Princeton Plasma Physics Laboratory

Zonal Flows in Toroidal Systems

H.E. Mynick and A.H. Boozer

Preprint
(March 2007)

Prepared for the U.S. Department of Energy under Contract DE-AC02-76CH03073.

Princeton Plasma Physics Laboratory Report Disclaimers

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

PPPL Report Availability

Princeton Plasma Physics Laboratory:

http://www.pppl.gov/techreports.cfm
Office of Scientific and Technical Information (OSTI):
http://www.osti.gov/bridge

Related Links:

U.S. Department of Energy

Office of Scientific and Technical Information
Fusion Links

Zonal flows in toroidal systems

H.E. Mynick ${ }^{a}$ and A.H. Boozer ${ }^{b}$
${ }^{a}$ Plasma Physics Laboratory, Princeton University
${ }^{b}$ Dept. of Applied Physics \& Mathematics, Columbia University

An analytic study of the shielding and time evolution of zonal flows in tokamaks and stellarators is presented, using the action-angle formalism. This framework permits one to solve the kinetic equation without expansion of that equation in small parameters of radial excursions and timescale, resulting in more general expressions for the dielectric shielding, and with a scaling extended from that in earlier work. From these expressions, it is found that for each mechanism of collisional transport, there is a corresponding shielding mechanism, of closely related form and scaling. The effect of these generalized expressions on the evolution and size of zonal flows, and their implications for stellarator design are considered.

I. INTRODUCTION

Since the early 1980s, a range of techniques for reducing the neoclassical (nc) transport in stellarators has been developed, ${ }^{1}$ reducing the nc flixes to levels subdominant to the turbulent fluxes over much of the plasma column, and a new generation of "transport-optimized" stellarator designs is now being implemented to test these techniques. As a result, new interest exists to also reduce the turbulent transport in stellarators. As for tokamaks, it is believed that an important mechanism for suppressing the turbulent fluxes in stellarators will be by having strong zonal fbws (ZFs), primarily poloidal $E \times B$ fbws due to a radially-varying electrostatic potential $\phi_{Z}(r, t)$ driven by the nonlinearities in the kinetic equation. It is thus of interest to understand how machine geometry will affect the strength of these fbws.

A calculation of the ϕ_{Z} produced for a given nonlinear source S for tokamaks has been given by Rosenbluth and Hinton ${ }^{2}$, and an analogous calculation for stellarators by Sugama and Watanabe. ${ }^{3,4}$ These are basically linear response calculations, computing the dielectric response \mathcal{D} in $k^{2} \phi_{Z}=4 \pi \delta \rho^{x t} / \mathcal{D}$, where $\delta \rho^{x t}$ is the external chargedensity perturbation, driven by the assumed nonlinear source, $\delta \rho^{x t} \sim \int d t S(t)$. In Ref. 2, \mathcal{D} is found to have a shielding contribution $\mathcal{D}^{g} \sim\left(k_{r} \rho_{g}\right)^{2}$ associated with the gyromotion (superscript g), corresponding to a "classical" polarization current $J^{p, g}$, and an analogous "nc", or "bounce" shielding $\mathcal{D}^{b} \sim F_{t}\left(k_{r} \rho_{b}\right)^{2}$ associated with the longer-timescale bounce motion (superscript b), with a corresponding bouncepolarization current $J^{p, b}$. (Here, k_{r} is the local radial wavevector of the ZF, ρ_{g} is the gyroradius, ρ_{b} is the banana width, and F_{t} is the fraction of toroidally-trapped particles.) In Ref. 3, it is found that for stellarators, there is a further contribution $\mathcal{D}^{d} \sim F_{h}$ due to motion on the still longer drift timescale (superscript d), which can appreciably modify this result. This term may in turn be associated with a drift polarization current $J^{p, d}$. (Here, $F_{h} \sim \epsilon_{h}^{1 / 2}$ is the fraction of helically-trapped particles.) As will be seen,
this form is one particular limit of the drift shielding natural to the ordering adopted in Refs. 2,3 and 4, generalized in this paper. A second formal approach applied to studying ZFs in stellarators is one using the "time-dependent viscosity". ${ }^{5}$ There, the kinetic equation is solved using a high- and low-frequency ordering, obtaining what is effectively the drift shielding contribution, in the " $1 / \nu$ " and banana regimes of stellarator transport. The results of both earlier lines of study are extended by the approach employed here ($c f$. Sec. III).

A formalism natural to treating particle motion on these different timescales, and in the relatively complex magnetic geometries of tokamaks and stellarators, is the "action-angle" (aa) formalism, originally formulated for tokamaks by Kaufman. ${ }^{6}$ In $i t$, one reparametrizes phase space points \mathbf{z} from the more directly physical set (\mathbf{r}, \mathbf{p}) of real-space position \mathbf{r} and conjugate momentum \mathbf{p} to $(\boldsymbol{\theta}, \mathbf{J})$, with \mathbf{J} the 3 invariant actions of the unperturbed motion and $\boldsymbol{\theta}$ their 3 conjugate angles. Using this formalism, solution of the kinetic equation can be carried out, and important quantities such as \mathcal{D} can be computed, without having to introduce expansions in small parameters of radial and time scale, such as the ratios of ρ_{g}, ρ_{b}, or radial drift excursion ("superbanana width") ρ_{d} to system size L, or the frequency ω_{Z} of the ZF perturbation to the characteristic frequencies $\Omega_{g, b, d}$ of the particle motion. The resultant expressions for important quantities emerge in a form which is almost as simple as the more familiar forms for an unmagnetized homogeneous plasma. (Approximations may then be made in the description of the orbit, radial structure of the eigenmodes, and evaluation of integrals involving them.) The perspicuity of the aa expression for \mathcal{D} permits one to more readily see parallels which exist among the different timescales, as will be seen.

The dielectric shielding computed here and other mechanisms affecting ZFs come together in the time evolution equation for the flux-surface averaged radial electric field $E_{r} \equiv\langle\nabla r \cdot \mathbf{E}\rangle$, obtained from the surface average of Ampere's law, plus an
expression for the surface-averaged radial current J_{r},

$$
\begin{align*}
\partial_{t} E_{r} & =-4 \pi J_{r} \tag{1}\\
J_{r} & =(4 \pi)^{-1} \chi \partial_{t} E_{r}+\sigma\left(E_{r}-E_{a}\right)+F_{S} / B .
\end{align*}
$$

The first term in J_{r}, proportional to the time derivative of E_{r}, represents the polarization current J^{p}, with χ containing the dielectric shielding contributions, the second term represents the nonambipolar radial current due to nc transport, where $E_{a}=-\left\langle\nabla r \cdot \nabla \Phi_{a}\right\rangle$ is the ambipolar value at which the ion and electron transport fluxes are equal, and F_{S} is the force, here assumed random, exerted by the turbulence within a magnetic surface normal to the magnetic field, which acts as a source driving E_{r}. Using Eq.(1b) in (1a) yields a Langevin-like equation, with drive F_{S}, and restoring term σE, where $E \equiv\left(E_{r}-E_{a}\right)=-\left\langle\nabla r \cdot \nabla \phi_{Z}\right\rangle$. Neglecting this latter term, as in the qualitative discussion in Ref. 2, results in the ensemble average $\left\langle E^{2}\right\rangle_{p}(t) \equiv \int d E p(E, t) E^{2}$ increasing without bound with t, corresponding to a $1 / \omega$ divergence as $\omega \rightarrow 0$ in the spectral function $S^{E}(\omega) \equiv\left\langle E^{2}\right\rangle_{p}(\omega)$. [Here, $p(E)$ is the probability distribution function (pdf) for E.] As discussed in Sec. IV, refining this picture by including this term removes the divergence, resulting in a process where $E_{r}(t)$ evolves diffusively about $E_{r}=E_{a}$, reaching a bounded steady-state pdf.

