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Abstract

The properties of Bishop-Taylor equilibria and the algorithm of their caleulations, implemented into
numerical code Cbbsh, are described. These equilibeia are tnique in having the shape of magnetic
surfaces not dependent on the poloidal flux distribution, which, in its turn, determines both the current
and pressure profiles in this case. These equilibria cair be caleulated with any precision, using only 3
ordinary differential equations. Possessing a free profile; they can be used for calibrating equilibrium and
stability codes. They are also especially valuable for ¢quilibrium reconstruction as a precise example of
a configuration where the external magnetic field does tot depend on the eurrent density,

1 Introduction (ie ToC)

In a 1985 paper, Bishop and Taylor (Ref.[1]) showed that there exists a confguration of nested toroidal
magnetic surfaces that can be created from an infinite fiumber of plasma equilibria. Since then, with the
exception of the following paper by the same authors {Ref.[2]), these equilibria have been left essentially
untouched by the plasma physics community.

In fact, there are several reasons for interest in the Bishop-Taylor equilibria, whose ealeulation can be
done essentially with any precision. First, they can be used for benchmarking two-dimensional equilibrium
code. Second, the precise equilibrium data for different profiles of the current density or the safety factor
can be used for testing stability codes. Third, these equilibria are unique in having the magnetic field
outside the plasma independent on the current density distribution. In this regard, Bishop-Taylor equilibria
are indispensable for testing the equilibrium reconstruction codes, which produce the information on the



current and pressure distribution inside the plasma based on external magnetic measurements. At present,
the equilibrium reconstruction is widely used for fusion devices and its possible improvement can make a
significant impact on progress in tokamak diagnostics.

This paper follows the Bishop and Taylor derivation and introduces a code that can be used to recreate
this equilibria for different current distributions and aspect ratios of the plasma. The code also generate
interface files for other magnetic confinement codes,

2 Derivation of Bishop-Taylor equilibria to Toc)

We use the cylindrical coordinate system r, ¢, z and the following rationalized notations for physics profiles
o _
o’ 2 27’
where ¥ is the poloidal and & toroidal fluxes [V-sec|, p is the plasma pressure [MPa), and B,, is the toroidal
component, of magnetic field B [T]. “Barred” notations are used for the variables in rationalized units, typical

for equilibrium theory. Our ¥, originated from the poloidal flux, has an oppsite sign to that used in Ref.[1].
In a magneto-static f-thhrmm the poloidal flux ¥ satisfies the Grad-Shafranov equation

¥
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B= (VI xVp)+FVp, f=pp, F=rB,, uo=04r, (2.1)

a*rirﬂ?{g) = —r*g'(¥) — FF'(T), | (2.2)

where prime stands for derivative. For another equilibrium with magnetic flux fanetions ¥(r, z) and ¥(r, z)
o have the same shape magnetic surfaces ¥ = x(¥) the following equation should be fulfilled

dx T 2
'y = X 2.8
Atx =T ~1:+dw2|vx1:| (2.3)

Then the magneto-static equilibrium requires
VT = a{¥) + r28(T). (2.4)
Following Bishop and Taylor we represent the derivatives in the following way
V| = g(¥,r), T.=rh(T,r), ¥ =07 1202, ¢ =a+r8 (2.5)
Putting this into the Grad-Shafranov equation yields

1 : ok
and leads to the following form of b
L('I'}Eﬁ:zr'i‘—ﬁfm M(ﬁ'}liFF&,+Eaf;, rhl. = 2L 4+ M o
2.7
-X M r? .
h= L s—+gley, X=X(F)

The radius r? = X, where h = =0 and ¥/ =0, mr:eapnnds to the top and bottom points, z = zmez, 2 = Zmin, -
of the magnetic Surface B
The relationship ¥/, = ¥, gives the following important equation, specifying the Bishop-Taylor equi-
libria :
(a+r?8)gh — (a+r?@)2h + 28 — r(h?). — 2% = 0. (2.8)



The h? term here contains

A
M? (mgf) (2.9)
and cannot be balanced, unless M = 0. This gives the expression for F2 and |B|?
Lpeds o = Vi ? ¥ F e B el
Py =R o), BF="ET 50 5 R const (210)
The equation for f is now reduced to
a+rgy 2 r?-X
( = ﬁ)@+}§—L-—P—=U. (2.11)

Balancing different powers of v, which is a parameter in this equation, allows to introduce characteristics of
Bishop-Taylor equilibria and the ordinary differential equations for them.

