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Abstract

It is shown analytically that pressure gradient effects are favorable to the existence of Alfvén

Cascade (AC) modes in a tokamak plasma with reversed shear. What is crucial for obtaining the

improved existence criterion of AC’s is the averaged normal curvature. This term depends on the

Shafranov shift which contains a pressure gradient term that at sufficiently low frequency causes

a cancellation in the mode existence criterion of all terms quadratic in the pressure gradient. The

favorable criterion is then found to be proportional of the product of the pressure gradient and

the inverse aspect ratio. Near the rational surface, there is one to one correspondence between

Mercier stability and the AC mode existence. When the averaged curvature is favorable to Mercier

modes, it is also favorable to the existence of AC. However, at higher frequencies the α2 term can

be unfavorable to mode existence. We show that when α > 3ε, that as qmin decreases from m/n,

the cascade mode can easily satisfy its existence criterion at lower frequencies, but the existence

criterion will fail before the frequency reaches the TAE gap which occurs when qmin approaches

(m − 1/2)/n.
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I. INTRODUCTION

Alfvén cascade modes (or reversed shear Alfvén Eigenmodes) have received a great deal

of attention recently [1-11] since the their interpretation [1] as Alfvén eigenmode localized at

the minimum q surface in tokamak plasmas with reversed shear profiles. These modes have

long been observed in the experiments [2,9-11] and the frequencies of these modes typically

increase as qmin drops in time according to ω2 ∼ ((n−m/qmin)VA/R)2 + ω2
geod , where ωgeod

is the geodesic curvature frequency. These Cascade modes form near the region of zero

magnetic shear and typically they are spontaneously excited by the presence of energetic

particles. Their observation allows a precise determination of the value of the minimum

safety factor in a tokamak discharge.

Theoretically it is found that the mode structure has a single dominant poloidal mode

number, m, and that the frequencies of the modes are always slightly shifted above the max-

imum of the shear Alfvén continuum at the qmin surface. Thus, these modes have similar

properties to the Global Alfvén Eigenmode (GAE) [12]. However, fine tuned corrections to

the shear Alfvén wave terms of the MHD equations needs to be taken into account to de-

termine whether a global eigenmode can indeed be established. Such corrections arise from

energetic particles [1, 4], toroidicity [5] or plasma density gradient [6]. Recent numerical

results from the NOVA[13] code showed that the plasma pressure gradient has a favorable

effect on the existence of Alfvén Cascade modes [7], a tendency that has been confirmed by

other numerical codes such as LIGKA [14]. However, it has not been understood analytically

why including the plasma thermal pressure gradient effect is favorable for the existence of

these modes. Indeed the work in reference [8] indicates that the pressure gradient effect is

unfavorable to the establishment of the mode. Here we reanalyze the MHD equations gov-

erning the Alfvén Cascades and we find that the work in reference [8] needs to be somewhat

modified. The principal modification is the inclusion of the averaged normal curvature from

the interchange term. With the new terms we now find that including the pressure gradient

terms allows an enhancement of the mode existence criterion.

We will use the results of the present theory to interpret published experimental obser-

vations in JET data, as to why, as qmin decreases at higher q-values, the cascade modes do

not transform into TAEs and why they do make this transformation at lower q-values.
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II. REDUCED MHD EQUATIONS

We start from the linearized momentum equation:

ρ
∂2ξ

∂t2
= −∇δP + δJ × B + J × δB. (1)

where ρ is plasma mass density, ξ is the plasma displacement vector, B and J is the equi-

librium magnetic field and plasma current respectively, δP , δB and δJ is the perturbed

pressure, magnetic field and plasma current respectively. Using reduced MHD model for

shear Alfvén waves in a low beta plasma, the plasma displacement can be written as

ξ =
1

B
∇U × b (2)

where U represents stream function of plasma displacement. Using operation of ∇· 1

B
b× on

both side of Eq. (1), we get

−∇ · (ω
2

v2
A

∇⊥U) = ∇ · δJ⊥ + ∇ · [ b
B

× (J × δB)] + ∇ · ∇δP × b

B
(3)

For Shear Alfvén waves in low beta plasmas, the perturbed parallel magnetic field satisfies

the following condition approximately:

δB · B + δP = 0 (4)

Using Eq. (2), the perpendicular component of the perturbed magnetic field is given by

δB⊥ = QJ⊥ + ∇Q × B. (5)