In Sec. II, the aa formalism is used to obtain general expressions for the linear response, with $(\boldsymbol{\theta}, \mathbf{J})$ uncommitted to any particular magnetic geometry. In Sec. III this general form is specialized to toroidal geometries, and expressions for \mathcal{D} and the response equation determining the size of ϕ_{Z} are obtained, valid for arbitrary ratios of $\rho_{g, b, d} / L$. These are then specialized to find special limits of the general expressions, and some of the results of earlier work are recovered, along with results in additional physically interesting limits. A close correspondence is found to exist between each collisional transport mechanism and a contribution to the polarization shielding. In Sec. IV we analyze the statistics of the ZF time evolution implied by Eqs.(1). In

Sec. V we summarize the results of the preceding sections.

II. ACTION-ANGLE FORMALISM

As noted in Sec. I, in the aa formalism one parametrizes phase points \mathbf{z} with the 3 invariant actions \mathbf{J} of the unperturbed motion and their 3 conjugate angles $\boldsymbol{\theta}$. The collisionless motion is governed by a Hamiltonian $H(\mathbf{z}, t)=H_{0}(\mathbf{J})+h(\mathbf{z}, t)$, with unperturbed and perturbing parts H_{0} and h. Here we consider electrostatic perturbations only, $h(\mathbf{z}, t)=e \delta \phi(\mathbf{r}(\mathbf{z}), t)$. The key feature of aa variables is that they make the description of particle motion very simple. Hamilton's equations are:

$$
\begin{align*}
\dot{\boldsymbol{\theta}} & =\partial_{\mathbf{J}} H=\boldsymbol{\Omega}(\mathbf{J})+\partial_{\mathbf{J}} h \simeq \boldsymbol{\Omega}(\mathbf{J}) \tag{2}\\
\dot{\mathbf{J}} & =-\partial_{\boldsymbol{\theta}} h=-i \sum_{\mathbf{l}} \mathbf{l}_{\mathbf{l}}(\mathbf{J}, t) \exp (i \mathbf{l} \cdot \boldsymbol{\theta}), \tag{3}
\end{align*}
$$

where $\partial_{\mathbf{J}}\left(\partial_{\boldsymbol{\theta}}\right)$ denotes a gradient in $\mathbf{J}(\boldsymbol{\theta})$-space, $\boldsymbol{\Omega}(\mathbf{J}) \equiv \partial_{\mathbf{J}} H_{0}$, and \mathbf{l} is the 3component vector index, specifying the harmonic of each component of $\boldsymbol{\theta}$ in the Fourier decomposition $h(\mathbf{z})=\sum_{\mathbf{l}} h_{\mathbf{l}}(\mathbf{J}) \exp (i \mathbf{l} \cdot \boldsymbol{\theta})$.

The Vlasov equation may be written

$$
\begin{equation*}
\left(\partial_{t}+\hat{H}_{0}\right) \delta f(\mathbf{z}, t)=-\delta \dot{\mathbf{J}} \cdot \partial_{\mathbf{J}} f_{0}+S(\mathbf{z}, t) f_{0} \tag{4}
\end{equation*}
$$

where $\hat{H}_{0} \equiv\left\{, H_{0}\right\}=\boldsymbol{\Omega} \cdot \partial_{\boldsymbol{\theta}}$, with $\{$,$\} Poisson brackets, and we write distribution$ function $f(\mathbf{z}, t)=f_{0}+\delta f$, with $f_{0}(\mathbf{J})$ the unperturbed portion, satisfying $\hat{H}_{0} f_{0}=0$, and $\delta f(\mathbf{z}, t)$ the perturbed portion. Following Refs. 2,3, we take the nonlinear term $-\{\delta f, h\}$ equal to a specified source function $S(\mathbf{z}, t) f_{0}$.

Laplace transforming in time and Fourier transforming in $\boldsymbol{\theta}$, one obtains

$$
\begin{equation*}
G_{0}^{-1} \delta f_{\mathbf{l}}(\mathbf{J}, \omega)=i \mathbf{l} \cdot \partial_{\mathbf{J}} f_{0} h_{\mathbf{l}}(\mathbf{J}, \omega)+\delta f_{\mathbf{l}}(\mathbf{J}, t=0)+S_{\mathbf{l}}(\mathbf{J}, \omega) f_{0}, \tag{5}
\end{equation*}
$$

with inverse propagator $G_{0}^{-1} \equiv\left(-i \omega+i \mathbf{l} \cdot \Omega+\nu_{f}\right)$, in which we include an effective damping rate ν_{f}, to later consider the effect of collisions, which goes to a positive
infinitessimal ϵ in the purely collisionless case. Eq.(5) is readily solved for $\delta f_{1}(\omega)$, and the charge density at observation point \mathbf{x} is then computed via (now showing species label s) $\delta \rho_{s}(\mathbf{x})=\int d \mathbf{z} \rho(\mathbf{x} \mid \mathbf{z}) \delta f_{s}(\mathbf{z})$, where $\rho(\mathbf{x} \mid \mathbf{z}) \equiv e_{s} \delta(\mathbf{x}-\mathbf{r}(\mathbf{z}))$ is the charge density kernel, e_{s} is the species charge, and $\delta()$ is the Dirac delta function. This yields 3 contributions, labelled A, B, and C, corresponding to the 3 terms on the right side of (5):

$$
\begin{align*}
\delta \rho_{s A}(\mathbf{x}, \omega) & =\int d \mathbf{x}^{\prime} K_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}, \omega\right) \delta \phi\left(\mathbf{x}^{\prime}, \omega\right) \tag{6}\\
\delta \rho_{s, B+C}(\mathbf{x}, \omega) & =(2 \pi)^{3} \int d \mathbf{J} \sum_{\mathbf{l}} \rho_{\mathbf{l}}^{*}(\mathbf{x} \mid \mathbf{J}) G_{0}\left[\delta f_{s \mathbf{1}}(\mathbf{J}, t=0)+S_{s \mathbf{1}}(\mathbf{J}, \omega) f_{s 0}\right] .
\end{align*}
$$

$\delta \rho_{s A}$, proportional to h or $\delta \phi$, gives the self-consistent response of the plasma, with response kernel $K_{s} . \delta \rho_{s B}$, due to the initial conditions of δf, gives the transient ballistic response, and the third term, $\delta \rho_{s C}$, is due to the nonlinear drive.

The electrostatic counterpart of the response kernel obtained in Ref. 6 is given by

$$
\begin{align*}
K_{s}\left(\mathbf{x}, \mathbf{x}^{\prime}, \omega\right) & =(2 \pi)^{3} \int d \mathbf{J} \sum_{\mathbf{l}} \rho_{\mathbf{l}}^{*}(\mathbf{x} \mid \mathbf{J}) \frac{\mathbf{l} \cdot \partial_{\mathbf{J}} f_{s 0}}{\mathbf{l} \cdot \boldsymbol{\Omega}-\omega-i \nu_{f}} \rho_{\mathbf{l}}\left(\mathbf{x}^{\prime} \mid \mathbf{J}\right) \tag{7}\\
& =K_{s}^{a d}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+(2 \pi)^{3} \int d \mathbf{J} \sum_{\mathbf{l}} \rho_{\mathbf{l}}^{*}(\mathbf{x} \mid \mathbf{J}) \frac{\left.\omega \partial_{H_{0}} f_{s 0}+\mathbf{l} \cdot \partial_{\mathbf{J}}\right)_{H_{0}} f_{s 0}}{\mathbf{l} \cdot \boldsymbol{\Omega}-\omega-i \nu_{f}} \rho_{\mathbf{l}}\left(\mathbf{x}^{\prime} \mid \mathbf{J}\right)
\end{align*}
$$

In the second form here, we have separated out the (generalized) adiabatic term $K_{s}^{a d}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \equiv e_{s} \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \int d \mathbf{z} \rho(\mathbf{x} \mid \mathbf{z}) \partial_{H_{0}} f_{s 0}$, by giving $f_{s 0}$ an explicit dependence on $H_{0}(\mathbf{J})$, so that $\left.\partial_{\mathbf{J}} f_{s 0}\left(H_{0}(\mathbf{J}), \mathbf{J}\right)=\partial_{H_{0}} \boldsymbol{\Omega}+\partial_{\mathbf{J}}\right)_{H_{0}} f_{s 0}$, where the $\left.\partial_{\mathbf{J}}\right)_{H_{0}}$ in the second term means $\partial_{\mathbf{J}}$ at constant H_{0}. Specializing f_{0} to the local Maxwellian form

$$
\begin{equation*}
f_{M}(\mathbf{J}) \equiv \frac{n_{0}}{(2 \pi M T)^{3 / 2}} \exp \left[-\left(H_{0}-e \Phi_{a}\right) / T\right) \tag{8}
\end{equation*}
$$

where density n_{0}, ambipolar radial potential Φ_{a}, and temperature T are functions of the drift-averaged minor radius $r_{d}(\mathbf{J})$, and M is the particle mass, one has $\partial_{H_{0}} f_{s 0}=$ $-T_{s}^{-1} f_{s 0}$, and $K_{s}^{a d}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-1 /\left(4 \pi \lambda_{s}^{2}(\mathbf{x})\right) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$, with $\lambda_{s}^{2}(\mathbf{x}) \equiv T_{s} /\left(4 \pi n_{s 0} e_{s}^{2}\right)$ the square of the local Debye length.