3 Equations for characteristics and poloidal angle to ToC)
In addition to X two new functions S{T), @(¥) can be introduced at this stage
a=1L%5 B=I%Q (3.1)

together with a new radial coordinate A, defined by

S=-t (3.2)

It will be proven later on that A represents simply the volume V of the magnetic surfaces in Bishop-Taylor”
equilibria

V = 479, (3.3)
Subsituting 2k = L(r? — X into Eq.(2.11) gives

(r? — X)(Sh +r2Q4) +2(5 + r*Q) X} + 4Q — (3% — X)(r - X) =0. (3.4)

Equating terms of the same order in r gives an expression for ¢ and two differential equations for charac-
teristics X (), S(A)

GA
Q = 3:’&, SE,‘ — —ﬁ}l.X;' - XF Xi = —m. {35}
The function A is 0 at magnetic axis. This gives the initial conditions for Egs.(3.5)
S=-) X=1-3\ - (3.6)
The shape of the magnetic surfaces is now determined by
L7 ! dz - X
dr=——%dl, di=r=kdl, - =57 : 3.7
&7l LT AW/ T-F T w1~y &

Two intersection of them ry, vz (innermost and outermost) with the middle plene z = 0 is determined by

the condition :
48+ 12V 90 —Yia(Via - X)P =0, Yia=ri, (3.8)



In terms of ¥}, the radial position of the outermost intersection Y5 can be calculated as
Wi (X — V) +24)

=X+ = i ;
# Y; + /Y1 (dX - 3Y;) + 48X (39)
Now, by introducing two new definitions
;-1 2+ ¥ ; 4a 2 , 4d
== = - = — = — o == ]
@ 9 v d 9 X, 23 ag_d21 d‘l); X+Ms X}.‘l'd;l ag_dg [3 U}
the shape of magnetic surfaces can be described in terms of poloidal angle ¢
g d+ acosf
r=vX2+d+acosd s_r=—f — R 3.11
' ? o0 2vX +3d+acosé Gl

4 The radial variable (to ToC)

In advance, the range of the independent variable A in Egs.(3.5) iz unknown. For this reason it is better
to define a new radial variable 8 = 1 — ry, repregenting the distance between the magnetic axis and the
innermost point vy of the cross-section. The variable g has a predetermined range

\ 0=s<1, (4.1)

and its derivative with respect to A can be found as
d¥y 4

T (42)
In terms of s as a radial coordinate the equations for the three characteristics obtain the form
dA X -1 GAN

ri=1-s, Y1:'[1—S:|2: E=1"1 g S;=_{6H1+X}}‘:1 X;=_3+3;{)|‘ (4.3)

Near the magnetic axis A = s°/2, which allows to start the intregration.
Fig.1 shows the solution to Eqs.(4.3) as functions of & in a full range 0 < & < 1. The fact that function
Sa=1 = 0 can be seen explicitly from Eq.(3.8), when ¥1 = 0 is substituted into is for s = 1.
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Fig.1. Characteristics of the Bishop-Taylor equilibria: (a) 0 < A < 0.0993155012, (b) 0.717017 <
X <1, (e) —.024329 < § < 0.




With 6 valuable digits, the functions X(A) and S({A) can be approximated by

X =1-A3-33(3—2})+2.899527 - 23(3 — 2)) — AA(D.1117299 - X — 0.09066381 - X)),
§ = AA[—0.09931650- 3%(3 — 21) — 0.09551659 - X3(3 — 2X) + AA{0.00425197 - A — 0.00340596 - )], (4.4)
o<
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where Ap = 0.0993155012 is the largest value of X in the Bishop-Taylor equilibria
The shape of the magnetic surfaces for equidistant & coordinate is showm on Fig.2.

Fig.2. Cross-section of the magnetic configuration with equidistant intervals between mag-
netic aris and r = (.