Using Eq. (4) and (5) together with the quasi-neutrality condition ∇·δJ = 0, and plasma

equilibrium equation J × B = ∇P , Eq. (3) becomes

−∇ · (ω
2

v2
A

∇⊥U) = −B · ∇δJ · B
B2

+
δP

B
b · ∇(

J‖

B
) − (QJ⊥ + ∇Q × B) · ∇(

J‖

B
)

− δPJ · ∇(
1

B2
) − 2

κ · ∇δP × B

B2
− 2

J‖ · ∇δP

B2
(6)
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where J‖ is the parallel equilibrium current, κ = b · ∇b is the magnetic field curvature, and

Q =
1

B
b · ∇U (7)

δP =
1

B
b ×∇U · ∇P (8)

δJ · B = J · δB + ∇ · [δB × B]

= J‖δB‖ + J · δB⊥ + ∇ · [Q∇P − B2∇⊥Q]

= J‖δB‖ + J2

⊥Q + Q∇2P −∇ · (B2∇⊥Q) (9)

For the purpose of focusing on effects of pressure gradient, we have dropped the plasma

compression term in the pressure perturbation. This eliminates the fluid compressibility and

the sound wave. The effects of fluid compressibility will be considered in Sec. (IV).

III. PRESSURE GRADIENT EFFECTS ON MODE EXISTENCE

Following the procedure of Breizman et al.[5], we expand Eq. (6) to second order of

inverse aspect ratio including the pressure gradient terms. The procedure is outlined briefly

as follows. Consider Alfvén cascade modes with mode frequency close to the tip of Alfvén

continuum at the qmin surface, ω ≈ (n−m/qmin)vA/R. For simplicity, we assume high mode

number m >> 1. The plasma beta is assumed to be second order, β ∼ O(ε2), where ε = r/R

is inverse aspect ratio. Keeping terms up to second order, Eq. (6) can be greatly simplified

and can be written as

∇ · (ω
2

v2
A

∇⊥U) + B · ∇(
1

B2
∇ · B2∇⊥Q) −∇(

J‖

B
) · (∇Q × B) + 2

κ · (B ×∇δP )

B2
= 0 (10)

The neglected terms are either of higher order in ε or in 1/m.

We now consider a large aspect ratio, low beta tokamak equilibrium with shifted circular

flux surfaces. The shifted circle flux coordinates (r, θ, ζ) are used (see Appendix). After

expanding Eq. (10) to second order O(ε2), we multiply Eq.(10) with JR0 exp(imθ) with J
the Jacobian (assuming U =

∑

Um(r) exp(inζ − imθ)) and integrated over θ to arrive at the

following mode equations:
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(L0

m + L2

m)Um + L1

m,m+1Um+1 + L1

m,m−1Um−1 = 0 (11)

(L0

m+1 + L2

m+1)Um+1 + L1

m+1,mUm = 0 (12)

(L0

m−1 + L2

m−1)Um−1 + L1

m−1,mUm = 0 (13)

where L0, L1 and L2 are operator of zeroth order, first order and second order respectively

and are given by

L0

m =
∂

∂r
(ω̄2 − k2

m)r
∂

∂r
− m2

r
(ω̄2 − k2

m) (14)

L1

m,m±1 = ω̄2[
∂

∂r
r(2ε + ∆′)

∂

∂r
− m(m ± 1)

r
(ε − ∆′) ∓ (ε + (r∆′)′)m

∂

∂r
]

− km[
∂

∂r
r∆′ ∂

∂r
km±1 −

m2

r
(ε + ∆′)km±1 ∓ m(ε + (r∆′)′)

∂

∂r
km±1]

− mα

2q2
(
m

r
∓ ∂

∂r
) (15)

L2

m =
∂

∂r
ω̄24ε∆′r

∂

∂r
+

m2

r
(4ε(ε + ∆′)ω̄2 + κ̄rα/q2) (16)

where ω̄ = ω/(VA/R0), km = (n−m/q), α = −R0q
2dβ/dr is the normalized pressure gradient

parameter and ∆′ is the radial derivative of the Shafranov shift given by ∆′ = ε(βp + li/2)

with βp = 2(< p > −p)/B2
p a measure of poloidal beta and li =< B2

p > /B2
p the internal

inductance. Here, the bracket < ... > indicates a volume average within radius r. Finally κ̄r

is the averaged normal curvature (normalized by 1/R0) and is given by [15] (see Appendix)

κ̄r = ε(1 − 1

q2
) +

1

2
α (17)

Equation (10-12) can be combined into a single equation for Um:

