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Zonal flows in toroidal systems

H.E. Mynick
�

and A.H. Boozer
�

�

Plasma Physics Laboratory, Princeton University
�

Dept. of Applied Physics & Mathematics, Columbia University

An analytic study of the shielding and time evolution of zonal flows in tokamaks and

stellarators is presented, using the action-angle formalism. This framework permits one to

solve the kinetic equation without expansion of that equation in small parameters of radial

excursions and timescale, resulting in more general expressions for the dielectric shielding,

and with a scaling extended from that in earlier work. From these expressions, it is found that

for each mechanism of collisional transport, there is a corresponding shielding mechanism,

of closely related form and scaling. The effect of these generalized expressions on the

evolution and size of zonal flows, and their implications for stellarator design are considered.

PACS #s: 52.25.Fi,52.35.Ra, 52.55.Hc, 52.55.Fa
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I. INTRODUCTION

Since the early 1980s, a range of techniques for reducing the neoclassical (nc)

transport in stellarators has been developed,1 reducing the nc fluxes to levels subdom-

inant to the turbulent fluxes over much of the plasma column, and a new generation

of “transport-optimized” stellarator designs is now being implemented to test these

techniques. As a result, new interest exists to also reduce the turbulent transport in

stellarators. As for tokamaks, it is believed that an important mechanism for sup-

pressing the turbulent fluxes in stellarators will be by having strong zonal flows (ZFs),

primarily poloidal
�����

flows due to a radially-varying electrostatic potential ���	��

�����
driven by the nonlinearities in the kinetic equation. It is thus of interest to understand

how machine geometry will affect the strength of these flows.

A calculation of the ��� produced for a given nonlinear source � for tokamaks has

been given by Rosenbluth and Hinton2, and an analogous calculation for stellarators by

Sugama and Watanabe.3,4 These are basically linear response calculations, computing

the dielectric response � in ������������� �"!$#�%'&
� , where �"!$#�% is the external charge-

density perturbation, driven by the assumed nonlinear source, �"!(#�%*),+�-.���/�0��� . In

Ref. 2, � is found to have a shielding contribution �213) �'�546! 1 �7� associated with

the gyromotion (superscript 8 ), corresponding to a “classical” polarization current9�:<; 1 , and an analogous “nc”, or “bounce” shielding � � )>= % �?�546! � �7� associated with

the longer-timescale bounce motion (superscript @ ), with a corresponding bounce-

polarization current
9 :A; �

. (Here, �$4 is the local radial wavevector of the ZF, ! 1 is the

gyroradius, ! � is the banana width, and = % is the fraction of toroidally-trapped parti-

cles.) In Ref. 3, it is found that for stellarators, there is a further contribution �CBD)E=	F
due to motion on the still longer drift timescale (superscript - ), which can appreciably

modify this result. This term may in turn be associated with a drift polarization current9�:<; B . (Here, =	FG)IHKJ'L �F is the fraction of helically-trapped particles.) As will be seen,
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this form is one particular limit of the drift shielding natural to the ordering adopted

in Refs. 2,3 and 4, generalized in this paper. A second formal approach applied to

studying ZFs in stellarators is one using the “time-dependent viscosity”.5 There, the

kinetic equation is solved using a high- and low-frequency ordering, obtaining what

is effectively the drift shielding contribution, in the “ �
&�� ” and banana regimes of stel-

larator transport. The results of both earlier lines of study are extended by the approach

employed here (cf. Sec. III).

A formalism natural to treating particle motion on these different timescales, and

in the relatively complex magnetic geometries of tokamaks and stellarators, is the

“action-angle” (aa) formalism, originally formulated for tokamaks by Kaufman.6 In

it, one reparametrizes phase space points � from the more directly physical set ��� ��� �
of real-space position � and conjugate momentum � to �	�	��
 � , with 
 the 3 invariant

actions of the unperturbed motion and � their 3 conjugate angles. Using this formal-

ism, solution of the kinetic equation can be carried out, and important quantities such

as � can be computed, without having to introduce expansions in small parameters

of radial and time scale, such as the ratios of ! 1 , ! � , or radial drift excursion (“super-

banana width”) ! B to system size � , or the frequency � � of the ZF perturbation to the

characteristic frequencies 
 1 ; � ; B of the particle motion. The resultant expressions for

important quantities emerge in a form which is almost as simple as the more famil-

iar forms for an unmagnetized homogeneous plasma. (Approximations may then be

made in the description of the orbit, radial structure of the eigenmodes, and evaluation

of integrals involving them.) The perspicuity of the aa expression for � permits one to

more readily see parallels which exist among the different timescales, as will be seen.

