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Fluctuations and discrete particle noise in

gyrokinetic simulation of drift waves

Thomas G. Jenkins and W. W. Lee

Princeton Plasma Physics Laboratory

Princeton, NJ 08543

Abstract

The relevance of the gyrokinetic fluctuation-dissipation theorem (FDT) to ther-

mal equilibrium and nonequilibrium states of the gyrokinetic plasma is explored,

with particular focus being given to the contribution of the weakly damped nor-

mal modes to the fluctuation spectrum. It is found that the fluctuation energy

carried in the normal modes exhibits the proper scaling with particle count

(as predicted by the FDT in thermal equilibrium) even in the presence of drift

waves which grow linearly and attain a nonlinearly saturated steady state. This

favorable scaling is preserved, and the saturation amplitude of the drift wave

unaffected, for parameter regimes in which the normal modes become strongly

damped and introduce a broad spectrum of discreteness-induced background

noise in frequency space. The relationship of the present work to the more gen-

eral issue of discrete particle noise in particle-in-cell simulations is discussed.
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I. Introduction

The gyrokinetic model of a plasma, in addition to its original success [1],[2] in

analytically describing low-frequency phenomena (relative to the ion gyrofre-

quency) of moderate wavelength (k⊥ρi ∼ 1, where ρi is the ion gyroradius), has

also been shown to be extremely well-suited for use in large-scale numerical sim-

ulations [3, 4]. Recent particle-in-cell (PIC) simulations [5], for instance, can use

upwards of thirty billion particles on massively parallel machines, and are able

to model the behavior of toroidal fusion plasmas at multiple-teraflop speeds. On

more modest scales, gyrokinetic PIC simulations have been used to investigate

turbulence spreading in shaped plasmas [6], collisionless and collisional tearing

modes [7], and the effects of nonadiabatic electrons [8] on turbulent simulations.

They have also been employed to study collisional damping of zonal flows [9],

ion temperature gradient-driven turbulence in toroidal geometry [10], and the

size scaling of transport parameters in turbulent plasmas [11].

Recent discussion in the fusion simulation community has centered on the

topic of ”discrete particle noise” and the effects that such noise may have on the

long-time transport predictions of turbulent gyrokinetic PIC simulations [12],

[13]. Physical effects (such as collisions) are indeed associated with the discrete

nature of the particles in a plasma. The discrete particle noise we discuss here,

however, is associated with collisionless plasmas; the statistical properties of the

simulation and the physical plasma differ due to the comparatively small number

of particles one can feasibly use in these simulations (N ∼ 1010 � 1023 particles

in a typical fusion reactor). Despite this, accurate predictions for the behavior
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of such plasmas can be made by PIC simulations that are based on finite-

size particles [14] (eliminating the need to calculate the N 2 interparticle forces,

through the modification of particle interactions inside a Debye sphere), the

gyrokinetic PIC model [3] (removing the space charge waves and simplifying the

gyromotion), and the δf method [15] (allowing one to model only the deviation

of the plasma from a known equilibrium). Nevertheless, it is reasonable to

wonder how, and to what extent, the representation of many physical particles

by comparatively few computational entities affects the simulation results.

One may gain some insight into the nature of discreteness-induced noise in

the plasma by examining the behavior of the fluctuation spectrum 〈δφδφ〉(k, ω).

In this work, we explore the behavior of the fluctuation spectrum as low-

frequency drift waves drive the plasma from thermal equilibrium to a nonlinearly

saturated steady state, examining the behavior of the spectrum as a function of

particle count and giving particular attention to the contribution of the weakly

damped normal modes of the plasma to this spectrum. These normal modes

carry the bulk of the particle discreteness-induced noise in electrostatic gyroki-

netic plasmas [4], [16], [17]; we explore the validity of this statement as param-

eters of the system change so that the normal modes are no longer well-defined

(i.e. as the damping rate of the normal modes becomes large). Additionally, we

present specific results (relevant to the general issue of the relationship between

noise and signal in a PIC simulation treated in existing literature [14], [18], [19])

regarding the effects of discreteness-induced noise on the long-time behavior of

nonlinearly saturated drift waves.
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Section II of this paper introduces the equations of the gyrokinetic model,

and presents the gyrokinetic fluctuation-dissipation theorem (FDT). In section

III we describe the normal modes of the gyrokinetic plasma, and explore the

conditions under which they are well-defined. We demonstrate that our ther-

mal equilibrium simulations are consistent with the theory and that these sim-

ulations satisfy the gyrokinetic FDT. Section IV explains how the simulation

methods used can be generalized to include the possibility of a density gradient

and linear drift waves; a calculation describing the nonlinear saturation of these

waves is also given. Section V describes the relevance of the gyrokinetic FDT

to the nonequilibrium, nonlinearly saturated states of the gyrokinetic plasma,

and presents simulation results showing the relationship of these states and the

particle-discreteness-induced background noise in the presence and absence of

well-defined normal modes. We then conclude with some comments on the ap-

plicability of this work to the more general issue of the effect of noise in PIC

simulations.

