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Abstract

Nonlocal neoclassical effects of large ion orbits on ion heat transport, the am-

bipolar radial electric field and the bootstrap current in realistic toroidal plasmas

are investigated using a global δf particle simulation. It is found that the conven-

tional local, linear gradient-flux relation is broken for the ion thermal transport

near the magnetic axis. With regard to the transport level, it can be either lower

or higher than the prediction of standard neoclassical theory, depending on the de-

tails of the ion temperature profile. Particularly, this nonlocal feature is suggested

to exist in NSTX plasmas, being consistent with NSTX experimental evidence.

It is also shown that a large ion temperature gradient can increase the bootstrap

current, but a steep density gradient has little effect. When the plasma rotation

is taken into account, the rotation gradient can drive an additional parallel flow

for the ions and then additional bootstrap current, either positive or negative,

depending on the gradient direction. Compared with the radial force balance es-

timate, our nonlocal simulation predicts a significantly deeper radial electric field

well at the location of an internal transport barrier of an NSTX discharge.

PACS number: 52.25.Fi, 52.55.Fa, 52.65.Rr
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I. INTRODUCTION

In a toroidal plasma, turbulence driven transport usually well exceeds the neoclassical level.

To control and even fully suppress turbulence fluctuations is one of major goals of fusion

research in experiments. Once turbulence is suppressed, toroidal plasma transport is de-

termined by the universal Coulomb collision process. The associated neoclassical transport

represents the irreducible minimum of dissipation in toroidal systems. Indeed, many present

advanced tokamak experiments are able to reduce transport, particularly in the ion channel,

to the neoclassical level, and thus to achieve improved confinement.

In order to assess the confinement properties and performance of toroidal devices, the neo-

classical transport is routinely compared with experimental results. Therefore, it is important

to accurately calculate the neoclassical dynamics which set the irreducible minimum level of

transport in such systems. Moreover, the bootstrap current and equilibrium radial electric

field, which in general play important roles in affecting the overall plasma confinement and

performance of toroidal systems, are essentially determined by neoclassical dynamics. While

standard neoclassical theory has been well developed,1,2 there remain significant unresolved

nonlocal physics issues in tokamaks including spherical torus experiments such as NSTX. In

the NSTX plasmas, typical features which violate basic assumptions of most local theories

include the large orbit size compared to the local minor radius and/or plasma equilibrium

scale length, low aspect ratio and low magnetic field, large trapped particle fraction (up to

∼100%), large toroidal rotation with strong shear, large ion gyroradius,3 etc. Another im-

portant issue which is missing in most theories is the self-consistent determination of the

(equilibrium) electric field which is established to maintain transport ambipolarity.4 Also, the

neoclassical fluxes are predicted to be independent of the radial electric field. This equilib-

rium electric field may change neoclassical transport by changing the particle orbits.4,5 The

sheared equilibrium electric field is also believed to play an important role in determining the

turbulence level and associated transport both locally and globally. When these effects are

properly taken into account, it is obviously of high interest to examine the nonlocal neoclas-

sical properties, such as the ion thermal transport and the bootstrap current, in experimental

situations. This is the primary purpose of this paper.
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The methodology used for this study is a particle simulation using a δf method. The δf

simulation technology was previously used for studying plasma micro-turbulence6 and later

applied to neoclassical transport studies7,8. Recently, we have developed a generalized global

particle-in-cell (PIC) neoclassical code GTC-Neo.9 Unlike the standard neoclassical analy-

sis, which solves the drift kinetic equations locally (on a single magnetic surface), based on

a small orbit width expansion, for collision driven fluxes, viscosity and bootstrap current,

GTC-Neo numerically solves an initial value problem for the drift kinetic equations globally,

from the magnetic axis to the plasma boundary with appropriate boundary conditions, and

with full particle drift orbit dynamics. Moreover, critically, the large scale ambipolar elec-

tric field is also consistently calculated by solving the Poisson equation.4 Our first-principles

based simulation also incorporates important realism of tokamak experiments. It is inter-

faced with TRANSP, a widely used experimental data analysis software tool for specifying

experimental plasma profiles of temperature, density and toroidal angular velocity, and corre-

sponding magnetohydrodynamic (MHD) equilibria numerically-calculated by various codes,

including JSOLVER, QSOLVER and ESC. The collision-driven particle, heat and angular

momentum fluxes, bootstrap current, equilibrium electric field, etc, are calculated, given the

plasma profiles of density n(r), temperature T (r) and toroidal rotation angular velocity ωt(r),

and the equilibrium geometry. At present, the GTC-Neo calculation only includes a single

(hydrogenic) ion species, but we plan to add impurity species in future work.

In standard neoclassical transport theory, the particle and heat transport show local and

diffusive features. There exists a Fick’s law type linear relation between the thermodynamic

forces (such as local plasma gradients of pressure, temperature, etc) and driven transport

fluxes. The obtained transport coefficients accord with heuristic arguments based on ran-

dom walk diffusion processes, properly taking into account toroidal effects on particle ra-

dial excursion (step-size) and effective collision frequency. In anomalous transport analysis,

an analogous mixing-length argument has been employed to estimate the turbulence driven

transport diffusivity. Apparently, the local and diffusive transport requires that the radial

excursion, which essentially is the orbit width of trapped particles here, be small compared

to the plasma equilibrium scale length or/and system size (typically, the local minor radius).

Generally, the nonlocal effects associated with large orbit size may introduce dependence of
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transport fluxes on higher order radial derivatives of the plasma profiles and on the shape of

the profiles, rather than a unique relation to the first derivative (plasma gradients). In the

region near the magnetic axis, particle drift orbits change topologically, which causes prob-

lems for conventional neoclassical theory. It is found that the conventional linear gradient-flux

relation is broken for ion heat transport in the region near the magnetic axis. Our simulations

suggest that neoclassical ion transport in NSTX plasmas exhibits a nonlocal nature, which

is consistent with NSTX experimental evidence. For NSTX plasmas, the comparison of our

simulation results for ion heat transport to experiment is more meaningful as it is believed

that the energy loss in the ion channel is essentially governed by neoclassical mechanisms.