The dielectric shielding computed here and other mechanisms affecting ZFs come

together in the time evolution equation for the flux-surface averaged radial electric

field
� 4�� ����
������ , obtained from the surface average of Ampere’s law, plus an



4

expression for the surface-averaged radial current
9 4 ,

�
%
� 4 � � ��� 9 4<� (1)
9 4 � � �5� ��� J�� � %

� 4��	� � � 4
� �
� ��� =
� & ���

The first term in
9 4 , proportional to the time derivative of

� 4 , represents the po-

larization current
9 :

, with � containing the dielectric shielding contributions, the

second term represents the nonambipolar radial current due to nc transport, where�
� ��� � ��
�� ��� � � is the ambipolar value at which the ion and electron transport

fluxes are equal, and =�� is the force, here assumed random, exerted by the turbulence

within a magnetic surface normal to the magnetic field, which acts as a source driv-

ing
� 4 . Using Eq.(1b) in (1a) yields a Langevin-like equation, with drive =�� , and

restoring term � � , where
� � � � 4�� �

� ����� � ��
 � � ��� � . Neglecting this lat-

ter term, as in the qualitative discussion in Ref. 2, results in the ensemble average

� � � � : ����� � + - ��� � � ����� � � increasing without bound with � , corresponding to a �
& �
divergence as ��� � in the spectral function ��� � � � � � � � � : � � � . [Here,

� � � � is the

probability distribution function (pdf) for
�

.] As discussed in Sec. IV, refining this

picture by including this term removes the divergence, resulting in a process where� 4A����� evolves diffusively about
� 4 � �

� , reaching a bounded steady-state pdf.

In Sec. II, the aa formalism is used to obtain general expressions for the linear

response, with � � ��
 � uncommitted to any particular magnetic geometry. In Sec. III

this general form is specialized to toroidal geometries, and expressions for � and the

response equation determining the size of � � are obtained, valid for arbitrary ratios of

! 1 ; � ; B & � . These are then specialized to find special limits of the general expressions,

and some of the results of earlier work are recovered, along with results in additional

physically interesting limits. A close correspondence is found to exist between each

collisional transport mechanism and a contribution to the polarization shielding. In

Sec. IV we analyze the statistics of the ZF time evolution implied by Eqs.(1). In
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Sec. V we summarize the results of the preceding sections.

II. ACTION-ANGLE FORMALISM

As noted in Sec. I, in the aa formalism one parametrizes phase points � with the

3 invariant actions 
 of the unperturbed motion and their 3 conjugate angles � . The

collisionless motion is governed by a Hamiltonian ��� � �����G�����A��
 � ��� � � ����� , with

unperturbed and perturbing parts ��� and � . Here we consider electrostatic perturba-

tions only, � � � ����� ���A��� ���(� � � ����� . The key feature of aa variables is that they make the

description of particle motion very simple. Hamilton’s equations are:�
� � �
	 � ��� � 
 ��� �
	 �
��� ��
 � � (2)�

 � � � � � � ��� ����� �

�
��
 ����������� ��� � � � �K� (3)

where
�
	

(
�
� ) denotes a gradient in 
 ( � )-space, � ��
 � � ��	 ��� , and

�
is the 3-

component vector index, specifying the harmonic of each component of � in the

Fourier decomposition � � � � ���
�
�
�
� 
 ������� � � � � � � .

The Vlasov equation may be written

� � % � !���K���#" � � ����� � � � �

 � �
	 "$��� �/��� �����%"$� � (4)

where !��� ��& �'���)( �*� � � � , with & �)( Poisson brackets, and we write distribution

function " ��� ����� �+"$� � �#" , with "$�A��
 � the unperturbed portion, satisfying !���,"-� � � ,
and �
" � � ����� the perturbed portion. Following Refs. 2,3, we take the nonlinear term

�.&"�#" �'�/( equal to a specified source function � � � �����%"#� .
Laplace transforming in time and Fourier transforming in � , one obtains0 � J� �#"

�
��
	� � � �1� � � �
	 "-�,�

�
� 
 � � � � �#"

�
��
 ��� � �$��� �

�
��
	� � �%"-�<� (5)

with inverse propagator
0 � J� � � �2��� �3� � �-� � �#4
� , in which we include an effective

damping rate �
4 , to later consider the effect of collisions, which goes to a positive
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infinitessimal H in the purely collisionless case. Eq.(5) is readily solved for �
"
�
� � � , and

the charge density at observation point � is then computed via (now showing species

label � ) �
!�� ��� � � + - �.! ��� � � ���#"�� � � � , where ! ��� � � � � ���7�(���	� �(� � ��� is the charge

density kernel, ��� is the species charge, and �(�?� is the Dirac delta function. This yields

3 contributions, labelled A, B, and C, corresponding to the 3 terms on the right side of

(5):

�
!��
		��� � � � � �
-
������� ��� ����� � � �7�5�	����� � � � (6)

�
!�� ; ����� ��� � � � � �
�"� ��� � - 
 �/� !��
�
��� � 
 � 0 ��� �#"��

�
� 
 ��� � �.��� ���

�
��
	� � �%"�� �! �

�"!��"	 , proportional to � or �5� , gives the self-consistent response of the plasma, with re-

sponse kernel ��� . �
!�� � , due to the initial conditions of �
" , gives the transient ballistic

response, and the third term, �"!#� � , is due to the nonlinear drive.

The electrostatic counterpart of the response kernel obtained in Ref. 6 is given by

��� ��� �$��� � � � � �%�"� �!� � - 
 � � !��
�
��� � 
 �

�
� �
	 "�� ��

�$� � � � ���#4 !
�
����� � 
 � (7)

�&� � B� ��� ��� � ��� �%�
� � � � - 
 � � ! �
�
��� � 
 � � ��')( "�� �
� �

� �
	 � ')( "�����
�$� � � � ���#4 !