II. The gyrokinetic model

A. Governing equations

In the limit of k2
⊥ρ2

i � 1, the gyrokinetic Vlasov equation, which describes the

phase space evolution of a gyrocenter distribution function Fα(x, v‖, t), can be

written (in the absence of magnetic field gradients, and in the electrostatic limit)

as
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∂Fα

∂t
+ v‖b · ∇Fα −∇φ × b · ∇Fα − qαmi

qimα
b · ∇φ

∂Fα

∂v‖
= 0 . (1)

This equation, which resembles the drift kinetic equation, uses the conven-

tional gyrokinetic normalization; lengths and times are normalized to the scaled

gyroradius ρs ≡
√

Te/mi/Ωi and the inverse ion cyclotron frequency Ω−1
i =

(qiB0/mi)
−1, while the electrostatic potential φ is normalized to the electron

temperature Te/|qe|. Here b is a unit vector in the direction of the (uniform)

magnetic field B = B0b, and v‖ is a velocity coordinate parallel to this field.

The charge, mass, and temperature of species α are represented by qα, mα, and

Tα respectively, and we assume that the ions are singly charged (qi = |qe|).

The gyrokinetic Poisson equation, in these normalized units, is given by

∇2φ

(
λ2

De

ρ2
s

)
+ ∇2

⊥φ = −
∑

α

qα

qi

∫ ∞

−∞

Fαdv‖ (2)

with the first term on the left arising from the conventional Laplacian operator

in Poisson’s equation and the second term arising from the polarization charge

[3]. Because the electron Debye length λDe = (ε0Te/n0q
2
e)1/2 is much smaller

than ρs, the first of these terms may be neglected. The dominance of the

polarization term in Eq. (2) effectively changes the fundamental length scale of

the gyrokinetic plasma from λDe to ρs; we will later see this effect in examining

the low-frequency limit of the gyrokinetic dielectric function.

For our slab model, we postulate a magnetic field in the b = θŷ + ẑ di-

rection (for some θ � 1). We ignore variation in the ẑ direction, and study
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the evolution of waves (perpendicular to the dominant field component) with

discrete wavenumbers k ≡ kxlx̂ + kymŷ, for integer l and m, with kx ≡ 2π/Lx

and ky ≡ 2π/Ly. Here Lx and Ly are the dimensions of the slab (using pe-

riodic boundary conditions) in the x̂ and ŷ directions. We can then define a

fundamental parallel wavenumber k‖ ≡ θky and the perpendicular wavenumber

k⊥(l, m) =
√

k2 − m2k2
‖.

These equations are solved by the standard PIC methods, initially loading a

set of particles with some reasonable initial conditions (in our case, a Maxwellian

distribution in v‖ and a uniform distribution in x). We then iteratively evolve

the positions of these particles according to the characteristics of the gyrokinetic

Vlasov equation, interpolate their positions to a spatial grid, and calculate the

electrostatic potential using Fourier transforms.

B. The fluctuation-dissipation theorem

In thermal equilibrium, and in the absence of spatial gradients, the linear dielec-

tric function relevant to the physical system of Eqs. (1) and (2) can be written

as

Dl,m(ω) = 1 +
Xi + Xe

k2
⊥(l, m)

. (3)

Here, Xα ≡ 1 + ξαZ(ξα), where ξα = ω/
√

2mk‖vtα and Z is the plasma dis-

persion function. The thermal velocity is given (because of the gyrokinetic

normalization) by vtα =
√

miTα/mαTe, and the dispersion relation can be ob-

tained from the zeros of Dl,m(ω). In the limit as ω → 0, the dielectric function

(apart from a change of characteristic scale length λDe → ρs) describes the
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familiar Debye shielding effect of kinetic theory.

The resemblance of Eqs. (1) and (2) to the conventional Vlasov-Poisson

system suggests that many parallels can be drawn between gyrokinetic and con-

ventional Vlasov theory, and Krommes et al. [17] have initially treated this

topic (see also Ref. [20] for a lengthier discussion), formulating the classical

fluctuation-dissipation theorem for a gyrokinetic plasma in the electrostatic ap-

proximation. According to the theorem, the thermal equilibrium fluctuation

spectrum of our slab model satisfies

〈δφδφ〉l,m(ω) =
2

Nωk2
⊥(l, m)

Im

(
1 − 1

Dl,m(ω)

)
. (4)

Integration of this formula over all frequencies using residue theory, and nor-

malizing to 2π, yields the fluctuation spectrum as a function of wavenumber

only,

〈δφδφ〉l,m =
1

T

∫ T

0

〈|φl,m(t)|2〉dt =
1

Nk2
⊥(l, m)[1 + k2

⊥(l, m)/2]
, (5)

where T is the time over which the simulation runs (the left hand side being the

time-averaged |φl,m(t)|2) and N is the number of particles of a given species.
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III. Normal modes