(L0

m + L2

m)Um = (L1

m,m+1

1

L0
m+1,m+1

L1

m+1,m + L1

m,m−1

1

L0
m−1,m−1

L1

m−1,m)Um (18)
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For high m, the mode is localized around q = qmin surface, thus, the radial derivative

acts only on the perturbation to a good approximation. Then we can simplify the operators

as:

L0

m±1 = r(ω̄2 − k2

m±1)(D
2 − m2

r2
) (19)

L1

m,m±1 = G0± ± G1±D + G2±D2 (20)

L1

m±1,m = G0± ∓ G1±D + G2±D2 (21)

where operator D denotes radial derivative and coefficients Gi are given by

G0± = −m2

r
((ε − ∆′)ω̄2 + (ε + ∆′)kmkm±1 +

α

2q2
) (22)

G1± = −m((ε + (r∆′)′)ω̄2 − (ε + (r∆′)′)kmkm±1 −
α

2q2
) (23)

G2± = r(2ε + ∆′)ω̄2 − r∆′kmkm±1 (24)

Then the right hand side of Eq.(18) can be written as:

RHS =
1

r(ω̄2 − k2
m+1)

[G2

2+D2 +
(m + 1)2

r2
G2

2+ + 2G0+G2+ − G2

1+]

+
1

r(ω̄2 − k2
m−1)

[G2

2−D2 +
(m − 1)2

r2
G2

2− + 2G0−G2− − G2

1−] (25)

As pointed out previously [5], it is remarkable that the terms proportional to the inverse

of operator D2 −m2/r2 do not appear in above equation. It can be shown that these terms

cancel if it is assumed that ∆′ is linear in r (i.e., (r∆′)′ ≈ 2∆′). Thus, for simplicity, we

assume ∆′ is linear in r from now on and it then follows that ∆′ = (ε + α)/4.

Taking advantage of ω̄2 ≈ k2
m and ω̄2 − k2

m±1 ≈ −1/q2 ± 2km/q, Eq. (25) becomes

RHS = 2rω̄2[ε2 + 2∆′ε +
(ε + ∆′)2

4k2
mq2 − 1

]D2 + 2ω̄2
m2

r
[ε2 + 2∆′ε − ∆′2

4k2
mq2 − 1

]

+ 2
m2

r

2∆′k2
mα − 1

4q2 α

4k2
mq2 − 1

(26)
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Substitute Eq. (16) and Eq. (26) into Eq. (18), we arrive at the final expression for the

mode equation with pressure gradient effects.

∂

∂r
(ω̄2 − k2

m)r
∂

∂r
Um − m2

r
(ω̄2 − k2

m)Um

= −m2

r
[
2(ε2 + 2∆′ε)ω̄2

1 − 4k2
mq2

− α2/2q2

1 − 4k2
mq2

+
4∆′ω̄2α

1 − 4k2
mq2

+
1

q2
κ̄rα]Um (27)

This completes our derivation for the eigenmode equation for the cascade modes with pres-

sure gradient effects.

Equation (27) extended previous work to full pressure gradient effects. The first term

on the right hand side of Eq. (27) is the second order toroidicity term originally derived in

Ref. [5]. The second term comes from the mode coupling term due to the curvature. This

is the α2 term derived by Breizman et al. [8] and it is always unfavorable to the existence

of the cascade modes. The third and the fourth terms are the new pressure gradient terms

obtained in this work. In particular, the new average curvature term dominates over the

α2 term. It is the main pressure gradient term responsible for the favorable effect on the

existence of the cascade modes. To see this more clearly, we consider the low frequency limit

ω̄2 ∼ k2
m << 1/4q2. Then Eq. (27) becomes:

∂

∂r
(ω̄2 − k2

m)r
∂

∂r
Um − m2

r
(ω̄2 − k2

m)Um

= −m2

r
[−α2/2q2 +

1

q2
κ̄rα]Um

= −m2

r
[(1 − 1

q2
)εα]Um (28)

Note that the α2 term has been canceled by the pressure gradient dependent part of the

average curvature using Eq. (17). What remains is a purely linear term in pressure gradient

which is favorable for the mode existence when q > 1. This condition corresponds exactly

to the stability condition of Mercier modes at low shear, i.e., q > 1 for stability. We note for

comparison that Eq. (28) can be used at low shear to obtain the MHD stability criterion

of Mercier modes. In particular the Mercier condition yields stability for a tokamak when

q > 1, due to the favorable normal curvature, while the α2 terms coming from the side

band coupling is canceled by the beta dependence of the equilibrium Shafranov shift. This
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cancellation has been found by others [15, 16] and it appears to be a general property of

Mercier modes.