III. TOROIDAL GEOMETRY

The expressions given thus far are valid for any system where the motion is "integrable", i.e., where a complete set \mathbf{J} of constants of the motion exists. We now specialize to toroidal geometries, including tokamaks and stellarators. Such a set J exists for systems with at least 1 symmetry direction, such as tokamaks and straight stellarators, manifested by their collisionless guiding-center orbits exactly closing on themselves in poloidal cross-section. An approximate set \mathbf{J} exists for those classes of toroidal stellarators whose ripple has sufficient symmetry that "superbanana" orbits (those ripple trapped during at least part of their orbit) approximately close on themselves. Since devices without this feature have poor confinement, this includes most stellarators of interest. We represent position in terms of flux coordinates $\mathbf{r}=(\psi, \theta, \zeta)$, where $2 \pi \psi$ is the toroidal flux within a flux surface, and θ and ζ are the poloidal and toroidal azimuths. In terms of these, the magnetic field may be written $\mathbf{B}=\nabla \psi \times \nabla \theta+\nabla \zeta \times \nabla \psi_{p}=\nabla \psi \times \nabla \alpha_{p}$, with $2 \pi \psi_{p}$ the poloidal flux, Clebsch angle $\alpha_{p} \equiv \theta-\iota \zeta$, constant along a field line, and $\iota \equiv q^{-1} \equiv d \psi_{p} / d \psi$ the rotational transform. α_{p} and momentum $(e / c) \psi$ form a canonically conjugate pair for motion perpendicular to the field line. It is also useful to define an average minor radius $r(\psi)$ by $\psi \equiv \bar{B}_{0} r^{2} / 2$, with $\bar{B}_{0} \equiv \bar{B}(r=0)$ the average magnetic field strength on axis. We consider toroidal systems with the nonaxisymmetric portion of magnetic field strength B dominated by a single helical phase $\eta_{0} \equiv n_{0} \zeta-m_{0} \theta$,

$$
\begin{equation*}
B(\mathbf{x})=\bar{B}(r)\left[1-\epsilon_{t}(r) \cos \theta-\delta_{h}(\mathbf{x}) \cos \eta_{0}\right] \tag{9}
\end{equation*}
$$

with ripple strength $\delta_{h}(\mathbf{x})$ allowed to vary slowly over a flux surface, with flux-surface average $\epsilon_{h}(r) \equiv\left\langle\delta_{h}\right\rangle$.

A suitable choice for the aa variables is $\boldsymbol{\theta}=\left(\theta_{g}, \theta_{b}, \bar{\alpha}_{p}\right), \mathbf{J}=\left(J_{g}, J_{b},(e / c) \bar{\psi}\right)$, with $J_{g} \equiv(M c / e) \mu$ the gyroaction, μ the magnetic moment, θ_{g} the gyrophase, describing
the fastest time scale of the motion, J_{b} the bounce action, θ_{b} its conjugate bounce phase, $\bar{\psi}$ the drift-orbit averaged value of ψ, and its conjugate phase $\bar{\alpha}_{p}$, the orbitaveraged Clebsch coordinate α_{p}, describing the slow, drift timescale. To make the periodicity of the drift angle 2π as for the other 2 phases, instead of $\left(\bar{\alpha}_{p},(e / c) \bar{\psi}\right)$ we use the closely related canonical pair $\left(\theta_{d}, J_{d}=(e / c) \bar{\psi}_{d}\right)$, with $\theta_{d} \equiv \bar{\alpha}_{p} /\left(1-\iota q_{m n 0}\right)$, $\bar{\psi}_{d} \equiv \bar{\psi}-\bar{\psi}_{p} q_{m n 0}$, where $q_{m n 0} \equiv m_{0} / n_{0}$. For typical parameters, $\iota q_{m n 0} \ll 1$, so that $\left(\theta_{d} \simeq \bar{\alpha}_{p}, \bar{\psi}_{d} \simeq \bar{\psi}\right)$. Correspondingly one has the characteristic frequencies of motion $\Omega \equiv\left(\Omega_{g}, \Omega_{b}, \Omega_{d}\right)$, with gyrofrequency Ω_{g}, bounce frequency Ω_{b}, and drift frequency Ω_{d}, and vector index $\mathbf{l} \equiv\left(l_{g}, l_{b}, l_{d}\right)$.

We adopt an eikonal form for the structure of any mode a,

$$
\begin{equation*}
\phi_{a}(\mathbf{x})=\bar{\phi}_{a}(r) \exp i \eta_{a}(\mathbf{x}) \tag{10}
\end{equation*}
$$

with wave phase $\eta_{a}(\mathbf{x}) \equiv\left[\int^{r} d r^{\prime} k_{r}\left(r^{\prime}\right)+m \theta+n \zeta\right]$, and slowly-varying envelope $\bar{\phi}_{a}(r)$, assumed roughly constant over the radial excursion of a particle. Thus, mode a has local wavevector $\mathbf{k} \equiv \nabla \eta_{a}=k_{r} \nabla r+m \nabla \theta+n \nabla \zeta$. For the ZF potential $\phi_{a} \rightarrow \phi_{Z}$, one has $(m, n)=(0,0)$.

Using form (10), one may evaluate the expression
$h_{\mathbf{l} a}(\mathbf{J}) \equiv(2 \pi)^{-3} \oint d \boldsymbol{\theta} \exp -i \mathbf{l} \cdot \boldsymbol{\theta} h_{a}(\mathbf{z})$ for the "coupling coefficient" of mode a to particles with actions \mathbf{J}. Writing $\eta_{a}(\mathbf{r}(\mathbf{z}))=\bar{\eta}_{a}+\delta \eta_{a}$, with $\delta \eta_{a}$ the portion of η_{a} oscillatory in $\boldsymbol{\theta}$ (so having zero $\boldsymbol{\theta}$ average), one finds $h_{\mathbf{l} a}(\mathbf{J})=e_{s} \bar{\phi}_{a}(\bar{r}) \exp \left(i \bar{\eta}_{a}\right) G_{\mathbf{l a}}(\mathbf{J})$, with $G_{\mathbf{1} a} \equiv(2 \pi)^{-3} \oint d \boldsymbol{\theta} \exp -i \mathbf{l} \cdot \boldsymbol{\theta} \exp i \delta \eta_{a}(\mathbf{z})$ the "orbit-averaging factor". From Parseval's theorem one may show these satisfy the important relation $1=\sum_{\mathbf{l}}\left|G_{\mathbf{l}}\right|^{2}$, generalizing the much-used identity for Bessel functions $1=\sum_{l} J_{l}^{2}(z)$.