A. Theory

In certain cases [21], the dominant contributions to Eq. (4) come from only a

few localized peaks at various values of ω in the spectrum. If we consider the

case of normal modes (oscillations which damp on a timescale slow compared

to the period of the wave), we can separate the real and imaginary parts of the

dielectric function, Dl,m(ω) = D′
l,m(ω) + iD′′

l,m(ω), and obtain

Im

(
1 − 1

Dl,m(ω)

)
=

[
D′′

l,m(ω)

D′
l,m(ω)2 + D′′

l,m(ω)2

]
. (6)

In the limit of small D′′
l,m(ω), which we expect from a normal mode, this

Lorentzian form reduces to

Im

(
1− 1

Dl,m(ω)

)
= πδ(D′

l,m(ω)) = π

p0∑

p=1

δ(ω − ωp)(
∂D′

l,m(ω)/∂ω
∣∣∣
ω=ωp

(7)

where we have assumed that there are p0 normal modes (i.e. solutions of

D′
l,m(ωp) = 0 for which the denominator is nonsingular). Consequently, we

can write the approximate relation

〈δφδφ〉l,m(ω) =
2π

Nk2
⊥(l, m)

p0∑

p=1

δ(ω − ωp)

ω
(
∂D′

l,m(ω)/∂ω
∣∣∣
ω=ωp

. (8)

This implies that the bulk of the fluctuation energy for a given wavenumber,
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as a function of ω, resides in localized peaks about the real frequencies of the

normal modes, if such modes can be reasonably well-defined.

The plasma described by the linear dielectric of Eq. (3) has two normal

modes which are conventionally referred to as ωH-modes [4]; with the appropri-

ate changes of scaling, these modes are analogous to the well-known Langmuir

waves of conventional Vlasov theory in the long-wavelength limit. If we assume

the ion and electron thermal velocities are small relative to the resonant phase

velocity ω/k‖, we can expand Z(ξα) to obtain

D′
l,m(ω) ≈ 1 − ω2

H

ω2
; ω2

H =
m2k2

‖(v
2
te + v2

ti)

k2
⊥(l, m)

; ωr = ±|ωH | . (9)

This gives the approximate result

〈δφδφ〉l,m(ω)|large ω ≈ 2π

Nk2
⊥(l, m)

[
δ(ω − ωH)

2
+

δ(ω + ωH)

2

]
(10)

for the fluctuation spectrum at high frequencies.

The existence of these normal modes depends on the system size Ly through

the parallel wavenumber k‖. As the system size decreases, the resonant phase

velocity moves from the tail of the initial Maxwellian distribution into the bulk

of the distribution, the damping rate increases (as is the case for Langmuir

waves, where the damping rate is proportional to the slope of the background

distribution at the resonant velocity), and it is no longer meaningful to speak

of the disturbance as a wave (it damps away on a timescale similar to the

period of the real oscillation frequency). Additionally, the approximation of
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the Lorentzian of Eq. (6) as a delta function begins to fail; the distinct real

frequency of a mode with long parallel wavelength is replaced by a band of

frequencies near ωr. Thus, for larger parallel wavenumbers, the energy in the

fluctuation spectrum cannot be said to reside in “normal modes”; rather, it

resides in random fluctuations excited by the discrete nature of the particles in

the plasma.

Ion acoustic modes may also be normal modes of Eq. (3); in the limit

ξe � 1, ξi � 1; letting ξe ∼ 0 and expanding Z(ξi) to lowest nontrivial order

yields

D′
l,m(ω) ≈ [1 − k2

⊥(l, m)]

k2
⊥(l, m)

(
1 − ω2

IA

ω2

)
; ω2

IA =
m2k2

‖v
2
ti

[1 + k2
⊥(l, m)]

; ωr = ±|ωIA|

(11)

for intermediate values of ω (k‖vti � ω � k‖vte). However, these modes (as

were the ωH -modes for small parallel wavelengths) are strongly Landau damped

in thermal equilibrium; their effects are relatively unimportant if the ωH -modes

are well-defined. The delta-function approximation (integrating only over inter-

mediate values of ω) is consistent with this result; we obtain

〈δφδφ〉l,m(ω)|int. ω ≈ 2π

N

1

[1 + k2
⊥(l, m)]

[
δ(ω − ωIA)

2
+

δ(ω + ωIA)

2

]
. (12)

Since k2
⊥ � 1, the coefficient multiplying the delta-functions is significantly

smaller for these modes than the corresponding coefficient in Eq. (10).
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It is known from Eq. (5) that integrating the exact fluctuation spectrum

over all frequencies (normalized to 2π) yields the result

〈δφδφ〉l,m exact =
1

Nk2
⊥(l, m)[1 + k2

⊥(l, m)/2]
=

1

Nk2
⊥(l, m)

− 1

N [2 + k2
⊥(l, m)]

(13)

which ought to be well-matched by the sum of the ω-integrals over the approxi-

mate spectra we have derived in Eqs. (10) and (12). Performing these integrals

and normalizing to 2π, we find that our procedure slightly overestimates the

correct answer; we obtain

〈δφδφ〉l,m approx. =
1

Nk2
⊥(l, m)

+
1

N [1 + k2
⊥(l, m)]

(14)

with the first term coming from the ωH modes and the second from the ion

acoustic modes. However, it is clear that the delta-function approximation is

reasonable; the error is on the order of the relative contribution of the ion

acoustic modes, which is small.