With regard to the bootstrap current, a noninductive current directly associated with the

existence of trapped particles in toroidal geometry, it is found that sheared toroidal rotation

and steep temperature gradients can modify the standard neoclassical results. Both can be

attributed to the finite ion orbit effects on the ion parallel flow velocity. The radial electric

field calculated from our simulation is compared with the estimate using the radial force bal-

ance relation with experimentally measured profiles of pressure and toroidal rotation angular

velocity. A significant difference in Er is observed in the region of an internal transport barrier

with a steep ion temperature gradient.

The remainder of this paper is organized as follows: In Sec. II, the simulation model and

the δf method are described. The benchmark simulations against the standard neoclassical

theory in large aspect ratio circular concentric geometry with small orbit size are presented

in Sec. III. In Sec. IV, the result for nonlocal ion heat transport is reported and discussed,

and compared with NSTX measurements. In Sec. V, The results for the bootstrap current

in toroidally rotating plasmas and the corrections due to large temperature gradients are

reported and discussed. The simulated ambipolar neoclassical electric field is compared with

the radial force balance relation for NSTX plasmas in Sec. V. A summary is given in Sec. VI.
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II. SIMULATION MODEL, δf METHOD AND BENCH-

MARKS

Our global drift kinetic simulation solves an initial value problem, following a rotating toroidal

plasma to a neoclassical steady state. It uses a δf particle in cell simulation method.

A. Lowest order distribution of large-rotation plasma – f0

In this section, we first follow the standard small orbit analysis10,11 to give a lowest order

distribution f0 for a rotating plasma. This will provide a foundation or guideline as to the

best way to separate δf from the full distribution function f .

We start from the ion drift kinetic equation

∂f

∂t
+ (~v‖ + ~vD + ~vE) · ∇f −

e

mi

(~v‖ + ~vD) · ∇Φ
∂f

∂ε
= Cii[f, f ], (1)

where the independent velocity variables are the magnetic moment µ and kinetic energy

ε ≡ v2‖/2 + µB with B the magnitude of the magnetic field and v‖ the parallel velocity, Φ is

the electric potential, ~vD and ~vE are the ∇B drift and the E×B drift respectively, Cii is the

ion-ion collision operator, and e and mi are ion charge and mass, respectively.

The small parameter in neoclassical analysis is the ratio of ion poloidal gyroradius to the

gradient scale length of equilibrium quantities: ε ≡ ρiθ/L¿ 1. The distribution function and

the electric field are expanded as follows:

f = f0 + f1 + · · ·, Φ = Φ−1 + Φ0 + · · ·. (2)

It is noted that the leading order for the electric field is set to be −1, one order larger than

the conventional drift ordering. This corresponds to the assumption of a large flow velocity

comparable to the thermal velocity. This large toroidal rotation is indeed driven in tokamak

experiments. With the additional assumption ∂/∂t ∼ ε2νii, which specifies the time scale for

changing plasma profiles due to neoclassical transport, we obtain the lowest order equation

−
e

mi

~v‖ · ∇Φ−1
∂f0
∂ε
= 0, (3)
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which tells us nothing but that the lowest potential is a flux function Φ−1(ψ), with ψ a flux

label, or that the leading order electric field is in the radial direction.

The next order equation is

(~v‖ +
b̂×∇Φ−1

B
) · ∇f0 −

e

mi

~vD · ∇Φ−1
∂f0
∂ε
−

e

mi

~v‖ · ∇Φ0
∂f0
∂ε
= Cii[f0, f0]. (4)

This equation can be largely simplified by transforming velocity variables (µ, ε) to (µ, ε′)

with

ε′ = ε′′ +
e

mi

Φ̃0 −
u2‖
2
,

where ε′′ ≡ v′2‖ /2+µB, v
′
‖ ≡ v‖−u‖, Φ̃0 ≡ Φ0 − 〈Φ0〉. The shift velocity u‖ ≡ −(cI/B)dΦ−1/dψp

where c is the light speed, ψp is the poloidal flux and I = RBζ , with R the major radius and

Bζ the toroidal component of the magnetic field ~B. Actually, this corresponds to a trans-

formation from the lab frame to a toroidally rotating frame with rotation angular velocity

ω(ψp) = (B/I)u‖, and ε
′ is the particle energy in the rotating frame. In the rotating frame,

Eq. 4 is simplified to

~v′‖ · ∇f0 = Cii[f0, f0] (5)

The solution of Eq. 5 is a Maxwellian, i.e, a shifted Maxwellian in the lab frame:

f0 = fSM = n(
mi

2πTi
)3/2e

−
mi
Ti
[ 1
2
(v‖−u‖)

2+µB]
, (6)

where the density n(ψ, θ) = N(ψ)e
miu

2

‖
/2Ti−eΦ̃0/Ti , depending on both ψ and the poloidal angle

θ, and the temperature Ti = Ti(ψ).

B. Basic equations for ions and ambipolar electric field

Based on the lowest order solution Eq. 6, we decompose the ion guiding center distribution:

f = fSM+δf . Note that for the δf simulation, the decomposition of the distribution function

does not necessary have to be strict as long as δf is smaller than the total f . However, a

smaller δf will make the simulation have less noise. The distribution δf obeys the following

drift kinetic equation

∂δf

∂t
+ (~v‖ + ~vd) · ∇δf −

e

mi

(~v‖ + ~vd) · ∇Φ
∂δf

∂ε
=
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−(~v‖ + ~vd) · ∇fSM +
e

mi

(~v‖ + ~vd) · ∇Φ
∂fSM
∂ε

+ C l
ii(δf), (7)

where the guiding center drift velocity ~vd includes both the∇B and E×B drifts: ~vd = ~vD+~vE.