Multiplying Poisson's equation $-\nabla^{2} \phi_{a}(\mathbf{x}, \omega)=4 \pi \sum_{s} \delta \rho_{s}(\mathbf{x}, \omega)$ by $\phi_{a}^{*}(\mathbf{x}, \omega)$, putting Eq.(10) in Eqs.(6) and (7) and using $d^{6} \mathbf{z}=d \boldsymbol{\theta} d \mathbf{J}=d \mathbf{r} d \mathbf{p}$, one obtains the radial integral of the radially-local response equation $\mathcal{E}(r)$:
$\int d r V^{\prime} \bar{\phi}_{a}^{*}(r) \mathcal{E}(r)$, with \mathcal{E} given by

$$
\begin{equation*}
k^{2} \mathcal{D}(\mathbf{k}, \omega) \frac{e_{i} \bar{\phi}_{a}(r)}{T_{i}}=\sum_{s} \lambda_{s i}^{-2} \sum_{\mathbf{l}}\left\langle G_{1 a}^{*}(\mathbf{J}) \frac{i\left[\delta f_{s \mathbf{1}}(t=0) / f_{s 0}+S_{s \mathbf{1}}(\omega)\right]}{\left(\omega-\mathbf{l} \cdot \boldsymbol{\Omega}+i \nu_{f s}\right)}\right\rangle \tag{11}
\end{equation*}
$$

Here, $V^{\prime} \equiv d V / d r$ is the radial derivative of the volume $V(r)$ enclosed by the flux surface r or $\psi, \lambda_{s i}^{2} \equiv T_{i} /\left(4 \pi n_{s 0} e_{s} e_{i}\right), k^{2} \equiv|\mathbf{k}|^{2}$, and $\langle\ldots\rangle \equiv$ $(2 \pi)^{-2} \oint d \theta d \zeta \int d \mathbf{p}\left(f_{0} / n_{0}\right) \ldots$ is the flux surface and momentum-space average over the unperturbed distribution function f_{0}. Dielectric function \mathcal{D} is given by $\mathcal{D}(\mathbf{k}, \omega) \equiv$ $1+\sum_{s} \chi_{s}(\mathbf{k}, \omega)$, with susceptibility $\chi_{s}(\mathbf{k}, \omega)=\left(k \lambda_{s}\right)^{-2} g_{s}(\mathbf{k}, \omega)$, and

$$
\begin{equation*}
\left.g_{s}(\mathbf{k}, \omega)=1-\left.\sum_{\mathbf{l}}\langle | G_{\mathbf{1} a}(\mathbf{J})\right|^{2} \frac{\omega-\omega_{* s}^{f}}{\omega-\mathbf{l} \cdot \boldsymbol{\Omega}+i \nu_{f s}}\right\rangle \tag{12}
\end{equation*}
$$

Here, $\omega_{*}^{f} \equiv \omega_{*}\left[1+\eta\left(u^{2}-3\right) / 2\right]$, with $\omega_{*} \equiv-k_{\alpha} c T /\left(e B L_{n}\right)$ the diamagnetic drift frequency, $\eta \equiv d \ln T / d \ln n, u \equiv v / v_{s}$ the particle velocity, normalized to the thermal speed $v_{s}, k_{\alpha} \equiv l_{d} / r$, and $L_{n}^{-1} \equiv-\partial \ln n_{0} / \partial r$. As usual, the 1 in \mathcal{D} is the vacuum term from the left side of the Poisson equation, negligible in comparison with the χ_{s}, which correspond to $\delta \rho_{s A}$ in Eq.(6). The 1 in g_{s} comes from the adiabatic term $K_{s}^{a d}$ in Eq.(7). The 2 terms on the right side of Eq.(11) arise from $\delta \rho_{s, B+C}$. This response equation is of essentially the same form as that obtained in Refs. 2 and 3, or of any linear response calculation. The differences lie in the form of the dielectric \mathcal{D}, and in the use of the aa form, which facilitates dealing with the range of timescales and of orbit-averaging effects in complex geometries in a general manner.

We now evaluate the G_{1}. As discussed in previous applications ${ }^{10-14}$ of the aa framework, to evaluate these one needs a description of the particle position $\mathbf{r}(\mathbf{z})$, to evaluate the required $\boldsymbol{\theta}$ integrations. The 3 trapping states (passing, toroidally-trapped, and helically-trapped) are indicated by trapping index $\tau=p, t$ and h, respectively. Then an approximate description of $\mathbf{r}(\boldsymbol{\theta})$ is

$$
\begin{equation*}
r=r_{d}+\delta r^{(d)}\left(\theta_{d}\right)+\delta r^{(b)}\left(\theta_{b}\right)+\delta r^{(g)}\left(\theta_{g}\right) \tag{13}
\end{equation*}
$$

$$
\begin{aligned}
& \theta=\sigma_{h} \theta_{d}+\sigma_{p} \theta_{b}+\delta \theta^{(b)}\left(\theta_{b}\right)+\delta \theta^{(g)}\left(\theta_{g}\right) \\
& \zeta=\zeta_{d 0}+\left(\sigma_{h} q_{m n 0}+\sigma_{t p} q\right) \theta_{d}+\delta \zeta^{(b)}\left(\theta_{b}\right)+\delta \zeta^{(g)}\left(\theta_{g}\right)
\end{aligned}
$$

where we use trapping-state "switch" σ_{τ} to describe the behavior for different states τ in a single expression: $\sigma_{\tau}=1$ for a particle in trapping-state τ, and 0 otherwise. Thus, $1=\sigma_{h}+\sigma_{t}+\sigma_{p}$. Also, $\sigma_{t p} \equiv \sigma_{t}+\sigma_{p}$ equals 1 if a particle has $\tau=t$ or p, and 0 for $\tau=h$.

Eqs.(13) manifest 2 kinds of dependence on the phases $\theta_{i}(i \rightarrow g, b, d)$, a secular, linear dependence, and oscillatory dependences, held in functions $\delta x^{(i)}\left(\theta_{i}\right)$, with $x \rightarrow$ r, θ, ζ. Here we approximate each of the latter by a harmonic, (co)sinusoidal form, e.g., $\delta r^{(i)}\left(\theta_{i}\right) \simeq \rho_{i} \cos \theta_{i}$, with amplitude ρ_{i}. This is a very good approximation for gyromotion (with ρ_{g} the gyroradius), and a good approximation for bounce motion not too near a trapping-state boundary (with ρ_{b} the banana width). For simplicity, we assume that superbanana ($\tau=h$) particles do not detrap, but precess poloidally dominated by $E \times B$ poloidal drift, $\Omega_{d} \simeq \Omega_{d E}$, which is roughly constant on a given orbit, while drifting radially as $v_{B t} \sin \theta$, as usual. [Here, $v_{B t}=\epsilon_{t} \mu \bar{B} /\left(M \Omega_{g} r\right)$.] This produces superbananas which are displaced circles, with superbanana width $\rho_{d}=$ $\sigma_{h} v_{B t} / \Omega_{d E}$, a common approximation in stellarator transport theory. The radial drift motion is thus also harmonic in θ_{d}. For simplicity, we have neglected from this orbit description a second type of superbanana width, the finite radial excursions $\rho_{d t}$ made by $\tau=t$ particles on the drift timescale, which give rise to the "banana-drift" transport branch. ${ }^{7-9}$ Inclusion of this additional mechanism presents no difficulty for the basic formalism.

The h_{1} or G_{1} have been evaluated previously ${ }^{10,13,14}$ for perturbations with nonzero m and n, but neglecting the effect of finite ρ_{d}. For the current application to ZFs, we keep finite ρ_{d}, but set $m=0=n$, making only the first of Eqs.(13) necessary. Using
the Bessel identity $J_{l}(z)=(2 \pi)^{-1} \oint d \theta e^{-i l \theta} e^{i z \sin \theta}$ and Eq.(10), one finds

$$
\begin{equation*}
G_{\mathbf{l} a}(\mathbf{J})=J_{l_{g}}\left(z_{g}\right) J_{l_{b}}\left(z_{b}\right) J_{l_{d}}\left(z_{d}\right) e^{-i \xi_{a}} \tag{14}
\end{equation*}
$$

with $z_{g, b, d}=k_{r} \rho_{g, b, d}$, and ξ_{a} a phase factor. Since G_{1} appears only as $\left|G_{\mathbf{1}}\right|^{2}$ in the theory here, the value of ξ_{a} does not enter.

For drift turbulence, which is driving the ZFs, one typically has $k_{\perp}^{d} \rho_{g i} \sim 0.3$, and frequencies $\omega_{d} \sim \omega_{*}\left(k_{\perp}^{d}\right)$. For ZFs, one has much smaller k_{r} and frequencies ω_{Z}, down by an order of magnitude, perhaps by the "mesoscale" ratio, $k_{r}^{Z} / k_{\perp}^{d} \sim \sqrt{\rho_{g i} / a}$. Thus, for both species, one has the ordering $\omega_{Z}, \Omega_{d} \ll \Omega_{b} \ll \Omega_{g}$, and $z_{g}<z_{b}<1$. For the moment we leave the relative sizes of ω_{Z} and Ω_{d} unspecified. Also, one may have $z_{d} \gtrsim 1$ for trapped particles, for ions and also, notably, for electrons, as noted in Ref. 3. Thus, as opposed to tokamaks, in stellarators electrons can participate in orbit averaging, because their radial excursions on the drift timescale can be comparable with those of ions.