B. Numerical simulations

With our knowledge of the thermal equilibrium fluctuation spectra, we now

verify that our code satisfies the fluctuation-dissipation theorem. We evolve

particles along the characteristics of the gyrokinetic Vlasov equation, Eq. (1),

obtaining
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dxαj

dt
= −

(
∂φ

∂y

∣∣∣∣
x=xαj

;
dyαj

dt
= v‖αjθ +

(
∂φ

∂x

∣∣∣∣
x=xαj

dv‖αj

dt
= −qαmi

qimα
θ

(
∂φ

∂y

∣∣∣∣
x=xαj

. (15)

We also utilize the standard δf technique of setting Fα = F0α + δfα in Eq. (1);

perturbations around the background Maxwellian F0α are examined by defining

the particle weight wα ≡ δfα/Fα and evolving the resulting weight equation

dwαj

dt
= −(1− wαj)v‖αjθ

qα

qi

(
∂φ

∂y

∣∣∣∣
x=xαj

(16)

along with Eqs. (15). The appropriately weighted density perturbations are

then interpolated to a grid and the potential found via Fourier transforms.

Numerically, one can also directly solve Eq. (3) and obtain a representation

of Eq. (4) as a function of ω for a given (l, m). Normalizing this representation

to 2π〈δφδφ〉l,m [from Eq. (5)], we can then qualitatively compare the results

with the predictions of Eqs. (10) and (12) and our simulations. As expected,

we observe in Figs. 1 and 2 that the power does indeed reside in localized peaks

which spread as the parallel wavenumber grows, and that the ion acoustic modes

are relatively unimportant for small parallel wavenumbers. Here we have used

Lx = 32, θ = 0.01, (l, m) = (1, 1), and v2
te = mi/me ≈ 1837.0 as Ly assumes the

values [30, 23, 16], yielding k⊥ρi = [0.08, 0.11, 0.19] respectively. The simulations

use 128 gridpoints in both the x and y directions, along with N = 250, 000

particles and a timestep ∆t = 0.1). One notes that the positions of the peaks in
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ω are not well matched by our delta-function approximation; however, this can

be rectified by retaining more terms in the expansion of the plasma dispersion

functions (the algebra is unduly complicated and will not be included here).

As previously mentioned, one can also see the degradation of the delta-function

approximation of Eq. (7) (as well as the increasing contribution of the ion

acoustic modes to the spectrum) as the parallel wavenumber is increased.

As noted by Hu and Krommes [22], the use of the δf method requires us

to normalize the potential fluctuations by a typical weight w̄. For the ωH-

modes, which (as the disparate velocities of Eq. (9) suggest) are predominantly

supported by the electrons, the natural choice for w̄ in this case is the root-mean-

square electron weight
√∑N

j=1 wej(t)2/N . We exhibit the simulation results,

along with the theoretical curve obtained from Eq. (5) at lowest order, in Fig. 3.

The simulation uses 128 gridpoints in the x and y directions, with Lx = Ly = 23

and timestep ∆t = 0.0125. The parallel field component is given by θ = 0.01,

and we have Te = Ti = 1 and mi/me = 1837.0; only the (l, m) = (±1,±1)

Fourier components of the potential are retained. The agreement is quite good,

even with an average of less than one marker particle per species per grid cell

(N ∼ 1.6 × 104 in the figure).
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IV. Drift modes

A. Linear growth

We now relax the constraint of thermal equilibrium by introducing a background

density gradient which gives rise to drift waves. It is common [15, 23, 24] to

impose a fixed background density gradient by modeling the particle density as

an x-dependent function of a parameter κN , such that

∇F0α = −κNF0α (17)

and neglecting this x-dependence where the gradient does not act specifically

on F0α. Generally, we must have |κN | < kx for this procedure to be valid

(though this restriction is unnecessary for modes propagating perpendicular to

the density gradient). With this assumption, the gyrokinetic Vlasov and Poisson

equations (assuming equal temperatures for ions and electrons) can be written

in the δf formalism as

∂δfα

∂t
+ v‖θ

∂δfα

∂y
+ κN

∂φ

∂y
F0α + v‖θ

qα

qi

∂φ

∂y
F0α

−∇φ × ẑ · ∇δfα − qαmi

qime
θ
∂φ

∂y

∂δfα

∂v‖
= 0 , (18)