Following Berk et al. [1], Eq. (27) can be expanded about the zero shear point and

written in the following dimensionless form:

∂

∂x
(S + x2)

∂

∂x
Um + (Q − S − x2)Um = 0 (29)

where x = m(r − r0)/r0 with r0 being the radius of minimum q,

S =
mq2

0

(−km0)r2
0q

′′
0

(ω̄2 − k2

m0) (30)

Q = Qtor + Qpressure (31)

Qtor = 2
mq2

0(−km0)

r2
0q

′′
0

(ε2 + 2∆′ε)

1 − 4k2
m0q

2
0

(32)

Qpressure =
mq2

0

(−km0)r2
0q

′′
0

[
4∆′ω̄2α − α2/2q2

0

1 − 4k2
m0q

2
0

+
1

q2
0

κ̄rα] (33)

with km0 = n−m/q0 and q0 the minimum q. Here, Qtor is the toroidicity term derived pre-

viously [5] and Qpressure is the new term due to pressure gradient. Note that the singularity

at 1 − 4k2
m0q

2 = 0 arises because the mode frequency is then in the TAE band, and one

of the side band harmonics needs to be treated differently. The singularity of km0 = 0 in

Qpressure arises because of the failure of the approximation |km0| >> (1/4m)r2
0q

′′
0

√

Qpressure,

that was assumed in obtaining Eq. (29).

It can be shown that existence of mode localized at r = r0 requires Q > 1/4 [1]. For

(m− 1/2)/n < q0 < m/n where −km and 1− 4k2
m0q

2 are positive and the mode frequency is

below the TAE mode frequency, we have Qtor > 0 which is favorable for existence of cascade

modes as shown previously. The pressure gradient term Qpressure is typically positive since

usually q0 > 1 for reversed shear q profiles. In particular near a rational surface, where km

goes to zero and the frequency is small, We have Qtor/Qpressure ∼ 4k2
m0q

2
0 << 1 for α ∼ ε.

Thus, the pressure gradient term is much larger than the toroidicity term in this limit and

is strongly favorable for the existence of these cascade modes.

For finite mode frequency, a general formula for Q can be written using Eq. (17):

Q = −2(
mq2

0km0

r2
0q

′′
0

)
(3ε − α)(α + ε) + 4(1 − 1/q2

0)(1/(4k2
m0q

2
0) − 1)εα

1 − 4k2
m0q

2
0

(34)
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where we have taken into account the implicit pressure gradient dependence in Qtor via ∆′.

It is interesting to note that, at q0 > 1, a small pressure gradient is always favorable to mode

existence for any mode frequency below the TAE’s.

Finally, it is interesting to examine the case of cascade modes above TAE frequency

(i.e., 4k2
m0q

2
0 > 1 where ω̄2 > 1/(4q2

0)). In this case Qtor is now positive in the range

q0 > m/n where km > 0. Then whether the pressure gradient term is favorable or not

depends on the value of mode frequency. Using Eq. (34), a small pressure gradient is always

favorable at 1 < q0 <
√

2. For q0 < 1 or q0 >
√

2, a small pressure gradient is favorable at

k2
m0 < (1 − 1/q2

0)/(2q2
0 − 4) and unfavorable at k2

m0 > (1 − 1/q2
0)/(2q2

0 − 4).

IV. COMPRESSIBILITY EFFECTS

Recall that we have so far neglected plasma compressibility in the pressure perturbation

given in Eq. (8) for simplicity. When the compressibility term is retained it is found that the

shear Alfven wave continuum can no longer go to zero frequency at a rational surface but

reaches a minimum frequency due to the excitation of a fast acoustic continuum mode[17].

The frequency of this mode is that of the geodesic acoustic mode[18] and the eigenmode

frequencies we seek lie above this frequency[8]. Thus at low frequency, we need to modify

our analysis. Thus retaining the compressibility term, the perturbed pressure is now given

by,

δP = −ξ · ∇P − ΓP∇ · ξ

=
1

B
b ×∇U · ∇P − ΓP [

J · ∇U

B2
+

2κ · (B ×∇δU)

B2
− J‖Q

B
] (35)

where Γ is the ratio of specific heat. Since the plasma pressure is of second order, only the

curvature term in Eq. (35) remains after the expansion of Eq.(10) to second order. Thus,

the compressibility results in additional terms only for the second order operator L2
m while