Because $z_{g, b} \ll 1$, the factors $J_{l_{g, b}}^{2}$ in $\left|G_{\mathbf{l}}\right|^{2}$ in Eq.(12) are negligible unless $l_{g, b}=0$, reducing the triple sum there to a single sum $\sum_{l_{d}}$. In that sum, if one has $\omega \gg \Omega_{d}$, then over the l_{d}-range $\Delta l_{d} \sim z_{d}$ over which $J_{l_{d}}^{2}$ in Eq.(12) is appreciable the integrand does not change greatly, so that one can perform the summation, using the identity $\sum_{l} J_{l}^{2}=1$, which eliminates the $J_{l_{d}}^{2}$ factor, leaving only the factor $J_{l_{g}}^{2} J_{l_{b}}^{2}$. In the other limit $\omega \ll \Omega_{d}$, the sum is dominated by the $l_{d}=0$ term, and the effect of $J_{l_{d}}^{2}$ survives. Thus, for $\omega \ll \Omega_{d}$, all of gyro-, bounce- and drift-averaging contribute. Neglecting $\nu_{f s}$, Eq.(12) becomes

$$
\begin{align*}
& g_{s}(\mathbf{k}, \omega) \simeq 1-\Lambda_{0 b}\left(b_{g}, b_{b}\right),\left(\omega \gg \Omega_{d}\right) \tag{15}\\
& g_{s}(\mathbf{k}, \omega) \simeq 1-\Lambda_{0 d}\left(b_{g}, b_{b}, b_{d}\right),\left(\omega \ll \Omega_{d}\right)
\end{align*}
$$

where $\Lambda_{0 d}\left(b_{g}, b_{b}, b_{d}\right) \equiv\left\langle J_{g}^{2} J_{b}^{2} J_{d}^{2}\right\rangle, \Lambda_{0 b}\left(b_{g}, b_{b}\right) \equiv \Lambda_{0 d}\left(b_{g}, b_{b}, b_{d}=0\right) \equiv\left\langle J_{g}^{2} J_{b}^{2}\right\rangle, J_{g, b, d}^{2} \equiv$ $J_{0}^{2}\left(z_{g, b, d}\right), b_{g} \equiv k_{r}^{2} \rho_{g T}^{2}, b_{b}=b_{g} q^{2} / \epsilon_{t}^{1 / 2}$, and $b_{d} \equiv k_{r}^{2} \rho_{d T}^{2}$, with $\rho_{g T} \equiv v_{T} / \Omega_{g}, v_{T}$ the
species thermal velocity, and $\rho_{d T} \equiv \rho_{d}\left(v=v_{T}\right) \propto v_{T}^{2}$.
The physics represented by Eqs.(15) is that if the the ZF drive in a stellarator has a time variation slow compared with $\Omega_{d}[c f$. Eq.(15b)], $\tau=h$ particles have time to partially shield out ϕ_{Z} by drifting along their collisionless superbanana orbits, an averaging mechanism not available to tokamaks. If the ZF drive varies rapidly compared with Ω_{d} [Eq.(15a)], this new mechanism for radial averaging is lost. Eq.(15a) also holds in the tokamak limit $\left(\epsilon_{h} \rightarrow 0\right)$, where one has $z_{d}=0$. And in the cylindrical limit $\left(\epsilon_{t} \rightarrow 0\right)$ of a large-aspect ratio tokamak, z_{b} vanishes, and the Λ 's in Eqs.(15) are replaced by the more familiar $\Lambda_{0}\left(b_{g}\right) \equiv \Lambda_{0 b}\left(b_{g}, b_{b}=0\right) \equiv\left\langle J_{g}^{2}\right\rangle=I_{0}\left(b_{g}\right) e^{-b_{g}}$, with $I_{0}(b)$ the modified Bessel function of the first kind. For $b_{g}<1$, one has $\Lambda_{0}\left(b_{g}\right) \simeq 1-b_{g}$, and thus $g_{s} \simeq b_{g}$, the contribution from the classical polarization current $J^{p, g}$. The functions $\Lambda_{0 b}$ and $\Lambda_{0 d}$ succinctly describe the additional contributions from finite b_{b}, corresponding to shielding due to the "bounce" polarization current $J^{p, b}$ computed in Refs. 2 and 3, and from finite b_{d}, corresponding to a "drift" polarization current $J^{p, d}$, extending the result in Ref. 3, as noted in Sec. I.

We approximately evaluate $\Lambda_{0 b}$ and $\Lambda_{0 d}$ using the small-argument expansion $J_{0}(z) \simeq 1-(z / 2)^{2}$ for the Bessel functions. (While $z_{g, b}<1$ is a good assumption, one may have $z_{d}<1$ or $z_{d} \gtrsim 1$. The above expressions for $\Lambda_{0 d}, \Lambda_{0 b}$ are valid for arbitrary values of $z_{g, b, d}$. First taking $z_{d}<1$, one has $\Lambda_{0 d}\left(b_{g}, b_{b}, b_{d}\right) \simeq$ $1-\frac{1}{2}\left\langle z_{g}^{2}\right\rangle-\frac{1}{2}\left\langle z_{b}^{2}\right\rangle-\frac{1}{2}\left\langle z_{d}^{2}\right\rangle$. Evaluating these averages, one finds $\frac{1}{2}\left\langle z_{g}^{2}\right\rangle=b_{g}$, $\frac{1}{2}\left\langle z_{b}^{2}\right\rangle=c_{b} b_{b}$, and $\frac{1}{2}\left\langle z_{d}^{2}\right\rangle=c_{d} b_{d}$. Here, $c_{b} \simeq 3 \sqrt{2} / \pi \simeq 1.4$, and $c_{d} \simeq(15 / 2) F_{h}$, with $F_{h}=(2 / \pi) \sqrt{2 \epsilon_{h}}$ the fraction of particles with $\tau=h$, here assuming ripple strength δ_{h} is constant on a flux surface. The factor c_{b} has been evaluated here for a tokamak, approximately agreeing with the value 1.6 found in Ref. 2. Its value for a stellarator is computed in Ref. 3. Coefficient c_{d} is proportional to F_{h} because only $\tau=h$ particles have superbanana excursions ρ_{d}, and the large factor $15 / 2$ there enters
because of the strong energy weighting from $\rho_{d}^{2} \propto v^{4}$. Eqs.(15) then yield

$$
\begin{align*}
& g_{s}(\mathbf{k}, \omega) \simeq b_{g}+c_{b} b_{b},\left(\omega \gg \Omega_{d}\right), \tag{16}\\
& g_{s}(\mathbf{k}, \omega) \simeq b_{g}+c_{b} b_{b}+c_{d} b_{d},\left(\omega \ll \Omega_{d}\right) .
\end{align*}
$$

Assuming the source terms on the right side of Eq.(11) remain unchanged, one sees that ZFs in a stellarator with $\omega_{Z} \ll \Omega_{d}$ will be appreciably reduced below those in a stellarator with $\omega_{Z} \gg \Omega_{d}$ or in a tokamak, due to the addition contribution from $J^{p, d}$, to which not only ions, but also electrons, may contribute.

One notes that the drift contribution $g^{d}=c_{d} b_{d} \simeq F_{h}\left(k_{r} \rho_{d}\right)^{2}$ in Eq.(16b) has a form analogous to the bounce and gyro contributions, as opposed to the scaling $g^{d} \simeq F_{h}$ found in Refs. 3,4, noted in Sec. I. In that work, the term $\Omega_{d} \partial_{\theta_{d}}$ was neglected in their counterpart of kinetic equation (4). Since $\rho_{d} \sim 1 / \Omega_{d}$, that work is accordingly done in the limit of very large superbanana width $\rho_{d}(\tau=h) \rightarrow \infty\left[\right.$ but $\rho_{d}(\tau=t, p)=0$, as before]. In that limit, $J_{d}^{2} \equiv J_{0}^{2}\left(z_{d}\right)$ equals 0 (1) for $\tau=h(t, p)$, and one finds $\Lambda_{0 d}\left(b_{g}, b_{b}, b_{d}\right) \simeq 1-b_{g}-c_{b} b_{b}-F_{h}$, yielding the limit $g^{d}=F_{h}$ found in Refs. 3,4, instead of the $z_{g, b, d}<1$ form given in Eq.(16b) above.

