hawley (1998) is recovered. Note

that the parallel viscosity (∝ η0) affects only the acoustic mode and not the MRI. Evidently,

there is no O(Ω/νi) correction to the MHD result for the MRI when ~B0 = Bz0ẑ, which is

in agreement with the findings of Sharma et al. (2003) and Islam & Balbus (2005). Here

we are interested in corrections to the collisional mode, for which the ~B0 = Bz0ẑ case is

the most unstable. Extending this analysis to a more general magnetic field configuration

substantially complicates the analysis.

It should also be noted that ωci is a signed quantity since it is proportional to Bz,

which may be positive or negative. Since we have chosen the coordinate system so that Ω

is positive, sign ωci = sign ~B · ~Ω = sign F . It has been shown previously that the effect of

the Hall term on the MRI depends strongly on the sign relative signs of ωci and Ω (Wardle

1999). The effect of the gyroviscous force has a similar dependence.

The growth rate γ = Im ω of the unstable solution to equation (7) is plotted in figure 1

for a Keplerian rotation profile (R = −3/2). Note that the abscissa should be read as a
normalized wavenumber and not a normalized magnetic field strength, because F and Ω/ωci

are dependent on B. When ωci > 0, and hence F > 0 also, both the FLR and the Hall effects

can be seen to move the most unstable mode to lower wavenumbers, and to reduce the value

of K at which the MRI is completely stabilized. Also, FLR effects increase the growth rate

of the most unstable mode. When ωci < 0, and hence F < 0, both effects are seen instead

to increase the cutoff value of K all the way to the point where modes of any wavelength

for which this analysis is valid are unstable. Presumably, the inclusion of a finite resistivity



– 7 –

would damp this resonance, as it does in the case of the resonance due to the Hall effect

(Balbus & Terquem 2001). When F or Ω/ωci becomes sufficiently negative (F < −2/3 when
Ω/ωci → 0, or Ω/ωci < −2 when F → 0), all values of k are suddenly completely stabilized.

(It has been shown by Balbus & Terquem (2001) that this stabilization is less sudden when

finite resistivity is included.)

2.4. Instability Criterion

Applying the Routh-Hurwitz theorem to equation (7), we find that the condition for

stability of an MRI mode is that both of the following inequalities are satisfied:

0 < 2(2 +R +K)− 2A(4 +R− 2A) +H(R +H)

0 < [K − A(R + 2H) + 2(R +H)] [K − A(R + 2H) +H(2 +R)]

This criterion is highly complicated, and for general values of A and H, there may be

multiple stable and unstable regions in K-space.

In the ideal limit, when A→ 0 and H → 0, the instability criterion of Balbus & Hawley

(1998), K < −2R, is recovered. This limit is well understood, and in this case stabilization
at high-K is due to the effect of magnetic tension. In this limit, instability does not exist in

flows in which the angular velocity increases with radius (R > 0).

The limit A→ 0, in which the Hall effect is dominant over the FLR effects, has also been

considered before. In this limit, equation (7) reduces to the dispersion relation of Balbus

& Terquem (2001). Since A/H = βi/4, this limit describes accretion disks having βi ¿ 1.

Formally, the instability criterion in this case remains somewhat complicated because the

signs and relative magnitudes of most of the terms are undetermined in general. There

is some discussion of the instability criterion in this case by Wardle (1999) and Balbus

& Terquem (2001), as well as insight into its physical meaning. We will not repeat this

discussion, except to mention a few interesting points. The first is that there may exist some

values of Ω/ωci for which modes of any wavelength are unstable (this is true in the Keplerian

case for −2 < Ω/ωci < −1/2). Also, some unstable modes may be present in disks in which
angular velocity increases with radius (R > 0), in contrast to the ideal result (Balbus &

Terquem 2001).

We are more interested in the opposite limit, βi À 1, in which FLR effects are dominant

over the Hall effect. Taking H → 0, the dispersion relation for the MRI reduces to

0 = W 4 − 2 [2 +R +K − A(4 +R− 2A)]W 2 + (K − AR + 2R) (K − AR) (10)
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and the criterion for instability is found to be

K < − 2R

1− FR
. (11)

For the usual case where R < 0, all modes are completely stabilized if F < −1/|R|. As
with the Hall effect, gyroviscosity allows unstable modes to exist when R > 0; in this case,

unstable modes may exist when F > 1/R. In the limit where the gyroviscous force dominates

the force of magnetic tension, F À 1, the instability criterion becomes simply

A < 2 and F > 0 (12)

or, equivalently, (kρi)
2 < 4Ω/ωci, In the case where F < 0, there are no unstable modes in

this limit.

3. Discussion and Conclusions

The gyroviscous stress arises from changes to the guiding-center drifts due to the gra-

dients of magnetohydrodynamic forces (the electric field, in this case) across a gyro-orbit.

A more complete and quantitative discussion of this effect is discussed by Kaufman (1960).