The linearized ion-ion collision operator C l
ii(δf) ≡ Cii[δf, fSM ] +Cii[fSM , δf ] is calculated in

terms of linear collisions with a Maxwellian background7,8,12 in the local moving frame in

the rotating plasma. It should be mentioned that this simulation model is not limited to

small orbit size even though δf is separated based on the lowest order solution Eq. 6 of the

small orbit analysis. The finite orbit physics is included by the ~vd · ∇δf term on the left

hand side of Eq. 7, along with its radially global solution. Actually, the only approximation

in Eq. 7 relative to the original drift kinetic Eq. 1 is the neglect of the nonlinear collision

term Cii[δf, δf ]. Another important feature of the model is the inclusion of a self-consistent

ambipolar electric field. The equation for the ambipolar potential Φ in general geometry is,4

from Poisson’s equation and the continuity equations,
[

〈

|∇r|2
〉

+ 4πmic
2

〈

n|∇r|2

B2

〉]

∂2Φ

∂t∂r
= 4πeΓri , (8)

where r is a radial coordinate (flux label) and the angular brackets denote a flux surface av-

erage. On the right hand side eΓri is the radial current of ion guiding centers, including both

self-collision driven neoclassical diffusion and polarization currents (associated with toroidal

geometry): eΓri ≡ e 〈
∫

d3v(~vd · ∇r)δfi〉. The unlike particle collisions do not produce any

radial current because they drive particle fluxes that are intrinsically ambipolar. The sec-

ond term on the left hand side is the classical polarization current associated with particle

gyro-motion with a temporally-varying electric field, presented for a general magnetic field.

In axisymmetric geometry, the electron radial currents (both classical polarization current

and the neoclassical guiding center current) are much smaller than the ion currents due to

the small mass ratio. Thus, electron dynamics plays little role in determining the ambipolar

electric field and is neglected in the ion simulation. Apparently, this is not true for nonax-

isymmetric geometry, such as in a stellarator where the lowest order particle fluxes driven

by unlike-particle collisions are not automatically ambipolar. For an initial toroidal plasma,

a shifted Maxwellian with the three model or experimental profiles 〈n(r, θ)〉, Ti(r) and ωt(r)

are prescribed for the ions. The initial potential and parallel velocity are determined by

dΦ(0)/dr = −(dψ/dr)(ωt/c) and u‖(0) = (I/B)ωt. In the present study, potential variation
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on a magnetic surface is neglected, which may be important for calculating angular momen-

tum transport.13 The rotating ions are followed to reach a neoclassical steady state on a time

scale of a few ion collision times in a low collisionality regime or a few transit times in a high

collisionality regime, which usually is much shorter than the transport time scale.

C. Model for electrons

Generally, electron and ion dynamics interact with each other via the Coulomb collisions and

the electric field. For axisymmetric geometry, however, electrons and ions can be effectively

decoupled by taking into account the small mass ratio approximation. As we discussed above,

the equilibrium electric field can be determined by the ion dynamics, neglecting electrons.

The electric field evolves due to collisional angular momentum transport, which occurs on

a transport time scale longer than that of the thermal transport.14 This allows us to use,

for the electron simulation, a quasi-steady state electric field which is obtained from the ion

simulation. Again thanks to the small mass ratio, electron-ion collisions are essentially a

pitch angle scattering process, and it is a good approximation to use the Lorentz gas collision

model without taking into account the details of the ion distribution. In this way, the electron

simulation can be decoupled from ions. Because of the friction force between electrons and the

ions, electrons rotate with essentially the same velocity as ions. We decompose the electron

distribution: fe = fSM + δfe with fSM = n(me/2πTe)
3/2e−(me/Te)[(v‖−u‖)

2/2+µB] which contains

a parallel flow the same as for ions. The drift kinetic equation for the distribution δfe is

∂δfe
∂t

+ (~v‖ + ~vd) · ∇δfe −
ee
me

(~v‖ + ~vd) · ∇Φ
∂δfe
∂ε

=

−(~v‖ + ~vd) · ∇fSM +
ee
me

(~v‖ + ~vd) · ∇Φ
∂fSM
∂ε

+ C l
ee(δfe) + Cei(δfe), (9)

where Cei is the e-i collision operator which actually uses the Lorentz pitch angle scattering

model in the simulation

Cei(δfe) =
νe
2

∂

∂λ
(1− λ2)

∂

∂λ
δfe,

with λ = v‖/v the pitch angle variable and νe the collision frequency, and C
l
ee the linear

electron-electron collision operator, which has the same form as C l
ii, and ee and me are the

electron charge and mass, respectively. The electron distribution is solved for in the ion rest
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frame independently, with the equilibrium electric field imported from the results of the ion

simulation.

One important issue for electron simulations is the calculation of the total bootstrap

current (electrons + ions) in terms of δfe:

〈jbB〉 = −e
〈

B
∫

v‖δfed
3v
〉

. (10)

Our δf simulation uses a two-weight algorithm8, incorporating a noise reduction algorithm15,

which is shown to rigorously reproduce the drift kinetic equations.8

D. Particle guiding center motion – Lagrangian equations

A particle simulation requires an accurate and efficient calculation of particle motion. Simula-

tion particles are followed along the guiding center trajectories using Lagrangian equations:16,17

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ̇‖

ṙ
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, (11)

which are normalized by the particle gyro frequency Ω0 = eB0/mc, with a reference magnetic

field B0, for time and an l0 for length. Here, (r, θ, ζ) denote general toroidal coordinates with

r a flux label; ρ‖ = v‖/B is the parallel gyroradius, H = ρ2‖B
2/2 + µB + Φ is the guiding

center Hamiltonian, a11 = Bθ, a12 = J (B
ζ + ρ‖j

ζ), a21 = Bζ , a22 = −J (B
θ + ρ‖j

θ),

A = a11a22 − a12a21 = −J (B
2 + ρ‖ ~B · ~j), and the Jacobian J = (∇r × ∇θ · ∇ζ)

−1. The

relevant covariant and contravariant components of ~B and the current ~j are defined as

~B = Br∇r +Bθ∇θ +Bζ∇ζ = JB
θ∇ζ ×∇r + JBζ∇r ×∇θ,

~j = ∇× ~B = J jθ∇ζ ×∇r + J jζ∇r ×∇θ.
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Compared to the widely used Hamiltonian equations that require construction of canonical

variables, which are complicated forms in general geometry,17 the Lagrangian equations are

suitable for any generalized flux coordinates.