∇2
⊥φ = −

∑

α

qα

qi

∫ ∞

−∞

δfαdv‖ . (19)

We now make a standard assumption of quasilinear theory [25], namely that
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(for real ωl,m),

φ(x, y, t) =

∞∑

l=−∞

∞∑

m=−∞

φ̂l,m(εt)eikxlxeikymye−iωl,mt (20)

δfα(x, y, v‖, t) =

∞∑

l=−∞

∞∑

m=−∞

δ̂fα,l,m(v‖, εt)e
ikxlxeikymye−iωl,mt (21)

where the quantities φ̂l,m(εt) and δ̂fα,l,m(v‖, εt) vary slowly in time relative to

the period T = 2π/ωl,m. Defining ω∗
N ≡ kyκN , we then obtain

∂

∂t
δ̂fα,l,m(v‖, εt) − i(ωl,m − mk‖v‖)δ̂fα,l,m(v‖, εt)

+imφ̂l,m(εt)F0α(v‖)

(
ω∗

N +
qα

qi
k‖v‖

)
+

∞∑

l′=−∞

∞∑

m′=−∞

ei(ωl,m−ωl′,m′−ωl−l′,m−m′ )t

[
kxky(m′l − l′m) − im′k‖

qαmi

qime

∂

∂v‖

]
φ̂l′,m′(εt)δ̂fα,l−l′,m−m′(v‖, εt) = 0 (22)

−k2
⊥(l, m)φ̂l,m(εt) = −

∑

α

qα

qi

∫ ∞

−∞

δ̂fα,l,m(v‖, εt)dv‖ (23)

Ignoring the nonlinear φ̂l′ ,m′(εt)δ̂fα,l−l′,m−m′(v‖, εt) terms allows us to solve

the Vlasov equation,

δ̂fα,l,m(v‖, εt) = δ̂fα,l,m(v‖, 0)ei(ωl,m−mk‖v‖)t

−imF0α(v‖)

(
ω∗

N +
qα

qi
k‖v‖

) ∫ t

0

φ̂l,m[ε(t − λ)]ei(ωl,m−mk‖v‖)λdλ . (24)

If we then let φ̂l,m[ε(t − λ)] ≈ φ̂l,m(εt)e−λγl,m (an assumption appropriate
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both for the Landau-damped normal modes and the drift modes, where γl,m is

the damping/growth rate), we obtain (after some algebra) the linear expression

δ̂fα,l,m(v‖, εt) =
mF0α(v‖)

(
ω∗

N + qα

qi
k‖v‖

)
φ̂l,m(εt)

ωl,m − mk‖v‖ + iγl,m
(25)

and the linear dispersion relation

0 = k2
⊥(l, m) −

∑

α

(
1 +

mqα

qi

ω∗
N

ωl,m + iγl,m

) ∫ ∞

−∞

mk‖v‖F0α(v‖)

ωl,m − mk‖v‖ + iγl,m
dv‖ .

(26)

From the latter equation we can recover the drift wave by assuming that the

resonant phase velocity is much larger than the ion thermal speed (so that ion

terms may be neglected altogether) and much less than the electron thermal

speed; the assumption that γl,m � ωl,m then yields

0 = k2
⊥(l, m) + 1 − mω∗

N

ωl,m + iγl,m
+

i
√

π(ωl,m − mω∗
N)γl,m√

2mk‖vte|γl,m|
(27)

with solution

ωl,m =
mω∗

N

1 + k2
⊥(l, m)

; |γl,m| =

√
πm2ω∗2

N k2
⊥(l, m)

(1 + k2
⊥(l, m))3

√
2mk‖vte

. (28)

One observes that ωl,m = −ωl,−m = −ω−l,−m and that the drift modes grow

(or damp) independently of the sign of l or m. Consequently, Eq. (25) can be

used to show that φ̂∗
l,−m(εt) = φ̂l,m(εt).

16



B. Nonlinear saturation

Because of the nonlinear terms in Eq. (22), the drift waves described by Eq.

(26) which grow in time will eventually saturate. We can examine this satura-

tion mechanism in a simple case by restricting the potential to modes of one

particular wavenumber (l = ±1, m = ±1) and ignoring the parallel velocity

nonlinearity [the velocity derivatives in Eq. (22)]. Our approach is very similar

to the mode coupling calculation of Lee et al. [26], and an analogous derivation

(in the 1-dimensional case) has been carried out by Parker and Lee [15]. The

equation for (l = 2, m = 0) is given by

∂

∂t
δfα,2,0(v‖, εt) − iω2,0δfα,2,0(v‖, εt)

+2kxkyeiω2,0t
[
φ̂1,1(εt)δ̂fα,1,−1(v‖, εt) − φ̂1,−1(εt)δ̂fα,1,1(v‖, εt)

]
= 0 (29)

which forces ω2,0 = 0. Substitution of the linear values for δ̂fα,1,±1(v‖, εt) then

yields the nonlinear result

δ̂fα,2,0(v‖, εt) = −2πikxkyF0α(v‖)φ̂1,1(εt)φ̂1,−1(εt)

γ1,1

(
ω∗

N +
qα

qi
k‖v‖

)
δ(ω1,1−k‖v‖) .

