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Derivatives of the local ballooning growth rate with respect to

surface label, field line label and ballooning parameter

S.R. Hudson

Princeton Plasma Physics Laboratory, PO Box 451, Princeton NJ 08543.

(Dated: March 15, 2006)

Expressions for the derivative of the local ballooning growth rate on surface label,

field line label and ballooning-parameter are presented. Such expressions lead to

increased computational efficiency for ballooning stability applications.

I. INTRODUCTION

For comprehensive ballooning analysis in three-dimensional (stellarator) systems, an ex-

tensive set of ballooning eigenvalue calculations is generally required. For several applica-

tions, it is convenient to know how the local ballooning stability will change as a function

of the surface label, ψ, the field line label, α and the angle-like ballooning parameter, θk.

For instance, it is the typically the most unstable field line that sets the stability limit. The

derivatives of the growth rate with respect to (ψ, α, θk) allow efficient algorithms to be ap-

plied to search for the most unstable field line, or to trace out marginal stability boundaries.

A particularly important application is in the ray tracing problem [1], when results from

the local ballooning analysis are extended to make predictions regarding the global stability.

The standard approach to performing the ray tracing is to first compute the eigenvalue

on a (ψ, α, θk) lattice [2, 3], and to then take the derivatives numerically. This approach has

certain disadvantages. Typically, accuracy is lost when derivatives are taken numerically:

the eigenvalue-lattice must be constructed at sufficiently high resolution to ensure that the

interpolation is accurate. Also, this approach does not easily allow the accuracy of the

calculation to be easily improved: if the ballooning eigenvalue calculation itself is to be

refined, the eigenvalue-lattice must be reconstructed.

This article presents an explicit method for calculating the derivatives. The method is

an application of eigenvalue perturbation analysis. For a small variation in (ψ, α, θk), the

induced small variation in the ballooning operator may be determined by differentiating the

ballooning coefficients. Using operator perturbation theory, the induced variation in the
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eigenvalue, and thus the eigenvalue derivatives, can then be determined.

A similar analysis was applied to determine the impact of variations in both the pressure-

gradient and shear on ballooning stability to predict which configurations would display

second stability [4, 5].

In Sec.II, a convenient form for the ballooning equation is given. In Sec.III, it is shown

how variations in the coordinates (ψ, α, θk) affect the coefficients of the ballooning equation.

Operator perturbation theory is then used to determine the required derivatives. Sec.IV

illustrates how the derivative information can be used to increase the accuracy of eigenvalue-

lattice interpolation.

II. BALLOONING EQUATION

Using straight field line coordinates (θ, ζ), the magnetic field takes the form

B = q∇ψ ×∇θ +∇ζ ×∇ψ, (1)

where 2πψ is the poloidal magnetic flux and q(ψ) is the inverse rotational-transform (safety

factor). This article shall use the (θ, ζ) of Boozer coordinates [6], which allows the covariant

representation

B = β(ψ, θ, ζ)∇ψ + I(ψ)∇θ +G(ψ)∇ζ. (2)

Changing the toroidal coordinate from ζ to α = ζ − qθ, the magnetic field then becomes

B = ∇α×∇ψ. (3)

The B · ∇ operator becomes

B · ∇ = √g−1 ∂

∂θ

∣

∣

∣

ψ,α
(4)

where the notation ∂f
∂x
|y,z indicates the partial derivative of f with respect to x, with y and

z held constant.

Stability is determined by calculating the growth rate of a small displacement from an

equilibrium. To treat ballooning modes [1], the plasma displacement is written

ξ(x) = ξ̂(x) exp(iS(x)/ε− iωt) (5)
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with the wave-vector k ≡ ∇S. The ballooning ordering requires k ·B = 0. This, with the

form of the magnetic field Eq.(3), requires the eikonal function to be of the form S = S(ψ, α).

The wave-vector is then

k = kα∇α + kψ∇ψ ≡ kα(∇α + q′θk∇ψ) (6)

where the ballooning parameter θk = kψ/q
′kα. The definition of θk is consistent with that

used by Dewar & Glasser [1], but here ψ is retained as the surface label, whereas Dewar &

Glasser use q as the surface label. For incompressible perturbations, ∇·ξ = 0, and to lowest
order in ε, the perturbation may be written

ξ̂
(0)
= ξ

B× k

B2kα
+ ηB. (7)

The ballooning equation is [3]

B · ∇ k2

B2k2
α

B · ∇ ξ + 2
B× k · κ
B2kα

B× k · ∇p
B2kα

ξ = −ω2ρ
k2

B2k2
α

ξ, (8)

where B2κ = ∇⊥(B2/2 + µ0p) is the curvature, which may be written

κ = κn∇ψ + κgB×∇ψ/gψψ. (9)