5 Basis functions of Bishop-Taylor equilibria (to Toc)

The basis functions of this section are necessary and sufficient for caleulating quantities necessary for stability,
transport, gyro-motion and gyro-kinetic codes, _
The differential properties of the flux coordinates A, #; i are given by the following derivatives of r, 2

r* =X +d+acosf, 2rrp=—asinf, 2rr)= 4%, rriyg = —Tyr — %+
z=—.fa {acos @ + d)df z,=_ncu39+d . 1 2asind
o it " 2y T - @ il tad (5.1)
i 2(r? + 2d)acos§ + a®sin” §
M (a? — d2)(r2 + 2d)3/2



Using these derivatives the metric tensor can be ealculated in a straighforward manner. The Jacobian /g
of these coordinates has the form

5.2
Vi Za (52
Its A-derivative can be calculated as
4 asinf T
f = — e = . 5.3
A= e v ZL )
From the expressions for the derivatives 2} and (,/g)} it follows that
2
(2o=2v — 2z0=0)) = j 20 =0,  zg=zx = 20=0, i
i (5.4)

_47:2/- Ydf =0, Vi=4 jtf ar?, Vo= dmiA
J-.J\ {1.-""“). A m m dm o

This proves the closure of all magnetic surfaces, which are determined by an expression for z, and specifies

the meaning of the parameter A.
Four basis profiles and their first derivatives, which are necessary, e.g., for stability codes, are given by
the following expressions, containing an arbitrary function L

¥, =L, O, =-I), F%=p-sI?

Hs= ﬂ_:—_m, o= %f;ﬂ’dﬂ, ¥, = FHy, @, =FHy+FH,,
11 (5.5)

%ws:x + 3504 + SLs
In the code Cbbsh, the derivatives of H, Hy are calculated using the derivatives of r* and evaluating the
integral numerically.

In order to complete the set of basis functions, two more 2-dimensional functions and their derivatives
should be provided, i.e.,

- e 1
T=FFy=;L8+8L, Tj=

EZ 312 + 6ALL, — E200 Rt
Bl=43\2+-2. Bl\="—= R A Bl =2 =
| I rg | |Jx ElEI '} I |E DET"'B[ {55]
£ oy Hi HHEJ. 2 H; i H‘;ﬂ HEJ 61

= -1, = = = g = —2 = —=£ -
"-'5 H, LY Heo HE y Iﬂfaa Ho Moo Ho Hﬁ

Module [B| is necessary for particle orbit codes and ealeulating curvature of the field lines in stability codes.
The function n is the radial covariant component of the vector potential of the magnetic field and is necessary
for generating straight field line coordinates.

Although the shape of the magnetic surfaces does not depend on the choice of function L(A), the profiles
of the current density, pressure, and magnetic fluxes do. Thus, a unique set of flux surfaces in Bishop-Taylor
configuration corresponds to infinitely many equilibria.

The plasma current I(A) through the magnetic surface is determined by the following universal relation-
ship '

a +M“‘;‘$9+dﬂd9 _ P f‘ﬂ
Ve t2d BAE
(5.7)

pol = —2r KA, = 2rKoAL, Ko= _L_"Z i jf



The safety factor g-profile is given by the following expréssion

=, 2 e BT ]
_& = EHH B FD _SLEHD. {58}

e B L

The functions Hg(A) and Kg(A), which are the geometrical characteristics and do not depend on the
current profile, are shown in Fig.3.
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Fig.8. Two additional characteristics of the Bishop-Taylor equilibria: (a) Ko, (b) Hy (shown on a
truncated interval because of a singularity in Hy at 5 — 1),

6 Summary. Code Implementation (to ToC)

The above equations have been implemented in the Cbhbek[3] numerical code, which will create a set of nested
magnetic surfaces and comprehensive information on the Bishop-Taylor equilitwium, once the choice of the
radial coordinate (e.g., 2 A, +/(V/V0), +/(®/®p)) has been made, and its boundary value, Fy, and the
function L have been specified. The code produces an oitput in the standard Equilibrium Spline Interface
(ESI) format[4] of an equilibrium code solver. Specific documentation on usage of the code can be found in
the documentation and help files which accompany it. Iin particular, the present paper is a part of the help
file for the main section of the code.
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