Due to their larger Larmor radius, the ions are more affected by this modification that the

electrons, leading to the generation of currents. Essentially, the stabilization (or destabiliza-

tion) of the MRI by FLR effects is due to the currents generated by the gyroviscous force

being out of phase (or in phase) with the current of the ideal-MHD MRI eigenmode.

The effect of the gyroviscous stress becomes relatively more important to the behavior

of the MRI as the magnetic field strength is decreased. The relative importance of this stress

to the magnetic tension is A/K = F ∝ B−3, and the relative importance of the gyroviscous

stress to the Hall effect is A/H = βi/4 ∝ B−2. Note that this means analyses of the MRI

in the “weak-field” limit (in the sense that Ω/ωci & 1) which did not consider FLR effects

are valid only for βi ¿ 1. If the magnetic field is sufficiently weak, the validity condition

for the Braginskii closure, equation (5), may be violated since kvt/ωci =
√
2HF ∝ B−1, in

which case the above analysis no longer strictly applies. Of course, gyroviscosity does not

shut off at this point; indeed, FLR effects are expected to become increasingly powerful as

the magnetic field is decreased further, though not in a way that is correctly described by

equation (4). Therefore it is probable that the low-K modes which survive at the lowest

magnetic field strengths covered by this analysis will be completely stabilized as the magnetic

field decreases further. This is the proper resolution to the inconsistency of the ideal MHD

result than the MRI remains unstable as B → 0 in the non-dissipative case. Because the MRI
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is not present at arbitrarily low magnetic fields, its role in the amplification of primordial

astrophysical magnetic fields is severely restricted.

It should also be noted that FLR effects may completely stabilize MRI modes having

wavelengths much greater than the ion Larmor radius, where kρi ¿ 1. As was shown

by Rosenbluth et al. (1962), this is possible for “weakly unstable” modes like the MRI.

Restricting our analysis to the FLR-dominated limit (F À 1), MRI modes are stabilized

when (kρi)
2 > 4(Ω/ωci), where Ω/ωci is typically small in astrophysical accretion disks. This

stabilization may be made more important by the fact that in an accretion disk the lower

bound on k is set by the width of the disk d, which may be much smaller than the equilibrium

flow gradient scale length L. Although a proper understanding of this phenomenon must take

into account the z-stratification of the disk equilibrium, we may estimate that the smallest

wavenumber present in the disk is ∼ π/d. The criterion for complete stabilization by FLR

effects of all MRI modes within an accretion disk at some distance from the central mass is

then

π2(ρi/d)
2 & 4Ω/ωci. (13)

In the typical case where d ∼ vt/Ω this inequality reduces to ωci/Ω . π/4. While this is

not typically satisfied in astrophysical accretion disks, it may be satisfied in nascent galaxies

with weak magnetic fields, or weakly ionized protostellar disks (Krolik & Zweibel 2006). It

is important to recall here that the condition for validity of our analysis for wavelengths of

this scale requires Ω¿ ωci; whether FLR effects are more or less stabilizing than our result

would predict outside this range of validity is a matter for further research.

For a concreteness, we consider the example of an active galactic nucleus (AGN) in a

weak magnetic field, for which the conditions for validity of the Braginskii equations are

met, and in which the effect of the gyroviscous force is particularly strong. We assume

Keplerian rotation (R = −3/2), a central mass of 107M¯, B = 10 nG, n = 10 cm−3, and

Ti = 1 eV, at a distance of 10
16 cm. For this case, the relevant dimensionless parameters

are F ≈ 384, H ≈ 3.81× 10−4, and K ≈ 1.96× 10−5 at k = Ω/vt. The growth rates of the

MRI under these conditions are plotted in figure 2. From that figure it can be seen that in

both cases the FLR correction increases the wavelength of the fastest-growing mode from

≈ 1011 cm to ≈ 25 × 1011 cm, and similarly increases the cutoff wavelength below which
there are no unstable modes. In this example, the weakness of the magnetic field is crucial

to the importance of the FLR effect. If the magnetic field strength is raised by two orders

of magnitude, the FLR correction becomes insignificant. Therefore, “primordial” accretion

disks in weak magnetic fields will be most affected by the FLR correction, whereas disks in

stronger fields (B ≥ 10 µG) may be completely unaffected, unless they are unusually hot

and dense, or have an orbital frequency not much smaller than the ion cyclotron frequency.
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Fig. 2.— The growth rate of the MRI is plotted versus wavelength for a Keplerian, 107M¯

active galactic nucleus in a weak magnetic field (B = 10 nG), at a distance 1016 cm. The

solutions to the dispersion relation including (solid line), and excluding (broken line) the FLR

correction are plotted. Gyroviscosity completely stabilizes the shorter-wavelength modes,

and enhances the longer-wavelength modes.

The nonlinear saturation of the MRI cannot be properly addressed by linear analysis.

Because gyroviscosity is not dissipative, and there is no energy associated with the gyro-

viscous term, one might expect that the ultimate nonlinear saturated state should not be

affected strongly by the gyroviscosity. Ultimately, questions of nonlinear saturation should

be addressed by numerical simulation.

The author is grateful for helpful discussions with Dr. Gregory Hammett and Ian

Parrish.
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