L0
m and L1

m remain the same. L2
m becomes

L2

m =
∂

∂r
ω̄24ε∆′r

∂

∂r
+

m2

r
(4ε(ε + ∆′)ω̄2 + κ̄rα/q2) − 2ΓP

B2
[r

∂2

∂r2
+

1

r

∂2

∂θ2
]. (36)

Correspondingly Eq. (27) becomes

∂

∂r
(ω̄2 − ω̄2

geod − k2

m)r
∂

∂r
Um − m2

r
(ω̄2 − ω̄2

geod − k2

m)Um

9



=
m2

r
[
2(ε2 + 2∆′ε)ω̄2

4k2
m0q

2 − 1
+

4∆′ω̄2α − α2/2q2

4k2
m0q

2 − 1
− 1

q2
κ̄rα]Um (37)

where ω̄geod = ωgeod/(VA/R0) and ωgeod =
√

2ΓP/ρ/R0 is the geodesic acoustic frequency.

Note that ω̄geod =
√

Γβ << 1. When the mode frequency is close to the geodesic acoustic

frequency, Eq. (38) reduces to

∂

∂r
(ω̄2 − ω̄2

geod − k2

m)r
∂

∂r
Um − m2

r
(ω̄2 − ω̄2

geod − k2

m0)Um

= −m2ε

rq2
(1 − 1

q2
)αUm (38)

It should be noted that the definition of ω̄2
geod differs from reference [8], by a term that is

proportional to 1/2q2. To obtain this term it is necessary to include an additional displace-

ment along the magnetic field line in the MHD equations, in the same way it was performed

in reference [8].

V. CONCLUSIONS

In conclusion, it is shown that the plasma pressure gradient is favorable to the existence of

cascade modes especially when qmin is slightly less than the fraction m/n that characterizes

a rationale surface. In this region a pressure gradient produces the dominant term in the

existence criterion even when α/ε is small. This analytic result is compatible with previously

reported numerical results. The favorable effect comes mainly from the averaged magnetic

curvature in the interchange term when q > 1. In the limit of low shear near a rational

surface, there is one to one correspondence between Mercier criterion and existence condition

of cascade modes. The Mercier condition is stable at small shear due to the favorable

averaged normal curvature in a tokamak when q > 1 and this term is proportional to the

criterion we are obtaining for the existence of the Cascade mode. For finite alpha the Mercier

criterion gives a direct destabilizing α2 term (which is related to the α2 term obtained in ref.

[8] that was unfavorable to mode existence) because a net lower MHD energy perturbation

can be found for a mode that is not quite a flute. However, near the rational surface this

direct α2 term is canceled by the modification of the equilibrium that comes from the beta

dependence of the Shafranov shift [15, 16]. Near a rational surface our mode existence

criterion produces a similar cancellation of the α2 term for the very same reason. For q < 1

the normal averaged curvature term produces an unstable Mercier criterion and an alpha
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term that is unfavorable to the cascade mode existence criterion. Thus there is a complete

parallel between MHD stability and Cascade mode existence near a rational surface.

Away from the rational surface, an α2 does persist because the frequency is finite (recall

that the α2 cancellation is only complete when ω2 approaches zero). We then find that as

the decreasing qmin approaches (m− 1/2)/n, where the cascade mode frequency approaches

the TAE gap, the unfavorable nature of the α2 term is the strongest with respect to the

existence of the cascade mode. Indeed if α > 3ε, we see from Eq. (34) that the mode

existence criterion will fail at frequencies below the TAE gap and the cascade mode cannot

enter the TAE gap. Interesting enough, it has been shown in ref. [19] that the condition

that TAE modes do not exist at low shear is that α > 3ε. This previous calculation, together

with Eq. (34) then suggests that in the low shear limit, when α > 3ε, that a cascade can

exist when

k2

m <

1

q2

0

(1 − 1

q2

0

)

4(1 − 1

q2

0

) + (α − 3ε)(α + ε)
(39)

and oscillate at a frequency below the TAE gap, but its frequency cannot reach the TAE

gap. Indeed the criterion from ref. [19] indicates that the TAE mode does not even exist

for such values of α then implies that the frequency of the cascade is limited to,

ω2

ω2
TAE

<
4(1 − 1

q2

0

)

4(1 − 1

q2

0

) + (α − 3ε)(α + ε)
(40)