(30)

A similar procedure for l = 0, m = 2 yields no contribution, so we can then

write the nonlinear equation for (l = 1, m = 1);
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∂

∂t
δ̂fα,1,1(v‖, εt)−i(ω1,1−k‖v‖)δ̂fα,1,1(v‖, εt)+iφ̂1,1(εt)F0α(v‖)

(
ω∗

N +
qα

qi
k‖v‖

)

+2kxkyφ̂∗
1,−1(εt)δ̂fα,2,0(v‖, εt) = 0 (31)

with approximate solution

δ̂f
NL

α,1,1 =
F0α(v‖)

(
ω∗

N + qα

qi
k‖v‖

)
φ̂1,1(εt)

ω1,1 − k‖v‖ + iγ1,1

[
1 −

4k2
xk2

yπ

γ
|φ̂1,−1(εt)|2δ(ω1,1 − k‖v‖)

]
.

(32)

When this result is inserted into the Poisson equation and the drift-wave

dispersion relation calculated, we obtain

0 = k2
⊥(1, 1)+1− ω∗

N

ω1,1 + iγ1,1
+

i
√

π(ω1,1 − ω∗
N )√

2k‖vte

[
1 −

4k2
xk2

y|φ̂1,−1(εt)|2
γ2
1,1

]
. (33)

The real part of the frequency is unchanged, but saturation occurs when the

potential grows such that the imaginary term is zero;

|φ̂1,±1(εt)| ≈
γ1,1

2kxky
(34)

in agreement with the calculation of Ref. [26] (and noting that φ̂1,1 = φ̂∗
1,−1).

Comparing this result with our simulations, we find that this procedure slightly

underestimates the saturation level, as Fig. 4 shows. Nevertheless, one can

18



plausibly argue (both analytically and from the data) that nonlinear effects do

indeed cause the mode to saturate, and it is the existence of such a saturation

mechanism (rather than the detailed description of it) that we will primarily

make use of in the remainder of this paper.

V. Saturated states and the FDT

If we include a density gradient in the background distribution, the dielectric

function in Eq. (3) generalizes to

Dl,m(ω) = 1 +
Xi

k2
⊥(l, m)

(
1 +

mω∗
N

ω

)
+

Xe

k2
⊥(l, m)

(
1 − mω∗

N

ω

)
. (35)

The introduction of a density gradient as a free energy source necessarily im-

plies that the system is no longer in thermal equilibrium, so one cannot apply

the fluctuation-dissipation theorem directly without careful consideration. It is

plausible, however, that the theorem can be applied to a nonlinearly saturated

system containing only damped and marginally stable modes when the deviation

from thermal equilibrium is small. For the nonlinearly saturated drift waves we

have simulated, we know from Eq. (28) that the real frequency of the drift wave,

which scales as ω∗
N , is well separated from the high-frequency components of the

fluctuation spectrum (arising from the interaction of the density gradient with

the low-frequency ion acoustic wave). Even when this background gradient is

large enough to amplify these low-frequency fluctuations and produce unstable
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drift waves, our simple model for the saturation mechanism predicts a negligible

shift in the real frequency of the mode. Low-frequency fluctuations are ampli-

fied by the density gradient, grow, and nonlinearly saturate, but their energy

remains in the low-frequency portion of the spectrum (as demonstrated in the

previous section), well separated from and having negligible effects on the high

frequency modes where the discreteness-induced noise resides. Consequently, it

remains feasible to use the FDT to predict the behavior of the high-frequency

portion of the spectrum.

As before, we can find the ωH-modes by taking the limit of the dielectric

function as ξe, ξi � 1, obtaining

Dl,m(ω) ≈ 1− ω2
H

ω2
+

mω∗
Nω2

H

ω3
; ω2

H ≈
k2
‖m

2v2
te

k2
⊥(l, m)

. (36)

Because we assume ω∗
N is small, we can neglect it and recover the result of

Eq. (10). Integrating the latter result only over the high frequencies, we see that

the fluctuation energy in the normal modes should continue to scale inversely

as the number of particles [as in Eq. (14)].