In principle, GTC-Neo uses arbitrary flux coordinates. The radial coordinate r defined

as r =
√

ψ/ψe where ψ and ψe are the toroidal flux and its value on the plasma boundary,

respectively. A poloidal angle θE with approximately equal arc length is usually used in the

simulations. It is defined in terms of cylindrical coordinates (R, Z) as

R(r, θE) =
∑

m

Rm(r)e
imθE , Z(r, θE) = Z0(r) + Z1(r) sin θE.

This coordinate system allows a uniform grid in the poloidal direction, a better representation

of the numerical equilibrium for high β (ratio of plasma pressure to magnetic pressure),

strongly shaped plasmas such as NSTX, and then increased accuracy of interpolation for

equilibrium quantities. Multi-dimensional spline interpolation is used to obtain equilibrium

quantities at any spatial location. The global simulation domain covers the entire torus,

radially from the magnetic axis to the separatrix. A 2-D mesh with uniform ∆r and ∆θE is

used for axisymmetric geometry.

E. Benchmark simulations

The drift kinetic simulation is rigorously benchmarked with the neoclassical theory in the

limit of large aspect ratio circular concentric geometry with small orbit size. The benchmark

results are presented below. All test simulations are carried out with aspect ratio R0/a = 10.

We first discuss the equilibrium radial electric field. In a toroidal plasma with uniform

temperature, there exists a Boltzmann-like condition which relates the equilibrium electric

field to the density gradient:4

ln
ni
na
+
eΦ

Ti
= bψ, (12)

where b is a constant related to the edge toroidal rotation and na is a constant. In Fig. 1(a),

the equilibrium electric field of a simulation with uniform temperature is compared with the

Boltzmann relation and very good agreement is seen. In the case of nonuniform temperature,

the simulation result for the electric field is compared in Fig. 1(b) with the one evaluated in
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terms of the standard neoclassical expression for the ion parallel flow velocity:

ui‖ =
I

Ωiψ′

Ti
mi

[

(k − 1)
∂ lnTi
∂r

−
∂ lnni
∂r

−
e

Ti

∂Φ

∂r

]

(13)

where k is a function of ion collisionality. Figure 1(c) shows the ion heat flux and energy

flux, compared with the widely used Chang-Hinton formula.18 Good agreement between the

simulation and the theory is obtained in the outer torus region, but not in the inner region

close to the magnetic axis. The discrepancy near the magnetic axis arises from the important

finite orbit physics, and we will come back to this issue in Sec. III. Actually, the simulation

agrees with the theory in the region close to the magnetic axis only when the finite orbit effect

is suppressed manually by neglecting the drift terms ~vd ·∇δf and (~vd ·∇Φ)∂δf/∂ε on the left

hand side of Eq. 7.4

The radial profile of the bootstrap current is plotted in Fig. 1(d) and compared with the

result of neoclassical theory, which can be written as

〈jbB〉 = −L31

(

∂

∂ψ
Pe +

∂

∂ψ
Pi

)

− Le32
∂

∂ψ
lnTe − L

i
32

∂

∂ψ
lnTi (14)

with L31, L
e
32 and Li32 the standard bootstrap current coefficients.

2 This total bootstrap

current includes contributions of both ions and electrons, which are usually of a roughly

equal amount. The simulated bootstrap current agrees well with the theory over the entire

minor radius except for the area close to the magnetic axis where the current is small. Good

agreement is also obtained for the electron particle flux and energy flux, as shown in Fig.

1(e) and (f). It is noticed that much better agreement for electron fluxes is shown near the

magnetic axis, compared to the results for ion energy (heat) flux [Fig. 1(c)]. This difference

is caused by the different orbit sizes between electrons and ions, and evidences the large orbit

effect.

F. Discussion on self-collision driven particle flux

Note that the energy flux Q is the sum of the heat flux q and the convective energy flux

carried by the particle flux Γ: Q = q + (5/2)TΓ. In Fig. 1(c) the ion energy flux equals

the heat flux, indicating that the self-collision driven ion particle flux is zero. This result is
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nontrivial in the sense that it is obtained only when the self-consistent ambipolar electric field

is used. The following discussion is in order with regard to the self-collision driven particle

flux in toroidal systems. We consider and compare two dynamic systems (or two simulations)

which follow the evolution of Maxwellian ions, in terms of the drift kinetic equation with only

ion-ion collisions, to a neoclassical steady state. The steady state is known to be characterized

by a parallel flow given by Eq. 13. Initially ions as a whole have no toroidal rotation, i.e, zero

angular momentum and parallel velocity. In the case with no self-consistent ambipolar electric

field, a parallel flow develops for the neoclassical steady state, which satisfies Eq. 13 with

∂Φ/∂r = 0; or equivalently, a nonzero toroidal rotation (angular momentum) is developed.

This clearly indicates that without the self-consistent electric field a net angular momentum is

generated in the simulation system. To relate the nonzero ion-ion particle flux to the angular

momentum generation in this system, we examine the angular momentum transport equation

∂U

∂t
+
1

V ′

∂

∂r
(V ′Πi) = Γ

r
i , (15)

where the angular momentum density is U =
〈

∫

d3v(Iv‖/Ωi)δf
〉

, the angular momentum flux

is Πi =
〈

∫

d3v(Iv‖/Ωi)(~vd · ∇r)δf
〉

, and V ′ = dV/dr with V the volume enclosed by a flux

surface r. This equation is obtained exactly from Eq. 7 by taking the flux-surface averaged

moment of Iv‖/Ωi. For the zero collision frequency boundary condition used in the simula-

tions, no angular momentum flux is driven on the boundary. Thus, the self-collision driven

ion flux Γri , working as a source in Eq. 15, is the only one responsible for the buildup of the

angular momentum. This explains the generation of an ion-ion flux in the simulation system

without a consistent electric field. On the other hand, when a self-consistent electric field is

included, angular momentum is conserved. Equation 13 is satisfied by the establishment of a

radial electric field. In this case momentum is conserved and ambipolarity is restored with a

vanishing ion-ion flux.