�
��� � � 
 � �

In the second form here, we have separated out the (generalized) adiabatic term

� � B� ��� ��� � � �+�*�7� ��� �+� � � +2- �.! ��� � � � ��')( "���� , by giving "�� � an explicit dependence on

���
��
 � , so that
� 	 "����
� ���
� 
 � � 
 � � ��' ( � � �
	 � ' ( "�� � , where the

� 	 � ' ( in the second

term means
� 	

at constant � � . Specializing "$� to the local Maxwellian form

"�, � 
 � � - �
�%�
�/.10 � � L � �����/� �G��� �
� � � � ��&�0 � � (8)

where density - � , ambipolar radial potential � � , and temperature 0 are functions of

the drift-averaged minor radius 
 B � 
 � , and . is the particle mass, one has
�#')( "�� � �

�20 � J� "�� � , and � � B� ��� ��� � � � � �
& � �5�/3 � � ��� ���7� ��� �4� � � , with 3 � � ��� � �50���&�� ��� - ���'�<� � � the

square of the local Debye length.
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III. TOROIDAL GEOMETRY

The expressions given thus far are valid for any system where the motion is “in-

tegrable”, i.e., where a complete set 
 of constants of the motion exists. We now

specialize to toroidal geometries, including tokamaks and stellarators. Such a set 

exists for systems with at least 1 symmetry direction, such as tokamaks and straight

stellarators, manifested by their collisionless guiding-center orbits exactly closing on

themselves in poloidal cross-section. An approximate set 
 exists for those classes

of toroidal stellarators whose ripple has sufficient symmetry that “superbanana” or-

bits (those ripple trapped during at least part of their orbit) approximately close on

themselves. Since devices without this feature have poor confinement, this includes

most stellarators of interest. We represent position in terms of flux coordinates

� �,��� ��� ��� � , where �"��� is the toroidal flux within a flux surface, and � and � are

the poloidal and toroidal azimuths. In terms of these, the magnetic field may be writ-

ten � � ��� � ��� � �	� � ��� : � ��� � ��
 : , with �
��� : the poloidal flux, Clebsch

angle 
 : ��� ��
�� , constant along a field line, and 
 ��� � J � -�� : &�-�� the rotational

transform. 
 : and momentum � �
&�� ��� form a canonically conjugate pair for motion

perpendicular to the field line. It is also useful to define an average minor radius 
 ��� �
by � � �� ��
��K& � , with �� � � �� � 
 � �$� the average magnetic field strength on axis. We

consider toroidal systems with the nonaxisymmetric portion of magnetic field strength�
dominated by a single helical phase ��� � - ��� ��� ��� ,

� ��� � � �� ��
$� � � � H % � 
5������� � ��� F ��� ���!��� �
�  '� (9)

with ripple strength � F ��� � allowed to vary slowly over a flux surface, with flux-surface

average H�F(� 
5� � �?� F � .
A suitable choice for the aa variables is � � ��� 1 �"� � � �
 : � , 
 � � 9 1 �

9
� �
���
&�� � �� � , with9

1 � �%.#� &
�
��$ the gyroaction, $ the magnetic moment, � 1 the gyrophase, describing
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the fastest time scale of the motion,
9

� the bounce action, � � its conjugate bounce

phase, �� the drift-orbit averaged value of � , and its conjugate phase �
 : , the orbit-

averaged Clebsch coordinate 
 : , describing the slow, drift timescale. To make the

periodicity of the drift angle �"� as for the other 2 phases, instead of � �
 : �
���
&�� � �� � we

use the closely related canonical pair � � B �
9
B � � �
&�� � �� B � , with � B � �
 : &�� � � 
 � ��� � � ,

�� B � ��	� �� : � ��� � , where � ��� � � � � & - � . For typical parameters, 
 � ��� � � � , so that

� � B � �
 : � �� B � ��D� . Correspondingly one has the characteristic frequencies of motion

� � �	
 1 � 
 � � 
 B � , with gyrofrequency 
 1 , bounce frequency 
 � , and drift frequency


 B , and vector index
�
� ��� 1 ��� � ��� B � .

We adopt an eikonal form for the structure of any mode 	 ,

� � ��� � � �� � � 
5������� � � � ��� � � (10)

with wave phase � � ��� � � � + 4 - 
 � �54
��
 � � � � � � - �
 , and slowly-varying envelope

�� � � 
5� , assumed roughly constant over the radial excursion of a particle. Thus, mode

	 has local wavevector 
 � ��� � ���54 ��
 � ���	� � - ��� . For the ZF potential

� � � ��� , one has � � � - � � � � ���.� .
Using form (10), one may evaluate the expression

�
�

� ��
 � � �%�"� � ����� -�� ����� ��� � � �/� � ��� � for the “coupling coefficient” of mode 	 to

particles with actions 
 . Writing � � � �(��� ���/� �� � � � � � , with � � � the portion of � � os-

cillatory in � (so having zero � average), one finds �
�

� ��
 � � �*� �� � � �
5������� ��� �� � � 0
�

� ��
 � ,
with

0 �
� � �
�"� � ����� -�� ����� ��� � � � �����2� � � � ��� � the “orbit-averaging factor”. From

Parseval’s theorem one may show these satisfy the important relation � ���
� � 0 � � � ,

generalizing the much-used identity for Bessel functions ������
 9 �
 ���.� .
Multiplying Poisson’s equation � � � � � ��� � � � � �5� � � �"!�� ��� � � � by � �� ��� � � � ,

putting Eq.(10) in Eqs.(6) and (7) and using -���� � -�� - 
 � - �"- � , one obtains the

radial integral of the radially-local response equation �D� 
5� :
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+2-.
�� � �� �� ��
$� � ��
$� , with � given by