If we attempt to apply Eq. (8) to the portion of the spectrum containing

the drift wave, the dispersion relation (assuming a nonlinear saturation of the

general form described previously) is given by

Dl,m(ω) ≈ 1 + k2
⊥(l, m)

k2
⊥(l, m)

(
1 − ωl,m

ω
+ i

ωl,mδ

ω2

)
(37)

where δ goes to zero as the system saturates nonlinearly and ωl,m is given by
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Eq. (28). In this case, Eq. (8) suggests that for the drift waves,

〈δφδφ〉l,m(ω)|small ω =
2π

N [1 + k2
⊥(l, m)]

δ(ω − ωl,m) . (38)

Because drift waves arise when ion acoustic waves are destabilized by a density

gradient, the resemblance of this equation to Eq. (12) is reasonable. Although

additional physical effects that this equation does not capture may arise (e.g.

linearly growing drift modes), it is reasonable to assume (as our simulations

suggest) that the prediction of Eq. (12) regarding the scaling of the discrete

particle noise with N is relevant in the presence of the drift wave as well; the

physics governing the linear growth and saturation of drift modes is contained

even in collisionless kinetic models [e.g. the quasilinear model of Eq. (34)] and

is consequently unrelated to particle discreteness. A simple estimate of the

low-frequency discreteness-induced fluctuation level [the square root of the fre-

quency integral of Eq. (38)] yields a much smaller amplitude (on the order of

3% for typical simulation parameters used in this section) than the quasilinear

saturation level of Eq. (34). The attainment of a nonlinearly saturated steady

state by the drift wave suggests that it may be of interest to determine whether

more general equations [akin to Eqs. (10) and (38)] can be constructed to de-

scribe low-frequency discreteness-induced fluctuations about this steady state.

A brief discussion on the possibility of developing an FDT for nonthermal equi-

libria is presented in Ref. [27]; the effects of discreteness-induced noise in such

plasmas are also addressed by Kadomtsev [28]). Although we do not pursue

it here, the possibility of obtaining further information about the noise by cal-
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culating fluctuations about a nonlinearly saturated steady state is potentially

interesting.

Turning to our data, we observe that the physical process described by the

numerically obtained spectrum is not merely fluctuations at the real frequency

of the drift wave, but the nonlinear saturation of these fluctuations as they

are amplified by the density gradient. This saturation amplitude must be in-

dependent of the number of particles in the simulation; thus, if the code has

converged, we should expect the fluctuation spectrum to exhibit a large peak

at ω = ωl,m with amplitude independent of N . As well, the spectrum should

contain peaks at the normal mode frequencies ω = ±ωH with amplitudes which

decrease inversely with N . Figure 5 confirms that this is indeed the case; these

simulations use ω∗
N = 0.055 and ∆t = 0.125 while varying the particle count

(N = [3.2×104, 5.0×105, 1.0×106]). The other system parameters are given by

Lx = Ly = 23, θ = 0.01, v2
te = 1837.0, and Te/Ti = 1 (as in Fig. 3). It should be

mentioned here that the spatially-averaged δfα is much smaller than the equi-

librium distribution function F0α near the phase velocity of the wave; we show

this effect in Fig. 6 for the electrons. Thus, the deviation from equilibrium in

the steady state is indeed small.

Some insight into the effects of discrete particle noise can be obtained by

studying the behavior of Fig. 5 as the damping rate of the normal modes in-

creases (this can be done by reducing the size of the slab in the y-direction). As

we have previously noted, the concept of “normal modes” is not well-defined for

large damping rate. As random fluctuations Landau damp away on timescales
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increasingly near the period of the real oscillation of the “wave”, the energy

in these fluctuations begins to spread from a single real frequency (that of the

original normal mode) to a broad band in frequency space, essentially creating

a background of incoherent noise. Running simulations to investigate the ef-

fects of this broad-spectrum noise, we find that even when the normal modes

of a system are not well-defined, the fluctuation spectrum still predicts the cor-

rect saturation amplitude (independent of particle count) for the drift wave

while preserving the favorable scaling of the noise with particle count across

the remainder of the spectrum. Figure 7 shows this effect; for these simula-

tions we have set Ly = 12 and left the other system parameters unchanged

from Fig. 5. It is noteworthy that while the normal mode fluctuations are

well-separated from the growing drift mode in the spectra of Fig. 5, the broad,

noisy band of discreteness-induced fluctuations in the top portion of Fig. 7 has

spread to encompass the frequency of the drift mode (because of the low particle

count). Nevertheless, this overlapping (in frequency space) of incoherent noise

and (small-amplitude) coherent drift fluctuations has no appreciable effect on

the saturation amplitude of the drift mode; the amplitude remains constant as

the increasing particle count reduces the discrete particle noise at the drift fre-

quency to negligible values. One might wonder about the validity of this result

if the saturation amplitude were much lower than the amplitude of the incoher-

ent noise; such a case might arise for weakly unstable drift modes [recall that

the saturation amplitude scales as the growth rate, as in Eq. (34)]. However, in

particle simulations the amplitude of the noise can always be reduced by using
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more simulation particles, and convergence studies can be used to discern when

the contribution of the noise has become negligible. The number of particles

needed to guarantee this in these simulations is, in fact, quite small (less than

two particles per cell).