III. NONLOCAL ION THERMAL TRANSPORT

The most interesting result our simulations have found is the nonlocal nature of the ion

thermal transport near the magnetic axis. Here, we first use two simulations to illustrate that
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the ion thermal transport is decoupled from the local plasma parameters. The two simulation

are carried out using identical numerical MHD equilibria of circular cross section with aspect

ratio R0/a = 5, and two specified pressure profiles. For these two pressure profiles, the

ion temperatures Ti have almost the same value near the magnetic axis, but very different

temperature gradients ∇Ti, as shown in Fig. 2(a). In this region, the temperature gradient

scale length is much larger than the local minor radius, LT/r À 1. The collisionality ν∗

ranges radially from ∼ 0.4 near the magnetic axis to less than 0.01 in the outside, falling into

the banana to banana-plateau regime in terms of conventional definitions. In terms of the

local neoclassical theory, the ion thermal flux qi is proportional to the local ∇Ti:

qi ∝ T
−1/2
i

∂Ti
∂r

. (16)

It predicts, for example at a radial location r/a = 0.05 , that the ion heat fluxes differ by a

factor of > 30 for the two model profiles. Our simulation results of qi vs r are plotted in Fig.

2(b) and compared with the theory prediction of the Chang-Hinton formula. For the case of

a significant temperature gradient [Case I in Fig. 2(a)], the ion heat transport is much lower

than the neoclassical level. A similar result of greatly reduced ion thermal transport was

reported in earlier simulations.4,8,19,20 However, this reduced transport is just the one side of

the story. For a relatively flat temperature profile [case II in Fig. 2(a)], the ion heat flux can

be much larger than the local theory prediction. The simulations obtained roughly the same

qi for the two model profiles, which is clearly decoupled from the local plasma parameters.

The underlying physics is the nonlocality of ion neoclassical transport. On the other hand,

moving away from the magnetic axis toward the boundary, the qi value from the simulation

agrees with the the theory prediction for both temperature profiles.

Further, it is observed that the radial extension of the nonlocal transport region becomes

wider as a higher ion temperature value is used in the simulation. This indicates the correla-

tion between the extension of the nonlocal transport region and the ion orbit size. Near the

magnetic axis, the ion orbit topology changes dramatically.19,21−23 In the region far from the

magnetic axis, the conventional banana orbits have large radial excursion of the order

∆b = 2
(

r

R

)1/2

ρiθ.
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As the banana orbit width increases toward the magnetic axis, those orbits change to potato

shape. The potato orbits are the widest ones that exist in a tokamak geometry. The so called

potato region is a core region centered at the magnetic axis with a radius defined by r = ∆b,

which gives the potato width

∆p = (2qρth)
2/3R

1/3
0 ,

where q is the safety factor and ρth the gyroradius of thermal ions with velocity
√

2Ti/mi. In

the potato region r
<
∼ ∆b, there reside many unconventional ion orbits which have radial ex-

cursions comparable, or even equal to the local system size (local minor radius). This violates

the conventional local transport description, and the nondiffusive and nonlocal characters are

expected to becomes predominant in the collision-driven transport process. For the two cases

of Fig. 2, the radius ∆p ∼ 0.17a which may define the strongly nonlocal transport region.

In the Fig. 2, the simulated ion fluxes agree with the local transport picture at larger radii.

There is a transition region between the nonlocal and local transport regions.

To gain further understanding of this nonlocal transport phenomenon, we use the following

numerical experiments to examine the scaling of the ion heat flux with respect to ion orbit

size. In our numerical experiments, the ion orbit sizes are artificially changed by multiplying

the drift terms (containing ~vd) on the left hand side of Eq. 7 with a numerical factor α

in the range 0 ≤ α ≤ 1. Roughly, ion orbit size scales with α as: ∆ = α∆0, where ∆0

is the actual ion orbit width. Note that the two limits α = 0 and α = 1 correspond to

the zero orbit size of standard neoclassical theory and the true orbit size, respectively. Also

noted that a generalized two-weight scheme which is given in the Appendix, along with the

noise reduction technique, should be used to solve the δf equation. This carefully designed

simulation allows us to continuously vary the ion orbit size while keeping the essential plasma

conditions, such as collisionality, unchanged. This is a useful way to obtain clear results with

regard to finite orbit effects. The simulation uses the same parameters as in Fig. 2. The ion

heat flux, normalized by the value of the neoclassical theory prediction, vs α (or ion orbit

size) is plotted in Fig. 3 which shows that large ion orbits introduce transport nonlocality.

In the zero orbit case (α = 0), the result of local transport theory is recovered. As ion orbit

size is artificially increased, the heat flux diverges from the local diffusion theory. Moreover,

the divergence may go in difference directions, showing the dependence on the details of the
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Ti profile shape: for a relatively flat temperature profile enlarged ion orbits tend to increase

the ion heat flux; for a relatively significant temperature gradient, enlarged ion orbits tend

to decrease the heat flux. Roughly speaking, large ion orbits tend to bring the heat flux to a

certain level which depends more on the average value and the shape of temperature profile

in the region, but is decoupled from the local temperature gradient.

It is interesting and instructive to examine the contribution of ions at different energies

to the total heat flux. This result of qi,bin vs v/vth is presented at Fig. 4, where qi,bin is a

velocity space distribution function of the heat flux, defined as

q
i,bin
(r, v/vth) ≡

〈
∫ 1

2
mi(~v − ~u)

2(~vd · ∇r)δfJv,v‖dv‖

〉

(17)

with Jv,v‖ the Jacobian of velocity space (v‖, v). It is shown that i) ions with v ∼ 2vth make

the largest contribution to the total heat flux; ii) thermal ions with v ∼ vth make a negative

contribution to qi; iii) in the region near the magnetic axis where transport is nonlocal, there

is no significant difference in the qi,bin(v) distribution, except that it slightly shifts to the lower

v side.