The ZF time evolution as the successive shielding mechanisms set in is thus as follows. [The longer-time, diffusive ZF evolution is discussed in Sec. IV.] For times short compared to a gyroperiod ($t<\Omega_{g}^{-1}$), none of the 3 shielding mechanisms has time to be established. For $\Omega_{g}^{-1}<t<\Omega_{b}^{-1}$, the classical polarization term $g^{g} \simeq b_{g}$ begins to shield ZF potential ϕ_{Z}, while the gyrophase-dependent $\left(l_{g} \neq 0\right)$ portions of the ballistic term in Eq.(11) phase mix away. This very early phase is not captured by gyrokinetic simulations, which carry no gyrophase dynamics. An analogous, bouncerelated phase is then entered for $\Omega_{b}^{-1}<t<\Omega_{d}^{-1}$, in which the additional bounceshielding term $g^{b} \simeq c_{b} b_{b}$ produces a further damping of ϕ_{Z}, superposed on which are oscillations at $\omega \sim \Omega_{b}$ from the $l_{b} \neq 0$ ballistic terms, which phase mix away, as seen in simulations. ${ }^{3,4}$ If the low-frequency $\left(\omega<\Omega_{d}\right)$ portion of the ZF source $S(\omega)$
is dominant, then in the interval $\Omega_{d}^{-1}<t$, the drift contribution $g^{d} \simeq c_{d} b_{d}$ establishes itself, further damping the ZF to its shielded value.

The expressions given thus far have assumed very low collisionality, $\nu_{f}<\Omega_{d}$. Such an ordering pertains to helically-trapped particles in the so-called "superbanana regime", ${ }^{15,16}$ with $\nu_{f} \rightarrow \nu_{h} \equiv \nu /\left(2 \epsilon_{h}\right)$, the frequency for $\tau=h$ particles to scatter out of a ripple well. Ions may satisfy such an ordering for realistic parameters. For electrons, being much more collisional, this is less common, but can occur for very large $\Omega_{d E}$, such as sometimes produced at the electron root. ${ }^{17}$ More typically, electrons collisionally detrap having completed only a radial excursion $\Delta r_{d \nu} \simeq v_{B t} / \nu_{h}$ smaller than their full superbanana excursion $\rho_{d}=v_{B t} / \Omega_{d}$, producing transport in the $1 / \nu$ regime. ${ }^{18,19}$ In this case the electron contribution to g^{d} will be reduced. Mathematically, increasing ν_{f} in Eq.(12) broadens the nearby resonances at successive values of l_{d}, for each value of $\left(l_{g}, l_{b}\right)$. When ν_{f} becomes larger than $\Delta l_{d} \Omega_{d}$ (where as above, $\Delta l_{d} \sim z_{d}$), then the resonances add to form a single $\left(l_{g}, l_{b}\right)$ resonance, and as in the case of $\omega>\Omega_{d}$, the l_{d} resonances may be summed over, eliminating the $J_{l_{d}}^{2}$ factor. [An analogous coalescence of l_{b}-resonances may be expected at still higher ν_{f}, where ν_{f} becomes larger than Ω_{b}. In this case, the separate l_{b} resonances coalesce, removing the $J_{l_{b}}^{2}$ factor, and the bounce contribution g^{b} to g.]

In Ref. 5 the "time-dependent viscosity" is computed in the $1 / \nu$ and banana regimes. In the moment method formulation of collisional transport used there, the radial fluxes Γ_{s} giving $J_{r}=\sum_{s} e_{s} \Gamma_{s}$ in Eq.(1b) are proportional to the averaged toroidal viscosity $\left\langle\mathbf{B}_{t} \cdot \nabla \cdot \boldsymbol{\pi}\right\rangle$ (with $\boldsymbol{\pi}$ the viscosity tensor). Thus, in that formal approach, the polarization contributions to J_{r}, corresponding to the term in χ in Eq.(1b), are those coming from the high-frequency limit of π, and so of perturbed distribution function δf. In the linear-response approach adopted in Refs. 3,4 and the present work, the same δf instead is used to determine the dielectric response \mathcal{D}.

The bounce-averaged kinetic equation used in Ref. 5 may be written

$$
\begin{equation*}
\partial_{t} \delta f \simeq-\overline{\dot{r}} \partial_{r} f_{0}+C \delta f \tag{17}
\end{equation*}
$$

which may be obtained from Eq.(4) here, but replacing source term $S f_{0}$ there with collision term $C \delta f$, and neglecting the bounce-average of the convective term \hat{H}_{0}, valid in the $1 / \nu$ regime. (Here, $\overline{\dot{r}}$ is the bounce-averaged radial drift velocity.) In the low-frequency limit, $\partial_{t} \delta f$ is neglected in comparison with $C \delta f$, and (17) reduces to the usual equation used to compute δf and the flux in the $1 / \nu$ regime. For the high-frequency limit, $C \delta f$ is instead neglected, and δf has essentially the same form as at low-frequency, but with ν_{h} replaced by a fbw-damping rate γ, i.e., with $C \delta f \simeq-\nu_{h} \delta f$ replaced by $\partial_{t} \delta f \simeq \gamma \delta f$. These low- and high-frequency limits are both captured by the aa-solution δf_{1} obtained as in Eq.(5), dropping the source and initial-value terms there. Taking the gyro- and bounce-averaged portions of this $\left(l_{g, b}=0\right)$, we write $\bar{r}\left(\theta_{d}\right)=-i \sum_{l_{d}=1}^{\infty} v_{l_{d}} \exp \left(i l_{d} \theta_{d}\right)$, with $v_{l_{d}}=-v_{-l_{d}}$ real, one has $\delta f_{l_{d}}=i G_{0} v_{l_{d}} \partial_{r} f_{0}$, with $\nu_{f} \rightarrow \nu_{h}$ in G_{0} as defined following Eq.(5). Taking $\omega=i \gamma$, and the lowest nonvanishing drift harmonic $\left(l_{d}= \pm 1\right)$ for simplicity, gives $\delta f \simeq v_{1} \partial_{r} f_{0} e^{i \theta_{d}} /\left[\Omega_{d}-i\left(\gamma+\nu_{h}\right)\right]+c . c$., where $v_{1} \simeq v_{B t} / 2$. In the $1 / \nu$ regime, Ω_{d} is neglected in the denominator, and this expression approximates the form obtained in Ref. 5 combining its high $\left(\nu_{h} \rightarrow 0\right)$ and low $(\gamma \rightarrow 0)$ results. This form is also valid in the lower- ν superbanana regime considered above, and is readily generalized to one keeping all drift-harmonics l_{d}.

One may also consider the effect on \mathcal{D} or g of techniques developed to minimize stellarator nc transport. It has been argued ${ }^{3,20-22}$ that neoclassically-optimized stellarators should also have lower turbulent transport, due to less damping of ZFs. The basic idea of most nc optimization techniques has been to reduce ripple transport by reducing $\rho_{d} \simeq v_{B t} / \Omega_{d}$, either by diminishing the radial drift velocity amplitude $v_{B t}$, or by enhancing the poloidal precession frequency $\Omega_{d} .{ }^{1}$ One sees from the above expres-
sions for $\Lambda_{0 d}$, characterized by the argument $\frac{1}{2}\left\langle z_{d}^{2}\right\rangle=\frac{1}{2} k_{r}^{2}\left\langle\rho_{d}^{2}\right\rangle$, that this is just what is needed to diminish the low $-\omega$ shielding from g^{d}.