Because we have only retained the (±1,±1) Fourier components of the po-

tential in our earlier simulations (effectively removing coupling terms between

short-wavelength and long-wavelength modes), it is of interest to assess the ef-

fects of mode coupling on our conclusions. In general, we find that the long-term

behavior of the saturated drift modes we have considered is not substantially

affected by the presence of shorter-wavelength modes in the system. We con-

sider an elongated slab with simulation parameters Lx = 95.0, Ly = 9.5, θ =

0.01, v2
te = 1837.0, Te/Ti = 1, and ω∗

N = 0.043 with N = 1, 048, 572 particles

and Nx×Ny = 256×64 gridpoints, and use the four-point averaging method of

Ref. [29] to retain full gyroradius effects. This elongated geometry bears some

resemblance to experimentally observed plasmas in tokamaks, with variation in

x and y corresponding to radial and poloidal variation (and the (0, 1) mode we

study corresponding to a radial streamer). As shown in Fig. 8, although the

initial transition from linear growth to saturation is affected by the presence of

other modes, the long-time behavior of the (0, 1) mode amplitude is not sub-

stantially affected. Though the signal is somewhat noisier when more modes are

retained, this can be easily dealt with by using more particles in the simulation.
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VI. Conclusions

We have shown that when the normal modes (ωH -modes) of the gyrokinetic

plasma are well-defined, the fluctuation energy carried by these modes scales

inversely as the number of simulation particles even in the presence of saturated

low-frequency drift instabilities. Although such instabilities are driven when

the plasma is not in thermal equilibrium, one may nevertheless appeal to the

fluctuation-dissipation theorem to plausibly explain this effect; the power in the

fluctuation spectrum (in thermal equilibrium) is contained in high-frequency

normal mode fluctuations, but the introduction of a mild density gradient excites

fluctuations only at frequencies substantially lower than those of the normal

modes. These fluctuations are amplified (by the free energy of the background

gradient) until they saturate nonlinearly, maintaining the plasma in a marginally

stable, nonequilibrium state.

Interestingly, the favorable scaling (with particle count) of the fluctuation

energy external to the drift wave is preserved even when the normal modes are

not well-defined and are replaced by a broad spectrum of incoherent, particle-

discreteness-induced noise not well separated from the drift wave. Further, the

long-time behavior of the saturated drift modes is not substantially affected by

mode coupling. We surmise from our results that in many cases, the effects

of discrete particle noise on PIC simulations of microturbulence are negligible

(or can easily be made so) even when relatively modest numbers of simulation

particles are used, in agreement with the general conclusions of Kadomtsev [28].

We also believe that the results pertaining to discrete particle noise we have
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described here have relevance to the more general case of microturbulence in

tokamak geometry [13].
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Figure 1: The normalized fluctuation spectrum 〈δφδφ〉l,m(ω)/[2π〈δφδφ〉l,m] for
(l, m) = (1, 1) from the numerical solution of Eq. (4) (solid lines) and our
simulation results (dotted lines) are plotted together with the delta-function
approximation of Eq. (10) for the ωH-modes (dashed lines) as the parallel
component of the wavelength is varied.

29



−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

5

Frequency (ω/Ω)

Ly
 =

 3
0

<δ φ δ φ>
1,1

(ω) / [2 π <δ φ δ φ>
1,1

]

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

5

Frequency (ω/Ω)

Ly
 =

 2
3

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

5

Frequency (ω/Ω)

Ly
 =

 1
6

Figure 2: The simulation results and theoretical predictions of Fig. 1, together
with the delta-function approximation of Eq. (12) for the ion acoustic modes
(dashed lines), are plotted over a narrower frequency range as the parallel com-
ponent of the wavelength is varied.
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Figure 5: As the number of particles in the simulation is increased, the satu-
ration amplitude of the drift wave remains constant while the amplitude of the
spectral noise carried by the ωH modes (whose real frequencies are indicated by
dashed lines) decreases.
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Figure 6: The spatial average of the perturbed distribution function δfe, nor-
malized to the value F0e(v‖ = 0) (where F0e is the background Maxwellian) for
the three simulations of Fig. 5. The resonant phase velocity of the drift wave
is indicated by the dashed lines.
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Figure 7: In the absence of clearly defined normal modes (with the real fre-
quency of the strongly damped ωH -mode indicated by dashed lines), the broad
spectrum of background noise overlaps the portion of the spectrum occupied by
the growing drift wave at low N . Nevertheless, the noise amplitude does not
appreciably affect the saturation amplitude of this wave, and favorable scaling
of the noise amplitude is obtained as the particle count is raised.
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Figure 8: The long-time behavior of φ0,1(t) is shown for an elongated simulation
with Lx = 95.0, Ly = 9.5. Only the (0,±1) components of the potential have
been retained in the top curve; the simulation shown in the middle plot retains
all the modes. A running average over several periods of the high-frequency
noise is taken below, showing that mode coupling does not substantially affect
the long-time behavior of the saturated drift mode.
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