Ballooning stability is determined by a competition between the destabilizing influences

of pressure-gradients in regions of unfavorable curvature, and the stabilizing influence of

field line bending due to the local shear. Defining the local shear s by

s =
√
g

B×∇ψ
gψψ

· ∇ × B×∇ψ
gψψ

, (10)

and the quantity L by

L =
gψα

gψψ
+ q′θk, (11)

it is observed that

s =
√
g B · ∇ L. (12)

The quantity L is called the (field-line) integrated local shear, and the ballooning parameter

θk appears to play the role of an integration constant. The integrated local shear may also

be written, using the (θ, ζ) of Boozer coordinates,

L = −q′(θ − θk) + Ls (13)
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where −q′(θ − θk) is a secular term that increases along the field line, and

Ls = (Ggψθ − Igψζ)/
√
ggψψ is a function of position (ψ, θ, ζ).

The ballooning equation may now be written
[

∂

∂θ

∣

∣

∣

ψ,α
P

∂

∂θ

∣

∣

∣

ψ,α
+Q− λR

]

ξ = 0, (14)

where the ballooning coefficients are

P (ψ, α, θ; θk) = B2/gψψ + gψψL, (15)

Q(ψ, α, θ; θk) = 2p′
√
g(I + qG)(κn + κgL), (16)

R(ψ, α, θ; θk) = ρ
√
g2P, (17)

and the eigenvalue λ = −ω2. This form for the ballooning equation was used by Hegna &

Nakajima [7], and is a convenient form for constructing marginal stability diagrams [4, 8].

For general three dimensional configurations, the local ballooning growth rate is a function

of the field line, labeled by ψ and α, and the ballooning parameter θk :

−ω2 = λ(ψ, α, θk), (18)

and the required first order derivatives satisfy

δλ =
∂λ

∂ψ

∣

∣

∣

α,θk

δψ +
∂λ

∂α

∣

∣

∣

ψ,θk

δα+
∂λ

∂θk

∣

∣

∣

ψ,α
δθk, (19)

for infinitesimal variations δψ, δα and δθk.

Before proceeding to the operator perturbation theory, it is convenient to first describe

the numerical solution to solving Eq.(14). The ballooning equation is efficiently solved using

a finite difference method on a field line grid. The field line grid {(θi, ζi) : i = −N,N} is
given by

θi = iθ∞/N + θk, (20)

ζi = α + qθi, (21)

where θ∞ is chosen sufficiently large to contain the mode, and N determines the resolution

of the field line grid. Note that the field line grid for θi is centered on θk. The equation to

be solved becomes a set of 2N − 1 linear equations of the form
Pi+ 1

2

∆

(ξi+1 − ξi)

∆
−
Pi− 1

2

∆

(ξi − ξi−1)

∆
+Qiξi = λRiξi, (22)
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where ∆ = θ∞/N . Here, Qi and Ri are calculated on the full-grid, whereas Pi+ 1

2

is calculated

on the half-grid. This is a matrix equation, Mξ = λξ, where M is tri-diagonal. The largest

eigenvalue and its eigenfunction are then solved using standard numerical routines [9, 10].

For the following, it is assumed that the corresponding eigenvector has also been calculated.

Note that as the ballooning coordinates (ψ, α, θk) are changed, the field line grid will change.

It is worth noting that this construction guarantees that the poloidal and toroidal sym-

metries [1]

λ(ψ, α+ 2π, θk) = λ(ψ, α− 2πq, θk + 2π) = λ(ψ, α, θk) (23)

hold, for any finite θ∞. If the field line grid for θi was not centered about θk, the eigenvalue

symmetry λ(ψ, α− 2πq, θk + 2π) = λ(ψ, α, θk) may not be preserved numerically for finite

θ∞.

III. VARIATIONS

It is important to distinguish the different coordinate systems employed. A point in

physical space is given by the three coordinates (ψ, θ, ζ), whereas the ballooning eigenvalue,

λ, is a function of (ψ, α, θk).

On variation of the ballooning coordinates (ψ, α, θk), the physical space coordinates vary,

and the ballooning coefficients vary. Because the field line grid depends on the field line,

labelled by ψ, α, and that the field line grid is adjusted to remain centered about θk, the

physical space coordinates of the field line grid vary according to

δψi = δψ, (24)

δθi = δθk, (25)

δζi = δα + q′ θi δψ + qδθk, (26)

The variation of the ballooning coefficient, δP , is given

δP =
2BδB

gψψ
− B2

gψψ
δgψψ

gψψ
+ δgψψL2 + gψψ 2L δL. (27)

The expressions for δQ and δR take similar forms.