One notes that associated with each of the 3 polarization contributions in Eq.(16b) is a collisional (classical+nc) transport mechanism: the gyromotion producing the classical polarization term g^{g} also gives rise to classical transport, the bounce motion producing g^{b} gives rise to axisymmetric nc transport, and the drift motion yielding g^{d} also produces the "superbanana" branch of transport, dominant in conventional stellarators. As indicated above, for simplicity we have not included in the calculations leading to Eqs.(15) and (16) two additional contributions, one coming from the radial drift excursion $\rho_{d t}$ made by $\tau=t$ particles in a nonsymmetric torus, and one from the finite banana widths $\rho_{b h}$ from $\tau=h$ particles. Each of these makes a contribution to the shielding from g, and also corresponds to a transport mechanism, the former to the banana-drift branch of transport, ${ }^{7-9}$ and the latter to the ne transport in a straight (helically symmetric) stellarator. Thus, instead of the 3 contributions to ZF shielding in Eq.(16b), a full description would include 5, each corresponding to one of the 5 branches of collisional transport. ${ }^{1}$

The form of the polarization shielding contributions to g is close to the form of the radial transport coefficient D for each mechanism. For each mechanism j, one may use the heuristic form $D^{j} \simeq F_{j} \nu_{f j}\left(\Delta r_{j}\right)^{2}$, with F_{j} the fraction of particles participating in that mechanism, Δr_{j} the radial step in the random walk process, and $\nu_{f j}$ the effective stepping frequency in that random walk. For example, for the axisymmetric banana regime, one has $F_{j} \rightarrow F_{t} \simeq \epsilon_{t}^{1 / 2}, \Delta r_{j} \rightarrow \rho_{b} \simeq q \rho_{g} / \epsilon_{t}^{1 / 2}$, and $\nu_{f j} \rightarrow \nu_{t} \simeq \nu / \epsilon_{t}$, yielding the usual banana diffusion expression $D^{b n} \simeq \nu q^{2} \rho_{g}^{2} \epsilon_{t}^{3 / 2}$. For the $1 / \nu$ superbanana regime, one has $F_{j} \rightarrow F_{h} \simeq \epsilon_{h}^{1 / 2}, \Delta r_{j} \rightarrow v_{B t} / \nu_{h}$, and $\nu_{f j} \rightarrow \nu_{h} \simeq \nu / \epsilon_{h}$. On the other hand, the small-argument, low- ν contribution to g in Eqs.(16) is $g^{j} \simeq \frac{1}{2} k_{r}^{2}\left\langle\rho_{j}^{2}\right\rangle$. We approximately include the ν-dependence in g^{j} described above by replacing ρ_{j} with Δr_{j} (which, as discussed above, becomes less than ρ_{j} for larger ν), and a factor F_{j} arises
from doing the indicated average. We then have approximately $g^{j} \simeq F_{j}\left(k_{r} \Delta r_{j}\right)^{2}$, and thus $g^{j^{\prime}} / g^{j} \simeq\left(D^{j^{\prime}} / D^{j}\right)\left(\nu_{f j} / \nu_{f j^{\prime}}\right)$. Therefore, taking $j \rightarrow g$ and $j^{\prime} \rightarrow b$, one expects the gyro- contribution g^{g} in Eqs.(16) to be smaller than the bounce contribution g^{b}, because classical diffusion D^{g} is subdominant to banana diffusion D^{b}. Similarly, taking $j \rightarrow b, j^{\prime} \rightarrow d$, one expects the drift contribution g^{d} to dominate g^{b} in Eq.(16b) approximately when superbanana transport D^{d} becomes large compared with D^{b}.

The main goal of nc transport optimization has been to reduce D^{d} below the anomalous level $D^{a n}$, typically larger than D^{b} by an order of magnitude. Using the above relations, this yields the approximate criterion $g^{d} / g^{b} \lesssim D^{a n} / D^{b}$ for acceptably low g^{d}. However, since one expects $D^{a n}$ to be an increasing function of g^{d} due to reducing ZFs, this criterion is somewhat indeterminate, requiring a specific description of this functional dependence.

IV. STATISTICS OF ZF EVOLUTION

As noted in Sec. I the time evolution of the ZFs is governed by a Langevin-like equation, given by inserting Eq.(1b) into (1a). In the ω domain, this may be written

$$
\begin{equation*}
-i \omega E(\omega)+\gamma_{E} E(\omega)=c_{S}(\omega) \tag{18}
\end{equation*}
$$

where $\mathcal{D}(\omega) \equiv 1+\chi(\omega)$ as before, $\gamma_{E}(\omega) \equiv 4 \pi \sigma / \mathcal{D}(\omega)$, and $c_{S}(\omega) \equiv$ $-4 \pi F_{S} / B \mathcal{D}(\omega)$. We analyze this for the longer-time diffusive behavior of E.

Assuming first that $\mathcal{D}(\omega)=\mathcal{D}_{0}$ is ω-independent, then $\gamma_{E}=\gamma_{E 0}$ is also ω independent, and in the time domain Eq.(18) reduces to a standard Langevin equation for E,

$$
\begin{equation*}
\partial_{t} E(t)+\gamma_{E} E(t)=c_{S}(t) \tag{19}
\end{equation*}
$$

The source c_{S} that drives the zonal fbws is approximated as random. Thus, ensem-
ble averaging (19), one has

$$
\begin{equation*}
\partial_{t}\langle E\rangle_{p}=-\gamma_{E}\langle E\rangle_{p} \tag{20}
\end{equation*}
$$

If γ_{E} is sufficiently small compared to the inverse correlation time $\nu_{S}=1 / \tau_{S}$ of c_{S}, the short time response of E to c_{S} is $E(t)=\int_{-\infty}^{t} c_{S}\left(t^{\prime}\right) d t^{\prime}$. Thus, ensemble averaging $\partial_{t} E^{2}$, one finds $\partial_{t}\left\langle E^{2}\right\rangle_{p}=S^{c 0} \equiv \int_{-\infty}^{\infty} d \tau C^{c}(\tau)$, where $C^{c}(\tau) \equiv\left\langle c_{S}(t) c_{S}(t-\tau)\right\rangle_{p}$ is the correlation function for c_{S}. Its Fourier transform is the spectral function $S^{c}(\omega)$, and $S^{c 0} \equiv S^{c}(\omega=0)$. Thus the random force F_{S} causes diffusion in E, with diffusion coefficient $S^{c 0} / 2$. The corresponding pdf $p(E, t)$ for E obeys

$$
\begin{equation*}
\partial_{t} p=\partial_{E}\left(\frac{1}{2} S^{c 0} \partial_{E} p+\gamma_{E} E p\right), \tag{21}
\end{equation*}
$$

again satisfying Eq.(20), while $\left\langle E^{2}\right\rangle_{p}=\int E^{2} p d E$ obeys

$$
\begin{equation*}
\partial_{t}\left\langle E^{2}\right\rangle_{p}=S^{c 0}-2 \gamma_{E}\left\langle E^{2}\right\rangle_{p} \tag{22}
\end{equation*}
$$

Fourier transforming this, one finds an expression for the spectrum in terms of the driving source $S^{c 0},\left\langle E^{2}(\omega)\right\rangle_{p}=S^{c 0} /\left(-i \omega+2 \gamma_{E}\right)$. Neglecting the restoring term predicts a purely diffusive $\left\langle E^{2}(t)\right\rangle_{p}$, increasing without bound, corresponding to $\left\langle E^{2}(\omega)\right\rangle_{p} \simeq$ $S^{c 0} /(-i \omega)$. The restoring term removes the $1 / \omega$ divergence for $\omega \lesssim \gamma_{E}$. In the steady state, Eqs.(22) and (21) yield $\left\langle E^{2}\right\rangle_{p}=S^{c 0} / 2 \gamma_{E}$, and $p(E)=p_{0} \exp \left(-\gamma_{E} E^{2} / S^{c 0}\right)$. Since $\gamma_{E} \sim \mathcal{D}^{-1}$ and $S^{c 0} \sim \mathcal{D}^{-2}$, one has $\left\langle E^{2}\right\rangle_{p} \sim \mathcal{D}^{-1}$. Thus, assuming the turbulent forces F_{S} driving the ZFs are unaffected, the larger \mathcal{D} implied at low- ω by the drift-polarization shielding would reduce γ_{E}, but reduce the diffusion $S^{c 0}$ even more, resulting in a smaller ZF amplitude $\left\langle E^{2}\right\rangle_{p}^{1 / 2}$.