This last result suggests an explanation for cascade observations often found in JET

experimental data and is illustrated in the data published in ref.[1] and ref. [5] for JET

discharge # 49382 and # 53487 respectively. The data shows the cascade modes emerging

at low frequency and going to higher frequency as qmin falls with time. The starting frequency

has been interpreted as being close to the geodesic curvature frequency [8] and the frequency

rises towards the TAE gap. At the lower qmin values the cascade modes clearly transform

into TAE modes which then persist at a relatively constant frequency as qmin continues to

decrease. However, at earlier times the discharge has higher qmin values, and at those times

the cascade mode frequency, for the higher m-number excitations, abruptly terminate as

the frequency approaches the TAE gap. Recall that α is proportional to q2
min and in the

experiment q2
min is changing appreciably while other parameters, such as a pressure profile,
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likely vary more slowly. Thus we suggest that the maximum cascade frequency predicted

by Eq. (40), when α > 3ε, which can occur at the higher qmin values, may be the basis for

why the cascade frequencies cannot penetrate into the TAE gap. Certainly this conjecture

needs further scrutiny, but if correct the understanding of this transition in shear reversed

discharges can be a valuable diagnostic tool.
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APPENDIX: FLUX COORDINATES

For completeness, here we describe the flux-type large aspect ratio coordinates (r, θ, ζ)

[20] used in expanding the equation to second order in inverse aspect ratio, where r is the

minor radius, θ is a poloidal angle and ζ is the toroidal angle. These coordinates are defined

via cylindrical coordinates (R, Z, φ) as

R = R0 + r cos θ − ∆(r) + rη(r)(cos 2θ − 1) (A.1)

Z = r sin θ + rη(r) sin 2θ (A.2)

φ = −ζ (A.3)

where η = (ε + ∆′)/2, ∆′ is the radial derivative of Shafranov shift. For low beta large

aspect ratio circular tokamak equilibria, ∆′ = ε(βp + li/2) with βp = 2(< p > −p)/B2
p a

measure of poloidal beta and li =< B2
p > /B2

p the internal inductance. Here, the bracket

< ... > indicates a volume average within radius r. With these coordinates, the magnetic

field, Jacobian and metric coefficients can be written as:

B =
rB0

q
∇r ×∇(qθ − ζ) (A.4)

J = rR0(1 + 2ε cos θ) (A.5)

grr = 1 + 2∆′ cos θ (A.6)

12



gθθ =
1

r2
[1 − 2(ε + ∆′) cos θ] (A.7)

grθ = gθr = −1

r
(ε + (r∆′)′) sin θ (A.8)

gζζ =
1

R2
0

[1 − 2ε cos θ] (A.9)

Using these coordinates, we can write down the following operators and the perturbed

variables Q and δP :

B · ∇ =
rB0

J (
∂

∂ζ
+

1

q

∂

∂θ
) (A.10)

J∇ · F∇⊥ =
∂

∂r
JFgrr ∂

∂r
+

∂

∂r
JFgrθ ∂

∂θ
+

∂

∂θ
JFgθr ∂

∂r
+

∂

∂θ
JFgθθ ∂

∂θ
(A.11)

Q =
rB0

JB2
(

∂

∂ζ
+

1

q

∂

∂θ
)U (A.12)

δP = −BφR

JB2

∂U

∂θ
P ′ (A.13)

Note that in Eq. (A.11), we have dropped some second order terms since they cancel out

in Eq. (10) due to ω̄ ≈ km. Furthermore, we have also neglected a third order term in Eq.

(A.13). Finally, the curvature term in Eq. (10) can be written as

κ · (B ×∇δP )

B2
= −κrBφR

JB2

∂δP

∂θ
+

κθBφR

JB2

∂δP

∂r
(A.14)

where κr and κθ is the radial and poloidal component of the curvature respectively. Here,

we have also dropped a few higher order terms related to the toroidal component of the

curvature. Using equilibrium force balance for a large aspect ratio circular tokamak, the

radial and poloidal component of the curvature can be written as

κr ≈ − 1

R

∂R

∂r
− r

q2R2
(A.15)

and

κθ ≈ − 1

R

∂R

∂θ
(A.16)
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Using the flux coordinates defined above, we obtain the following explicit expression for

the averaged normal curvature:

κ̄r = R0

∫ J κrdθ
∫ J dθ

=
ε

2
+

3

2
∆′ +

1

2
r∆′′ − ε

q2
.

= ε(1 − 1

q2
) +

1

2
α (A.17)

where we have used the Grad-Shafranov equation and have assumed low shear s << 1.

It should be pointed out that the above equation is valid for general current and pressure

profile without assuming ∆′ is linear in r.
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