The terms δB and δgψψ, and terms such as δκn, δκg which appear in the expression for

δQ, take the form

δf =
∂f

∂ψ

∣

∣

∣

θ,ζ
δψ +

∂f

∂θ

∣

∣

∣

ψ,ζ
δθ +

∂f

∂ζ

∣

∣

∣

ψ,θ
δζ, (28)
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where f is an arbitrary function of position f = f(ψ, θ, ζ). Combining this expression with

Eqn(24-26), an expression for all quantities which are functions of physical space is given by

δf =

(

∂f

∂ψ

∣

∣

∣

θ,ζ
+ q′θ

∂f

∂ζ

∣

∣

∣

ψ,θ

)

δψ +
∂f

∂ζ

∣

∣

∣

ψ,θ
δα +

(

∂f

∂θ

∣

∣

∣

ψ,ζ
+ q

∂f

∂ζ

∣

∣

∣

ψ,θ

)

δθk. (29)

The term δL is slightly different due to the secular term :

δL = −q′′(θ − θk)δψ + δLs, (30)

where δLs is of the form given in Eq.(29).

The above expressions may be combined and δP is written

δP = ∂ψP |α,θk
δψ + ∂αP |ψ,θk

δα + ∂θk
P |ψ,α δθk, (31)

similarly for δQ and δR. The full expressions for ∂ψP |α,θk
etc. are quite lengthy. The

expression for δQ involves the spatial derivatives of the normal and geodesic curvatures, κn

and κg. Using the (θ, ζ) of Boozer coordinates, the curvatures are written

κn =
1

B2

∂

∂ψ

(

B2

2
+ µ0p

)

+
β(q∂ζ

√
g + ∂θ

√
g)

2
√
g(I + qG)

+
(Ggψθ − Igψζ)√

ggψψ
(G∂θ

√
g − I∂ζ

√
g)

2
√
g(I + qG)

,(32)

κg =
I∂ζ
√
g −G∂θ

√
g

2
√
g(I + qG)

, (33)

where here the derivatives are given by ∂θ ≡ ∂
∂θ
|ψ,ζ , ∂ζ ≡ ∂

∂ζ
|ψ,θ. The radial derivative of the

normal curvature will involve the second radial derivative of the magnetic field strength, B.

The second radial derivatives of the q-profile, pressure, and various metric quantities will

also be required in the ultimate calculation of the eigenvalue derivatives.

Upon variation, the ballooning equation is written

[

∂

∂θ

∣

∣

∣

ψ,α
(P + δP )

∂

∂θ

∣

∣

∣

ψ,α
+ (Q+ δQ)

]

(ξ + δξ) = (λ+ δλ)(R + δR)(ξ + δξ). (34)

Using the Hermitian property of the operators, the derivatives of the eigenvalue are then

given by expressions of the form

∂λ

∂ψ

∣

∣

∣

α,θk

=

〈

ξ

∣

∣

∣

∣

∣

∂

∂θ

∣

∣

∣

ψ,α
∂ψP |α,θk

∂

∂θ

∣

∣

∣

ψ,α
+ ∂ψQ|α,θk

− λ ∂ψR|α,θk

∣

∣

∣

∣

∣

ξ

〉

,

where the bracket notation indicates the normalized inner product 〈ξ |f | ξ〉 =
∫

ξfξdθ/
∫

ξRξdθ.
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IV. APPLICATION

To illustrate the benefits of direct calculation of the derivatives over the alternatives, an

equilibrium relevant to the LHD stellarator has been examined. The equilibrium itself is

calculated using the VMEC code, and the equilibrium is then mapped to Boozer coordinates.

The determination of the derivatives described above has been implemented numerically.

This section will make some comparisons between the construction of the ballooning

eigenvalue derivatives presented in this article to the determination of the derivatives pro-

vided by a standard ballooning code – that is in this context, a ballooning code that only

calculates the ballooning eigenvalue.

Consider the determination of the eigenvalues at an arbitrary point in ballooning space

(ψ, α, θk). The direct method requires only one evaluation: the eigenvalue and the derivatives

are returned simultaneously. Also, the accuracy of the derivatives is consistent with the

accuracy of the eigenvalue, both being determined by the resolution of the field line grid

as described in Eqs.(20,21). Note that to determine the derivatives, additional Fourier

summations are required to determine the variation in the ballooning coefficients. This

is an additional computational burden, but a modest one and the computational cost of

determining the eigenvalue and its derivatives is only slightly greater than determining the

eigenvalue alone.

Using a ballooning code that only returns the eigenvalue, the derivatives may be deter-

mined

∂λ

∂ψ

∣

∣

∣

α,θk

=
λ(ψ + h, α, θk)− λ(ψ, α, θk)

h
+O(h), (35)

and similarly for ∂λ/∂α and ∂λ/∂θk. This requires 4 eigenvalue calculations to determine

the eigenvalue and its three derivatives. Furthermore, the finite-difference determination of

the derivatives involves the finite-difference errors O(h).