The flux through E space is represented in Eq.(21) as $\mathcal{F}=-\frac{1}{2} S^{c 0} \partial_{E} p-\gamma_{E} E p$. A cross field viscosity acting on $E \times B$ fbw could also be included with an additional term in the flux, $\mathcal{F}=-\frac{1}{2} S^{c 0} \partial_{E} p-\gamma_{E} E p+\nu \nabla^{2} E$.

We have seen in Sec. IV [e.g., Eqs.(16)] that \mathcal{D} has an ω-dependence, making $\gamma_{E} \omega$-dependent as well, so the constant- γ_{E} Langevin treatment just given is only
approximately valid. Eq.(18) is more easily treated in the ω-domain. Solving it for $E(\omega)$, one finds an expression for its spectral function,

$$
\begin{equation*}
S^{E}(\omega)=S^{c}(\omega) /\left(\omega^{2}+\gamma_{E}^{2}(\omega)\right) \tag{23}
\end{equation*}
$$

Taking the usual model for $C^{c}, C^{c}(\tau)=\left\langle c_{S}^{2}(t)\right\rangle_{p} \exp \left(-\nu_{S}|\tau|\right)$, one has $S^{c}(\omega)=$ $\left\langle c_{S}^{2}(t)\right\rangle_{p} 2 \nu_{S} /\left(\left(\omega^{2}+\nu_{S}^{2}(\omega)\right)\right.$. Because $\gamma_{E} \ll \nu_{S}$, the falloff with ω of S^{E} in Eq.(23) is controlled by the factor $\left(\omega^{2}+\gamma_{E}^{2}(\omega)\right)$, and one may take $\omega \simeq 0$ in the factor $S^{c}(\omega)$ there. Thus, $S^{E}(\omega) \simeq S^{c 0} /\left(\omega^{2}+\gamma_{E}^{2}(\omega)\right)$, and

$$
\begin{equation*}
C^{E}(\tau) \simeq S^{c 0} \int \frac{d \omega}{2 \pi} \frac{\exp (-i \omega \tau)}{\omega^{2}+\gamma_{E}^{2}(\omega)} \simeq S^{c 0} \frac{\exp \left(-\gamma_{E}|\tau|\right)}{2 \gamma_{E}} \tag{24}
\end{equation*}
$$

where the final form strictly holds only for γ_{E} independent of ω. Setting $\tau=0$ in this expression recovers the steady-state result given above for $\left\langle E^{2}\right\rangle_{p}$. The first form for C^{E} in Eq.(24) is valid for an ω-dependent γ_{E}.

V. SUMMARY

In this work, we have used the action-angle formalism to study the shielding of ZFs, obtaining general expressions for their polarization shielding, and the timescales on which they develop. The expressions are valid for arbitrary radial excursion sizes (gyroradius ρ_{g}, bounce/banana width ρ_{b}, and radial drift excursion ρ_{d}) on each of the 3 timescales of the collisionless motion, and show that the drift polarization shielding yields a contribution of a form analogous to those from shielding on the gyro- and bounce- timescales, extending earlier results for this contribution, which can be the dominant contribution to the polarization shielding.

The evolution of ZFs on a longer, diffusive timescale is governed by a Langevinlike equation, with radial electric field $E_{r}(t)$ moving diffusively about roots E_{a} of the ambipolarity equation. The resultant probability distribution function is bounded, a
balance between the turbulent fluctuations inducing diffusion, and the nc fluxes providing a restoring force to $E \equiv E_{r}-E_{a}=0$. Expressions for the restoring force, diffusion coefficient, and steady-state distribution function have been obtained. The linear polarization contributions enter into each of these. The larger drift-polarization shielding predicted for stellarators should cause a smaller restoring force, weaker diffusion, and smaller ZF amplitude $\left\langle E^{2}\right\rangle_{p}^{1 / 2}$, assuming the turbulent forces F_{S} are unchanged.

We have noted that each contribution $g^{j}(j \rightarrow g, b, d)$ to the shielding function g [Eq.(12), (15), or (16)] corresponds to a particular collisional transport mechanism, and moreover, that the scalings and relative sizes of the g^{j} are quite similar to those of the radial transport coefficients D^{j}. Thus, stellarators with neoclassically-optimized designs (reduced D^{d}) also have reduced drift-polarization shielding g^{d}, and thus, a larger ZF amplitude. Assuming the amplitude of the source $\left[S_{1}\right.$ in Eq.(11) or F_{S} in Eq.(1b)] is unchanged, this implies the tendency suggested in earlier work, that neoclassically-optimized designs will have larger ZFs, and consequently lower turbulent transport as well. However, such an assumption about the source has not yet been demonstrated, and further study is needed to clarify the variation with machine design of these source terms, and of the consequent level of turbulent transport.

Acknowledgment

The authors are grateful to J.N. Talmadge for informative discussions related to this work. This work supported by U.S.Department of Energy Contract No.DE-AC02-76CHO3073.
${ }^{1}$ H.E. Mynick, Phys. Plasmas 13, 058102 (2006).
${ }^{2}$ M.N. Rosenbluth, F.L. Hinton, Phys. Rev. Letters 80, 724 (1998).
${ }^{3}$ H. Sugama, T.H. Watanabe, Phys. Rev. Letters 94, 115001 (2005).
${ }^{4}$ H. Sugama, T.H. Watanabe, Phys. Plasmas 13, 012501 (2006).
5 K.C. Shaing, Phys. Plasmas 13, 052505 (2005).
${ }^{6}$ A. N. Kaufman, Phys. Fluids 15, 1063 (1972).
7 A.H. Boozer, Phys. Fluids 23, 2283 (1980).
${ }^{8}$ R. J. Goldston, R. B. White and A. H. Boozer, Phys. Rev. Lett. 47, 647 (1981).
${ }^{9}$ R. Linsker, A.H. Boozer, Phys. Fluids 25, 143 (1982).
${ }^{10}$ H.E. Mynick,J.A. Krommes, Phys.Fluids 23, 1229-1237 (1980).
${ }^{11}$ R. D. Hazeltine, S. M. Mahajan and D. A. Hitchcock, Phys. Fluids 24, 1164 (1981).
12 I.B. Bernstein and K. Molvig, Phys. Fluids 26, 1488 (1983).
${ }^{13}$ H.E. Mynick and R.E. Duvall, Phys. Fluids-B 1, 750 (1989).
14 H.E. Mynick, A.H. Boozer, Phys. Plasmas 12, 062513 (2005).
15 A.A. Galeev, R.Z. Sagdeev, H.P. Furth, M.N. Rosenbluth, Phys. Rev. Letters 22, 511 (1969).
16 A.A. Galeev,R.Z. Sagdeev, Sov. Phys. Usp. 12, 810 (1970).
${ }^{17}$ H.E. Mynick, W.N.G. Hitchon, Nucl. Fusion 23, 1053 (1983).
18 A.A. Galeev, R.Z. Sagdeev, H.P. Furth, Zh.Prikl.Mekh. i Tekhn.Fiz., 3 (1968).
19 J.W. Connor, R.J. Hastie, Phys. Fluids 17, 114 (1974).
${ }^{20}$ H. Yamada, J.H. Harris, A.Dinklage, E.Escasibar, F.Sano, S.Okamura, U.Stroth, A.Kus, J.Talmadge, S.Murakami, M.Yokoyama, C.Beidler, V.Tribaldos, K.Y.Watanabe, Proc. 31st EPS Conference on Plasma Physics, P5-9, (London, June 29-July 2, 2004).

21 K.C. Shaing, Physics of Plasmas 12, 082508 (2005).
${ }^{22}$ K. Watanabe, H. Sugama, Proceedings of the 21st International Conference on Plasma

Physics and Controlled Nuclear Fusion Research (Chengdu, China, October, 2006) paper EX/5-4, (International Atomic Energy Agency, Vienna, Austria, 2007).

The Princeton Plasma Physics Laboratory is operated by Princeton University under contract with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751
e-mail: pppl_info@pppl.gov
Internet Address: http://www.pppl.gov