However, as shown in Fig. 5, there exists a significant difference in the ion heat distribution

function q
i,bin
(r, λ) between the region near the magnetic axis and the outside region. In the

outside region, ions in the range of −0.5 < λ < 0.5 make a dominant contribution to the heat

flux, while the other ions’ contribution is very small. This is consistent with the conventional

picture that, in the low collisionality regime (banana to banana-plateau), trapped ions, which

have large radial excursion, carry most of the heat flux. In the region near the magnetic

axis, where the ion transport is nonlocal, the heat flux is carried by ions that are located in

a narrow range of the λ space, centered at λ ∼ −0.25, while ions with positive pitch angles

make almost no contribution to the heat flux. As the position moves outward, the non-zero

heat flux in λ space is gradually extended in the positive λ direction. For Case I and Case II

of Fig. 2, this heat flux distribution in λ-space is rather similar, while the nonlocality may

either decrease or increase the ion heat transport near the magnetic axis, relative to the local

neoclassical transport level.

The neoclassical equilibrium distribution function δf(r, v/vth) plotted in Fig. 6 also reveals

a qualitative distinction between the near-magnetic-axis and outer regions. This flux surface-
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averaged equilibrium distribution function δf shows a roughly odd parity in v-space with a

null point (δf = 0) at around vc ∼ 1.2vth. In the outer region, δf > 0 for v > vc and δf < 0 for

v < vc. However, a reversed pattern in δf is shown in the region near the magnetic axis where

the ion transport is nonlocal. There is a transition region in between, which separates the local

and nonlocal transport regions. This remarkable distinction may be instructive for further

theoretical understanding of the nonlocal properties of the ion transport. On the other hand,

experimentally, it was observed in the ATC tokamak that the parallel-moving ion distribution

function was dramatically different from that of anti-parallel ions at a location r/a = 2/3.24

The fat banana orbit width in the energy range where the measurement was made is of order

the minor radius. It was suggested that this measured asymmetry in the ion distribution

function was due to the neoclassical effect of large ion orbits. As this kind of measurement

may provides a direct test for a large-orbit neoclassical calculation and finite orbit effects at

the most fundamental level, it is very useful to examine a numerical distribution function

corresponding to the experimental observations. A high resolution neoclassical distribution

function in multi-dimensional phase space will be examined in future simulations.

Similar numerical experiments to those in Fig. 2 have been carried out for shaped axisym-

metric magnetic configurations including NSTX geometry, which have demonstrated that the

nonlocal property in ion neoclassical transport exists in general in NSTX plasmas. Next we

apply our simulation to examine the neoclassical properties of NSTX experiments. Figure

7 shows the result for a high-β (volume-averaged β = 35%), high-density H-mode NSTX

discharge. There is a reversed local ∇Ti near the magnetic axis. Correspondingly, the local

transport theory (from the NCLASS code25) predicts an inward ion heat flux in the region.

Due to the nonlocal effect associated with large ion orbits, our simulation still predicts an out-

ward ion heat flux, which is in the same direction as the experimental measurement. Another

observation associated with the finite orbit effect in the simulation is that the simulated ion

heat flux shows extra “nonlocal smoothing” in the profile. Figure 8 shows another example

of an NSTX discharge with a stair-step type Ti profile. For a wide range of NSTX discharges,

nonlocal effects generally bring the simulated ion heat transport into closer agreement with

the experimental measurements.
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IV. FINITE ORBIT EFFECTS ON BOOTSTRAP CUR-

RENT

One of the most important predictions of neoclassical theory is the bootstrap current, a

noninductive current driven by the pressure gradient in a toroidal plasma, which is believed

to play an essential role for the steady state operation of tokamak reactors. As present

tokamak experiments with improved confinement often have edge or/and internal transport

barriers with steep pressure gradients and strongly driven plasma flow, it is useful to study

how the neoclassical prediction of the bootstrap current is modified by a steep plasma pressure

gradient and by large toroidal rotation. Because the bootstrap current is the small difference

between ion and electron parallel flow, expressed as

〈jbB〉 = e〈n(ui‖ − ue‖)B〉, (18)

any finite orbit effects which modify ion parallel flow, such as large pressure gradient, sheared

toroidal rotation and orbit squeezing effects of sheared radial electric fields, may modify

the bootstrap current. On the other hand, finite orbit corrections to the electron part are

negligible. In addition, there is a geometry effect which changes the trapped particle fraction.

We first study the bootstrap current in rotating plasmas. In terms of standard small-orbit

neoclassical theory, the bootstrap current is independent of toroidal rotation. Recently, it

has been found that sheared toroidal rotation can drive an additional parallel flow for the

ions.27 In a toroidal plasma with uniform temperature, a quasi-equilibrium solution for the

distribution function for rotating ions can be constructed. In this case, this additional parallel

flow can be estimated as

∆ui‖ ' −
mic

e

〈

I2

B2

〉

cTiI

eB

∂ lnni
∂ψp

∂ωt
∂ψp

. (19)

Correspondingly, an additional bootstrap current is driven in a sheared rotating plasma. This

bootstrap current can be either in the co- or counter-direction, depending on the direction of

the rotation gradient.

Our simulation has observed, for the first time, this additional bootstrap current driven

by the sheared toroidal rotation, along with the density gradient. Here we perform three
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simulations with different toroidal rotations, as shown in Fig. 9. In two cases a strong rotation

gradient exists in the region 0.3 < r/a < 0.65, with the maximum ratio of the banana orbit

width to the rotation gradient length ∆b/Lωt
∼ 0.4. The rest of the parameters for the three

simulations are identical. The time history of the bootstrap current shows that a very clean

result is obtained. The neoclassical steady state is reached in about 5 − 10 collision times

which is related to the collisionality. In the steady state, a higher (lower) bootstrap current

is observed in the region 0.3 < r/a < 0.65 where there exists strongly sheared toroidal flow

with dωt/dr > 0 (dωt/dr < 0). A positive shear (dωt/dr > 0) is favorable as it enhances the

bootstrap current. On the other hand, a strong rigid rotation near the magnetic axis does not

change the bootstrap current. It is also confirmed that the toroidal rotation alone, without

an ion pressure gradient, does not drive the bootstrap current. Notice that this additional

bootstrap current appears to be, typically, < 10% of the conventional pressure gradient driven

bootstrap current.