� � � � 
 � � � ��� �� � ��
$�0�� � �
� 3 � ���� ���

� 0 �
�

� ��
 � � � �#"��
�
�0� � �$��& "�� ��� ���

�
� � �� 

� � � �
�$� �3� �$4 �6� � (11)

Here, � � � -�� &�- 
 is the radial derivative of the volume �2� 
5� enclosed by

the flux surface 
 or � , 3 � ��� � 0��0&�� �5� - � � �*� ���0� , �(� � � 
 � � , and � � � � � �
�%�"� � � � � -��5-�� +2- � � "-�K& - � � � � � is the flux surface and momentum-space average over

the unperturbed distribution function "
� . Dielectric function � is given by � ��
 � � � �
� � � � � � ��
 � � � , with susceptibility � � ��
 � � � � �?� 3)��� � ��8 � ��
 � � ��� , and

8 � � 
 � � � � ��� ���
� � 0

�
� � 
 � � � � � � 4� �� � �

�-� � � �$4 � � � (12)

Here, � 4� � � � � � � � ��� � �	�$��&
�� , with � � � ����
�� 0/&���� � � � � the diamagnetic drift

frequency, � �E-
��� 0/&�-
��� - , � ���(&�� � the particle velocity, normalized to the thermal

speed ��� , ��
 � � B &�
 , and � � J� � � � ��� - � & � 
 . As usual, the 1 in � is the vacuum

term from the left side of the Poisson equation, negligible in comparison with the � � ,
which correspond to �
!��
	 in Eq.(6). The 1 in 8 � comes from the adiabatic term � � B�
in Eq.(7). The 2 terms on the right side of Eq.(11) arise from �
! � ; ����� . This response

equation is of essentially the same form as that obtained in Refs. 2 and 3, or of any

linear response calculation. The differences lie in the form of the dielectric � , and in

the use of the aa form, which facilitates dealing with the range of timescales and of

orbit-averaging effects in complex geometries in a general manner.

We now evaluate the
0 �

. As discussed in previous applications10–14 of the aa frame-

work, to evaluate these one needs a description of the particle position �(��� � , to evalu-

ate the required � integrations. The 3 trapping states (passing, toroidally-trapped, and

helically-trapped) are indicated by trapping index �3� � ��� and � , respectively. Then

an approximate description of �(� � � is


 �,
 B � �"
 � B�� � � B � � �"
 � �

� ��� � ��� �

 � 1�� ��� 1 � (13)
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� ��� F � B �	� : � � � � � � �

� � � � ��� � � � 1�� ��� 1 �
� � � B �
� � � F � ��� � �	� % : �$��� B � � � � �

� ��� � ��� � � � 1�� � � 1 � �

where we use trapping-state “switch” ��� to describe the behavior for different states �
in a single expression: ��� � � for a particle in trapping-state � , and 0 otherwise. Thus,

� � � F � � % � � : . Also, � % : � � % � � : equals 1 if a particle has � � � or
�

, and 0 for

� � � .

Eqs.(13) manifest 2 kinds of dependence on the phases � � ( � � 8 ��@A��- ), a secular,

linear dependence, and oscillatory dependences, held in functions � � � � �6������� , with � �


���(��� . Here we approximate each of the latter by a harmonic, (co)sinusoidal form,

e.g., �

 � � � ��������� !�� �!��� ��� , with amplitude !�� . This is a very good approximation for

gyromotion (with ! 1 the gyroradius), and a good approximation for bounce motion

not too near a trapping-state boundary (with ! � the banana width). For simplicity,

we assume that superbanana ( � � � ) particles do not detrap, but precess poloidally

dominated by
� � �

poloidal drift, 
 B � 
 B � , which is roughly constant on a given

orbit, while drifting radially as � � % � � � � , as usual. [Here, � � % � H % $ �� &��
. 
 1 
$� .]
This produces superbananas which are displaced circles, with superbanana width ! B �
� F � � % & 
 B � , a common approximation in stellarator transport theory. The radial drift

motion is thus also harmonic in � B . For simplicity, we have neglected from this orbit

description a second type of superbanana width, the finite radial excursions ! B % made

by � � � particles on the drift timescale, which give rise to the “banana-drift” transport

branch.7–9 Inclusion of this additional mechanism presents no difficulty for the basic

formalism.

The �
�

or
0 �

have been evaluated previously10,13,14 for perturbations with nonzero

� and - , but neglecting the effect of finite ! B . For the current application to ZFs, we

keep finite ! B , but set � � � � - , making only the first of Eqs.(13) necessary. Using
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the Bessel identity
9 
 ���.� � �
�"� � � J � - �#� � � 
�� � �������	� � and Eq.(10), one finds

0 �
� � 
 � � 9 
	
 ��� 1 � 9 
�� ��� � � 9 
	
 ��� B � � � ����� � (14)

with � 1 ; � ; B �,�54�! 1 ; � ; B , and � � a phase factor. Since
0 �

appears only as
� 0 � � � in the

theory here, the value of � � does not enter.