The standard approach to following the ray trajectories is to first compute the eigenvalue

on a three-dimensional eigenvalue-grid. The eigenvalue and its derivatives at any point can

then be obtained by interpolation, and the ray trajectories can then be quickly determined

using standard o.d.e. integration. Using the derivative information, the accuracy of the grid

interpolation can be be substantially improved.

Consider the one-dimensional interpolation case, with a two-point interpolation proce-

dure. Between adjacent points, using only the eigenvalue information, only a linear interpo-
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lation is possible. This is 2nd-order accurate in the eigenvalue, and 1st-order accurate for

the derivative. Using the derivative information, a cubic interpolation is possible, and this

is 4th-order accurate for the eigenvalue and 3rd-order accurate for the derivative. Higher

order interpolation schemes are made possible by using additional data points, but always

the accuracy of the interpolation can be improved by using the derivative information.

In three dimensions, a tri-cubic interpolation scheme [11] with C1 continuity, has been

implemented

λ =
3
∑

i=0

3
∑

j=0

3
∑

k=0

ai,j,kx
iyjzk, (36)

where x, y, z are local interpolation variables: eg. x = (ψ−ψ0)/(ψ1−ψ0) where ψ0, ψ1 are the

adjacent bounding ψ values. The parameters ai,j,k are chosen to match the eigenvalue and its

derivatives at each corner of each grid cell. This interpolation gives fourth order accuracy in

the grid spacing for the eigenvalue, and third order accuracy for the eigenvalue derivatives.

This error scaling has been confirmed, as shown in Fig.1, for the example LHD configuration.

For a given grid resolution, the interpolation error is calculated as the three-dimensional sum

of the discrepancy between the interpolated eigenvalue at grid cell midpoint, and the exact

eigenvalue. Some example eigenvalue isosurfaces are shown in Fig.2 for this case. As can

be seen, the structure of the eigenvalue in (ψ, α, θk) space is quite detailed, and thus this

configuration provides provides a challenging test of the interpolation procedure. Even for

quite crude grid resolutions, with only 24 grid points in each dimension, the interpolation

errors for the eigenvalue derivative are about 10−3.

Higher order interpolation schemes are also possible in three-dimensions, and again the

use of the derivatives allows the accuracy of the interpolation to be increased. This sig-

nificantly reduces the computational burden by allowing accurate interpolation based on

relatively coarse eigenvalue grids.

V. DISCUSSION

The use of operator perturbation theory is a computationally efficient approach to de-

termining the eigenvalue derivatives with respect to the ballooning coordinates (ψ, α, θk).

In the context of the ray tracing problem, it allows the ray trajectories to be determined

directly, without the initial step of calculating the eigenvalue on a the three-dimensional
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grid of sufficient resolution to provide the accurate, and smooth, derivatives required for the

o.d.e. integration.

In some ray tracing contexts, it may still be convenient to first calculate the eigenvalues

on a three-dimensional grid. In this case, the use of the derivatives allows a higher-order

interpolation procedure to be implemented.

It not required to use Boozer coordinates for ballooning stability calculations, though

from an analytic viewpoint the use of Boozer coordinates does simplify the analysis. For

numerical calculations it is computationally efficient to use so-called VMEC coordinates [10].

It is possible to extend the operator perturbation theory to arbitrary coordinate systems.

This method of calculating the derivatives has been numerically implemented and shown

to agree with a finite-difference calculation of the derivatives. Application of this approach

to ray-tracing and the semi-classical quantization of ballooning modes in three-dimensional

systems is ongoing.

The example equilibrium has been studied in some detail by Nakajima et al [12] using the

global stability code CAS3D. One goal of this research is to compare the results of the ray

tracing approach for determining global stability to the global stability results from a global

code. This is not a simple task in stellarator geometry. The lack of axi-symmetry, in general,

results in chaotic ray trajectories and can lead to singular global eigenfunctions. An area

of current research is the regularization of this problem by the inclusion of kinetic effects,

in particular finite Larmor radius effects. A recent paper by McMillan and Dewar [13] use

semi-classical techniques to analyze this effect, and propose a technique to determine the

marginal stability boundary even when the rays are chaotic. The quantization of chaotic

semi-classical rays, including the FLR effects, for an LHD-relevant equilibrium is beyond

the scope of the present article and is left to future work.
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FIG. 1: Scaling of the eigenvalue derivative interpolation error (crosses) with grid spacing h for the

example LHD configuration: the 3rd order accuracy (indicated by the dashed line) is confirmed.
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FIG. 2: Eigenvalue isosurfaces for the example LHD configuration, showing topologically cylindrical

and spherical isosurfaces.
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