We next study finite orbit effects associated with steep pressure gradients on the bootstrap

current. Generally, a steep pressure gradient is formed in the H-mode edge plasma and in

the core plasma with internal transport barriers. Here, we set up a large ion temperature

gradient in the core area 0.35 < r/a < 0.75, as shown in Fig. 10(a); we also assume no

toroidal rotation, excluding the effect of the rotation gradient drive discussed above. The

radial profile of the simulated neoclassical electric field Er is plotted in Fig. 10(b). The slow

relaxation in the Er profile, shown in the period from t = 1500 to t = 7000 (in units of

the time step), may relate to the angular momentum transport driven by the temperature

gradient.13 Compared to the estimate from the standard neoclassical result for ion parallel

flow, there exists a considerable difference in Er in the region of large ∇Ti. This is equivalent

to saying that the neoclassical ion parallel flow is considerably modified in the same region,

which implies, as we discussed in the beginning of the section, a modification to the bootstrap

current. Indeed, as shown in Fig. 10(c), the total bootstrap current (sum of electron’s and

ion’s) is increased by around 10% in the large ∇Ti region relative to the small-orbit theory

prediction of Eq. 14. On the other hand, a steep density gradient, unlike ∇Ti, is found to

have little effect of modifying the bootstrap current.

Following the calculation for the heat flux distribution in terms of particle energy in the
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last section, it is interesting and instructive to calculate the bootstrap current distribution as

a function of particle parallel velocity to see the contributions of particles of different velocity.

We define

〈jbB〉bin (r, λ) ≡ −e
〈

B
∫

v‖δfeJv,λdv
〉

, (20)

and

〈jbB〉bin (r, v‖/vth) ≡ −e
〈

B
∫

v‖δfeJv,v‖dv
〉

, (21)

where Jv,λ and Jv,v‖ are the Jacobians for the velocity space (v, λ) and (v, v‖), respectively.

The radial profile of the total bootstrap current and its velocity space distribution functions

are presented in Fig. 11 which uses an NSTX-like magnetic geometry and plasma parameters

in the simulation. It is shown that particles with large pitch angle (passing particles) carry

most of the bootstrap current, even though the origin of the bootstrap current is directly

related to the existence of toroidally trapped particles. In terms of parallel velocity, particles

with |v‖| ∼ vth carry most of the bootstrap current. It also reveals a significant distinction

between the region near the magnetic axis and the rest. In contrast to the other area, near

the magnetic axis, particles with v‖ < 0 make a negative contribution to the current, which

almost cancels the positive contribution from particles with v‖ > 0, resulting in a small net

bootstrap current in the region.

V. RADIAL ELECTRIC FIELD WITH FINITE OR-

BIT EFFECT

In tokamak experiments, the radial electric field can be determined by using the radial force

balance relation and the measurements of toroidal and poloidal flow velocities and the pressure

profile. The radial force balance equation is expressed as

Er =
1

ne

∂p

∂r
+
1

c
(BpVT −BTVP ), (22)

which can be obtained from the perpendicular momentum equation of an ion species by ne-

glecting smaller viscous inertial and collisional friction terms. On the transport time scale,
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the dynamic evolution of the radial electric field is governed by an angular momentum trans-

port equation14. The radial force balance relation holds separately for both bulk ions and

impurity species. In experiments, however, most of spectroscopic measurements are made for

impurities such as carbon, and thus, the impurity radial force balance is used to estimate Er.

The equilibrium kinetic theory predicts that the poloidal flow VP is smaller than the toroidal

flow VT by a factor of the poloidal over toroidal magnetic field BP/BT .
14,26 Since the mea-

surement of poloidal flow is difficult and not available in most machines, it is usually replaced

by the standard neoclassical expression. For large gradient regions, finite orbit effects are

significant and can alter the inferred electric field profile, however. For instance, in toroidally

rotating plasmas, the rotation gradient, along with the pressure gradient, can drive an ion

poloidal flow due to finite ion orbits,27 in additional to the well known neoclassical poloidal

flow proportional to the ion temperature gradient.

The equilibrium radial electric field can be calculated from a first-principles-based GTC-

Neo simulation of neoclassical dynamics with finite orbit effects. Here we report our simulation

results for Er in NSTX experiments. Our simulation is carried out for bulk deuterium ions.

Figure 12 presents the result for an NSTX discharge which is a low density, shear reversal L-

mode with both ion and electron internal transport barriers (ITBs). Our simulation predicts

a deeper Er-well right at the ITB location, compared to the Er profile inferred from the radial

force balance relation (for carbon) with the neoclassical poloidal flow. The associated E×B

flow with a stronger shearing rate is, in general, more favorable for suppressing turbulence

fluctuations and thus in forming a transport barrier. On the other hand, for the NSTX

discharge shown in Fig. 8, where the toroidal rotation is expected to dominate the Er, the

simulated Er is in reasonably good agreement with the radial force balance estimate, as shown

in Fig. 13. Recently, direct measurements of Er and poloidal flow have been made in the

DIII-D tokamak,28 which can provide an experimental test for the neoclassical theory and

finite orbit effects.
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VI. SUMMARY

Using the developed global δf particle simulation, we have investigated the nonlocal properties

of neoclassical transport in tokamak and spherical torus plasmas. All nonlocal effects are

attributed to ion dynamics due to large orbit sizes. The ion thermal transport exhibits a

nonlocal nature near the magnetic axis, where ion orbits are topologically different than

those in the outer region, and have large size compared to the local minor radius. Specifically,

the conventional linear gradient-flux relation is broken for the ion heat transport. With

regard to the transport level, it can be either lower or higher than the prediction of standard

neoclassical theory, depending on the details of the ion temperature profile. Correspondingly,

there exists a qualitative distinction in the level of the neoclassical equilibrium distribution

function between the local and nonlocal transport regions. This distinction revealed by the

simulation can be instructive for developing a theoretical understanding of nonlocal transport

phenomena. We have particularly examined NSTX plasmas for which ion thermal transport

is observed to be governed by the neoclassical process for many discharges. Our simulations

suggests that nonlocality in ion thermal transport exists for NSTX plasmas, which is consistent

with experimental evidence.