For drift turbulence, which is driving the ZFs, one typically has � B� ! 1 � ) � � � , and

frequencies � B ) � � �?�(B� � . For ZFs, one has much smaller �.4 and frequencies � � ,

down by an order of magnitude, perhaps by the “mesoscale” ratio, � �4 &$� B� )�� ! 1 ��& 	 .

Thus, for both species, one has the ordering � � � 
 B
� 
 �

� 
 1 , and � 1�� � � � � .
For the moment we leave the relative sizes of � � and 
 B unspecified. Also, one may

have � B�� � for trapped particles, for ions and also, notably, for electrons, as noted in

Ref. 3. Thus, as opposed to tokamaks, in stellarators electrons can participate in orbit

averaging, because their radial excursions on the drift timescale can be comparable

with those of ions.

Because � 1 ; �
� � , the factors

9 �
 
�� � in
� 0 � � � in Eq.(12) are negligible unless � 1 ; � � � ,

reducing the triple sum there to a single sum � 
 
 . In that sum, if one has ��� 
 B ,
then over the � B –range � � B ) � B over which

9 �
	
 in Eq.(12) is appreciable the integrand

does not change greatly, so that one can perform the summation, using the identity

� 
 9 �
 � � , which eliminates the
9 �
 
 factor, leaving only the factor

9 �
 
 9 �
 � . In the other

limit � � 
 B , the sum is dominated by the � B � � term, and the effect of
9 �
 
 survives.

Thus, for � � 
 B , all of gyro-, bounce- and drift-averaging contribute. Neglecting

�#4 � , Eq.(12) becomes

8 � � 
 � � � � � � � � � �'@ 1 ��@ � � �A� � � 
 B �K� (15)

8 � � 
 � � � � � � � � B �'@ 1 ��@ � ��@ B � �
� �
� 
 B � �

where � � B � @ 1 �6@ � ��@ B � � � 9 �1
9 �� 9 �B � , � � � �'@ 1 ��@ � � �!� � B �'@ 1 ��@ � ��@ B � �.� � � 9 �1

9 �� � , 9 �1 ; � ; B �9 �� ��� 1 ; � ; B � , @ 1 � �(�4 !.�1#" , @ � � @ 1 ���K&�H J'L �% , and @ B � �(�4 !.�B$" , with ! 1#" � � " & 
 1 , � " the
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species thermal velocity, and ! B$" � ! B ���G� � " ����� �" .
The physics represented by Eqs.(15) is that if the the ZF drive in a stellarator has

a time variation slow compared with 
 B [cf. Eq.(15b)], � � � particles have time to

partially shield out ��� by drifting along their collisionless superbanana orbits, an av-

eraging mechanism not available to tokamaks. If the ZF drive varies rapidly compared

with 
 B [Eq.(15a)], this new mechanism for radial averaging is lost. Eq.(15a) also

holds in the tokamak limit ( H6F � � ), where one has � B � � . And in the cylindrical limit

( H % � � ) of a large-aspect ratio tokamak, � � vanishes, and the � ’s in Eqs.(15) are re-

placed by the more familiar � �
�'@ 1 � �!� � � � @ 1 �6@ � � �.� � � 9 �1 � �
� �A�'@ 1 � � � � 


, with
� �"�'@ �

the modified Bessel function of the first kind. For @ 1 � � , one has � �
� @ 1 � � � � @ 1 ,
and thus 8
� � @ 1 , the contribution from the classical polarization current

9 :<; 1 . The

functions � � � and � � B succinctly describe the additional contributions from finite @ � ,

corresponding to shielding due to the “bounce” polarization current
9�:<; �

computed in

Refs. 2 and 3, and from finite @ B , corresponding to a “drift” polarization current
9 :<; B ,

extending the result in Ref. 3, as noted in Sec. I.

We approximately evaluate � � � and � � B using the small–argument expansion9 �"���$� � � � ���.&
�$� � for the Bessel functions. (While � 1 ; � � � is a good assump-

tion, one may have � B � � or � B � � . The above expressions for � � B � � � � are

valid for arbitrary values of � 1 ; � ; B .) First taking � B � � , one has � � B �'@ 1 ��@ � ��@ B � �
� � J� � � �1 � � J� � � �� � � J� ��� �B � . Evaluating these averages, one finds J� � � �1 � � @ 1 ,
J� � �5�� � � � � @ � , and J� � �5�B � � � B @ B . Here, � � � �

� �5&"� � � � � , and � B � � ���$&
�$�7=	F ,
with =	F � �
�$&"� � � �5H�F the fraction of particles with �E� � , here assuming ripple

strength � F is constant on a flux surface. The factor � � has been evaluated here for a

tokamak, approximately agreeing with the value 1.6 found in Ref. 2. Its value for a

stellarator is computed in Ref. 3. Coefficient � B is proportional to = F because only

� ��� particles have superbanana excursions ! B , and the large factor 15/2 there enters
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because of the strong energy weighting from ! �B ����� . Eqs.(15) then yield

8 � ��
 � � � � @ 1 � � � @ � �
� � � 
 B �K� (16)

8 � ��
 � � � � @ 1 � � � @ � � � B @ B �
� �
� 
 B �

�

Assuming the source terms on the right side of Eq.(11) remain unchanged, one sees

that ZFs in a stellarator with � � � 
 B will be appreciably reduced below those in a

stellarator with � � � 
 B or in a tokamak, due to the addition contribution from
9 :<; B ,

to which not only ions, but also electrons, may contribute.