The ion finite orbit effects modify the calculation of the bootstrap current via the ion

parallel flow velocity. It is shown that a large ion temperature gradient can increase the

bootstrap current, but a steep density gradient has little effect. When the plasma rotation

is taken into account, the rotation gradient can drive an additional parallel flow for the ions

and thus additional bootstrap current, either positive or negative, depending on the gradient

direction. However, the modification of the bootstrap current due to finite orbit effects is

hardly significant in the sense that the correction is within 20%. The reasons are: both

electrons and ions contribute to the bootstrap current by roughly the same amount, and only

the latter are influenced by the finite orbit effect; the bootstrap current is essentially carried

by passing particles which have smaller orbit size.

Finally, we have also reported the simulation results (for deuterium) of the radial electric

field in NSTX plasmas, which, for a wide range of NSTX discharges, are generally comparable

to the radial force balance result (for carbon) using measured toroidal flow and pressure
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profiles, and the standard neoclassical result for the poloidal flow. For an ITB case, however,

our nonlocal simulation predicts a significantly larger electric field peak, at the ITB location

with a steep temperature gradient. This may indicate that the poloidal flow component in

Er is significant and different than from the neoclassical theory of small orbits.
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APPENDIX: GENERALIZED TWO-WEIGHT SCHEME

We present a generalized two-weight scheme in this appendix, which is used in our simu-

lation. The δf equation to be solved is

∂δf

∂t
+ (~v‖ + α~vd) · ∇δf −

e

mi

(~v‖ + α~vd) · ∇Φ
∂δf

∂ε
=

−(~v‖ + ~vd) · ∇fSM +
e

mi

(~v‖ + ~vd) · ∇Φ
∂fSM
∂ε

+ Cii[δf, fSM ] + Cii[fSM , δf ], (23)

where α is a numerical factor artificially introduced to control ion drift orbit size. The sim-

ulation particle distribution function F (~x,~v, w, p, t) in the extended phase space (~x,~v, w, p)29

is advanced according to the following kinetic equation

∂F

∂t
+ (~v‖ + α~vd) · ∇F −

e

mi

(~v‖ + α~vd) · ∇Φ
∂F

∂ε
+

∂

∂ε
(ẇF ) +

∂

∂p
(ṗF )−Cii[F, fSM ] = 0. (24)

The equations for particle weights w and p are

ẇ =
1− p

fSM

{

−(~v‖ + ~vd) · ∇fSM +
e

mi

(~v‖ + ~vd) · ∇Φ
∂fSM
∂ε

+ C[fSM , δf ]

}

− η(w − w), (25)

22



ṗ =
1− p

fSM

{

−(~v‖ + α~vd) · ∇fSM +
e

mi

(~v‖ + α~vd) · ∇Φ
∂fSM
∂ε

}

− η(p− p), (26)

where the last term in the right hand side of each equation is introduced to damp the noise,15

with η the damping rate and w and p the average weights defined as

w =

∫

dwdpFw
∫

dwdpF
, p =

∫

dwdpFp
∫

dwdpF
.

Following the same procedure given in Ref. 9, we can show that, with the two-weight scheme

represented by Eqs. 25 and 26, the drift kinetic Eq. 23 can be reproduced from Eq. 24 with

δf =
∫

dwdpwF . In the case of α = 0 (zero orbit size limit), this generalized two-weight

scheme is reduced to the linear weighting scheme.6 In the case of α = 1, it becomes the usual

two-weight scheme.8
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Figure 1: Benchmark results of global GTC-Neo simulation against standard neoclassical

(local) theory in large aspect ratio circular concentric geometry limit (aspect ratio R0/a = 10):

(a) radial electric field with uniform ion temperature compared with Eq. 12; (b) Er with

nonuniform temperature compared with neoclassical theory of ion parallel flow; (c) ion heat

flux compared with Chang-Hinton formula; (d) total (electron + ion) bootstrap current; (e)

electron heat flux and (f) electron particle flux.
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Figure 2: Simulated ion heat fluxes vs r (near magnetic axis) compared with local transport

theory prediction. Simulations use a numerical MHD equilibrium of circular cross section

with R0/a = 5, and two specified pressure profiles.
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Figure 3: Ion heat flux (at r = 0.05) normalized by the local neoclassical theory prediction

(using Chang-Hinton formula) scales with orbit size represented by the parameter α.
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different energies.
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Figure 5: Distribution of heat flux as a function of pitch angle variable λ = v‖/v of particle

velocity.
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Figure 6: Neoclassical equilibrium distribution function with reduced dimension δf(r, v/vth).
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Figure 7: Simulated neoclassical ion heat fluxes vs r of an NSTX plasma, compared with

the experimental measurement (from TRANSP modeling) and the prediction of standard

neoclassical theory (from NCLASS 25). Also plotted is measured ion temperature profile.
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Figure 8: Simulated neoclassical ion heat fluxes vs r for an NSTX shot, compared with the

experimental measurement and the prediction of standard neoclassical theory.
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Figure 9: Bootstrap current in toroidally rotating plasma. Simulations use three different

rotation profiles ωt.
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Figure 10: Bootstrap current with large ion temperature gradient.
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Figure 11: Bootstrap current < jbB > vs r, and bootstrap current distribution as a function

of pitch angle and as a function of parallel velocity. Simulation uses an NSTX-like magnetic

geometry.
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Figure 12: Simulated neoclassical radial electric field, compared with Er calculated from

the radial force balance relation with experimental pressure and toroidal flow velocity and

standard neoclassical poloidal flow velocity.
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Figure 13: Simulated neoclassical radial electric field for NSTX discharge of Fig. 8, compared

with Er calculated from the radial force balance relation with experimental pressure and

toroidal flow velocity and standard neoclassical poloidal flow velocity.
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