One notes that the drift contribution 8 BD� � B @ B �E=	F �?�54�! B � � in Eq.(16b) has a form

analogous to the bounce and gyro contributions, as opposed to the scaling 8 B�� =	F
found in Refs. 3,4, noted in Sec. I. In that work, the term 
 B

� � 
 was neglected in their

counterpart of kinetic equation (4). Since ! B ) �A& 
 B , that work is accordingly done

in the limit of very large superbanana width ! B � � � � ��� � [but ! B � � � �K� � � � � ,
as before]. In that limit,

9 �B � 9 �� ��� B � equals 0 (1) for � � � �0�K� � � , and one finds

� � B �'@ 1 ��@ � ��@ B �.� � � @ 1 ��� � @ � � =	F , yielding the limit 8 B � =	F found in Refs. 3,4,

instead of the � 1 ; � ; B � � form given in Eq.(16b) above.

The ZF time evolution as the successive shielding mechanisms set in is thus as

follows. [The longer-time, diffusive ZF evolution is discussed in Sec. IV.] For times

short compared to a gyroperiod ( � � 
 � J1 ), none of the 3 shielding mechanisms has

time to be established. For 
 � J1 � � � 
 � J� , the classical polarization term 8(1 � @ 1
begins to shield ZF potential � � , while the gyrophase-dependent ( � 1

�� � ) portions of

the ballistic term in Eq.(11) phase mix away. This very early phase is not captured by

gyrokinetic simulations, which carry no gyrophase dynamics. An analogous, bounce-

related phase is then entered for 
 � J� � � � 
 � JB , in which the additional bounce-

shielding term 8 � � � � @ � produces a further damping of � � , superposed on which are

oscillations at � ) 
 � from the � �
���� ballistic terms, which phase mix away, as

seen in simulations.3,4 If the low-frequency ( � � 
 B ) portion of the ZF source �/� � �
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is dominant, then in the interval 
 � JB � � , the drift contribution 8(B�� � B @ B establishes

itself, further damping the ZF to its shielded value.

The expressions given thus far have assumed very low collisionality, � 4 � 
 B .
Such an ordering pertains to helically–trapped particles in the so-called “superbanana

regime”,15,16 with �#4 � �"F � ��&��
�5H�F"� , the frequency for � � � particles to scatter

out of a ripple well. Ions may satisfy such an ordering for realistic parameters. For

electrons, being much more collisional, this is less common, but can occur for very

large 
 B � , such as sometimes produced at the electron root.17 More typically, elec-

trons collisionally detrap having completed only a radial excursion � 
 B�� � � � % &��"F
smaller than their full superbanana excursion ! B � � � % & 
 B , producing transport in the

�
&�� regime.18,19 In this case the electron contribution to 8�B will be reduced. Mathemat-

ically, increasing �
4 in Eq.(12) broadens the nearby resonances at successive values of

� B , for each value of ��� 1 ��� � � . When �#4 becomes larger than � � B 
 B (where as above,

� � B ) � B ), then the resonances add to form a single ��� 1 ��� � � resonance, and as in the

case of � � 
 B , the � B resonances may be summed over, eliminating the
9 �
 
 factor.

[An analogous coalescence of � � -resonances may be expected at still higher � 4 , where

�#4 becomes larger than 
 � . In this case, the separate � � resonances coalesce, removing

the
9 �
�� factor, and the bounce contribution 8 �

to 8 .]

In Ref. 5 the “time-dependent viscosity” is computed in the �
&�� and banana

regimes. In the moment method formulation of collisional transport used there, the ra-

dial fluxes ��� giving
9 4 � � � �*��� � in Eq.(1b) are proportional to the averaged toroidal

viscosity � � % � � ��� � (with � the viscosity tensor). Thus, in that formal approach, the

polarization contributions to
9 4 , corresponding to the term in � in Eq.(1b), are those

coming from the high-frequency limit of � , and so of perturbed distribution function

�
" . In the linear-response approach adopted in Refs. 3,4 and the present work, the

same �#" instead is used to determine the dielectric response � .
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The bounce-averaged kinetic equation used in Ref. 5 may be written

�
% �
" � � � �
 � 4,"-� ��� �#" � (17)

which may be obtained from Eq.(4) here, but replacing source term � "�� there with

collision term � �
" , and neglecting the bounce-average of the convective term !��� ,
valid in the �
&�� regime. (Here, � �
 is the bounce-averaged radial drift velocity.) In

the low-frequency limit,
�
% �
" is neglected in comparison with � �
" , and (17) re-

duces to the usual equation used to compute �#" and the flux in the �
&�� regime. For

the high-frequency limit, � �
" is instead neglected, and �#" has essentially the same

form as at low-frequency, but with ��F replaced by a flow-damping rate � , i.e., with

� �#" � � �
F
�
" replaced by
�
% �
" � ���
" . These low- and high-frequency limits

are both captured by the aa-solution �
"
�

obtained as in Eq.(5), dropping the source

and initial-value terms there. Taking the gyro- and bounce-averaged portions of this

( � 1 ; � � � ), we write � �
 � � B � � ��� ���
	
�� J � 
	
 ����� ��� � B � B � , with � 
	
 � � � � 
	
 real, one

has �
" 
�
 � � 0 � � 
	
 � 4�"$� , with �#4 � �
F in
0 � as defined following Eq.(5). Taking

� � ��� , and the lowest nonvanishing drift harmonic ( � B �	� � ) for simplicity, gives

�
" � � J
� 4,"-�'� � � 
 & � 
 B � ���
� � �"F"�  � � � � � , where � J � � � % &
� . In the �
&�� regime, 
 B is

neglected in the denominator, and this expression approximates the form obtained in

Ref. 5 combining its high ( ��F � � ) and low ( � � � ) results. This form is also valid

in the lower- � superbanana regime considered above, and is readily generalized to one

keeping all drift-harmonics � B .
One may also consider the effect on � or 8 of techniques developed to minimize

stellarator nc transport. It has been argued3,20–22 that neoclassically-optimized stel-

larators should also have lower turbulent transport, due to less damping of ZFs. The

basic idea of most nc optimization techniques has been to reduce ripple transport by

reducing ! B ��� � % & 
 B , either by diminishing the radial drift velocity amplitude � � % , or

by enhancing the poloidal precession frequency 
 B .1 One sees from the above expres-



16

sions for � � B , characterized by the argument J� ��� �B � � J� � �4 � ! �B � , that this is just what is

needed to diminish the low- � shielding from 8�B .
One notes that associated with each of the 3 polarization contributions in Eq.(16b)

is a collisional (classical+nc) transport mechanism: the gyromotion producing the

classical polarization term 8 1 also gives rise to classical transport, the bounce motion

producing 8 �

gives rise to axisymmetric nc transport, and the drift motion yielding 8 B
also produces the “superbanana” branch of transport, dominant in conventional stel-

larators. As indicated above, for simplicity we have not included in the calculations

leading to Eqs.(15) and (16) two additional contributions, one coming from the radial

drift excursion ! B % made by � �>� particles in a nonsymmetric torus, and one from

the finite banana widths ! � F from � � � particles. Each of these makes a contribution

to the shielding from 8 , and also corresponds to a transport mechanism, the former to

the banana-drift branch of transport,7–9 and the latter to the nc transport in a straight

(helically symmetric) stellarator. Thus, instead of the 3 contributions to ZF shielding

in Eq.(16b), a full description would include 5, each corresponding to one of the 5

branches of collisional transport.1

The form of the polarization shielding contributions to 8 is close to the form of the

radial transport coefficient � for each mechanism. For each mechanism � , one may use

the heuristic form ��� �E= � �$4 � � � 
 � �7� , with = � the fraction of particles participating in

that mechanism, � 
 � the radial step in the random walk process, and � 4 � the effective

stepping frequency in that random walk. For example, for the axisymmetric banana

regime, one has = � � = % � H J'L �% , � 
 � � ! � � ��! 1 &5HKJ'L �% , and �#4 � � � % � � &5H % , yield-

ing the usual banana diffusion expression �
� � � � � � ! �1 H � L �% . For the �
&�� superbanana

regime, one has = � � = F � H J'L �F , � 
 � � � � % &��"F , and �#4 � � �"F � ��&5H�F . On the other

hand, the small-argument, low- � contribution to 8 in Eqs.(16) is 8�� � J� �(�4 �'!.�� � . We ap-

proximately include the � -dependence in 8�� described above by replacing ! � with � 
 �
(which, as discussed above, becomes less than ! � for larger � ), and a factor = � arises
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from doing the indicated average. We then have approximately 8 � � = � �?�54 � 
 � � � , and

thus 8 � � &"8 � �>� � � � & � � � � �$4 � &��$4 � � � . Therefore, taking � � 8 and � � � @ , one expects

the gyro- contribution 8 1 in Eqs.(16) to be smaller than the bounce contribution 8 �

,

because classical diffusion �C1 is subdominant to banana diffusion �
�

. Similarly, tak-

ing � � @ , � � � - , one expects the drift contribution 8 B to dominate 8 �

in Eq.(16b)

approximately when superbanana transport � B becomes large compared with �
�

.

The main goal of nc transport optimization has been to reduce � B below the anoma-

lous level � � �
, typically larger than �

�

by an order of magnitude. Using the above

relations, this yields the approximate criterion 8 B &"8 ���
� � � & � �

for acceptably low

8 B . However, since one expects � � �
to be an increasing function of 8 B due to reducing

ZFs, this criterion is somewhat indeterminate, requiring a specific description of this

functional dependence.

IV. STATISTICS OF ZF EVOLUTION

As noted in Sec. I the time evolution of the ZFs is governed by a Langevin-like

equation, given by inserting Eq.(1b) into (1a). In the � domain, this may be written

��� � � � � ��� � � � � � � � � � � � � � (18)

where � � � � � � � � � � � as before, � � � � � � �5��� &"� � � � , and � � � � � �
� ��� =
� & � � � � � . We analyze this for the longer-time diffusive behavior of

�
.

Assuming first that � � � � � � � is � -independent, then � � � � � � is also � -

independent, and in the time domain Eq.(18) reduces to a standard Langevin equation

for
�

,
�
%
� ������� � �

� ����� �#� � ����� � (19)

The source � � that drives the zonal flows is approximated as random. Thus, ensem-
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ble averaging (19), one has
�
% �
� � : � � � � �

� � : � (20)

If � � is sufficiently small compared to the inverse correlation time � � � �A& � � of � � ,
the short time response of

�
to � � is

� ����� � + %� � � � ��� � ��-$� � . Thus, ensemble averaging
�
%
� � , one finds

�
% �
� � � : � ��� � � + �� � -�� ��� � � � , where ���K� � � � � � � ������� � �0� � � � � :

is the correlation function for � � . Its Fourier transform is the spectral function � � � � � ,
and ��� � � ��� � ��� �.� . Thus the random force = � causes diffusion in

�
, with diffusion

coefficient � � � &
� . The corresponding pdf
� � � ����� for

�
obeys

�
%
� � � � �

�� � � � � � � � � � � � � � (21)

again satisfying Eq.(20), while � � � � : � + � � � - � obeys

�
% �
� � � : � � � � � � � � � � � � : � (22)

Fourier transforming this, one finds an expression for the spectrum in terms of the driv-

ing source � � � , � � � � � � � : � � � � & � �2��� � � � � � . Neglecting the restoring term predicts

a purely diffusive � � �"�0��� � : , increasing without bound, corresponding to � � �
� � � � : �
� � � &�� �2��� � . The restoring term removes the �A& � divergence for � � � � . In the steady

state, Eqs.(22) and (21) yield � � � � : � ��� � &
� � � , and
� � � � � � � ����� ��� � � � � &$��� � � .

Since � � ) � � J and ��� � ) � � � , one has � � � � : ) � � J . Thus, assuming the tur-

bulent forces = � driving the ZFs are unaffected, the larger � implied at low- � by the

drift-polarization shielding would reduce � � , but reduce the diffusion ��� � even more,

resulting in a smaller ZF amplitude � � � � J'L �: .

The flux through
�

space is represented in Eq.(21) as
� � � J� � �

� �
�
� � � �

� �
. A

cross field viscosity acting on
� �3�

flow could also be included with an additional

term in the flux,
� � � J� ���

� �
�
� � � �

��� � � ��� � .

We have seen in Sec. IV [e.g., Eqs.(16)] that � has an � -dependence, making

� � � -dependent as well, so the constant- � � Langevin treatment just given is only
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approximately valid. Eq.(18) is more easily treated in the � -domain. Solving it for� � � � , one finds an expression for its spectral function,

� � � � � �E� � � � ��&�� � � � � �� � � ��� � (23)

Taking the usual model for � � , � � � � �3� � � � � ����� � : ����� � � � � � � � � , one has � � � � � �
� �K� � �0��� � : ��� � &���� � �
� �(�� � � ��� . Because � �

� � � , the falloff with � of � � in Eq.(23) is

controlled by the factor � � �
� � �� � � ��� , and one may take � � � in the factor ���K� � �
there. Thus, � � � � � ����� � &�� � ��� � �� � � ��� , and

� � � � � ��� � � � - ��"� �,��� ����� � � �
� � � � �� � � �

� � � � ����� � � � � � � � �� � � � (24)

where the final form strictly holds only for � � independent of � . Setting � � � in this

expression recovers the steady-state result given above for � � � � : . The first form for

� � in Eq.(24) is valid for an � -dependent � � .

V. SUMMARY

In this work, we have used the action-angle formalism to study the shielding of

ZFs, obtaining general expressions for their polarization shielding, and the timescales

on which they develop. The expressions are valid for arbitrary radial excursion sizes

(gyroradius ! 1 , bounce/banana width ! � , and radial drift excursion ! B ) on each of the

3 timescales of the collisionless motion, and show that the drift polarization shielding

yields a contribution of a form analogous to those from shielding on the gyro- and

bounce- timescales, extending earlier results for this contribution, which can be the

dominant contribution to the polarization shielding.

The evolution of ZFs on a longer, diffusive timescale is governed by a Langevin-

like equation, with radial electric field
� 4A����� moving diffusively about roots

�
� of the

ambipolarity equation. The resultant probability distribution function is bounded, a
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balance between the turbulent fluctuations inducing diffusion, and the nc fluxes pro-

viding a restoring force to
� � � 4 � � � � � . Expressions for the restoring force, diffu-

sion coefficient, and steady-state distribution function have been obtained. The linear

polarization contributions enter into each of these. The larger drift-polarization shield-

ing predicted for stellarators should cause a smaller restoring force, weaker diffusion,

and smaller ZF amplitude � � � �KJ'L �: , assuming the turbulent forces = � are unchanged.

We have noted that each contribution 8�� (� � 8 ��@A��- ) to the shielding function 8
[Eq.(12), (15), or (16)] corresponds to a particular collisional transport mechanism,

and moreover, that the scalings and relative sizes of the 8 � are quite similar to those of

the radial transport coefficients � � . Thus, stellarators with neoclassically-optimized

designs (reduced �CB ) also have reduced drift-polarization shielding 8�B , and thus, a

larger ZF amplitude. Assuming the amplitude of the source [ �
�

in Eq.(11) or = �
in Eq.(1b)] is unchanged, this implies the tendency suggested in earlier work, that

neoclassically-optimized designs will have larger ZFs, and consequently lower turbu-

lent transport as well. However, such an assumption about the source has not yet been

demonstrated, and further study is needed to clarify the variation with machine design

of these source terms, and of the consequent level of turbulent transport.
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