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Abstract

In a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from

the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the

hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous

calculations of these processes in dense plasmas are now corrected for partial degeneracy and

relativistic effects, leading to an expanded regime of self-sustained fusion.
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I. INTRODUCTION

The fuel which can sustain thermonuclear reactions most easily is a mixture of deuterium

and tritium (D-T). The D-T reaction, however, has serious drawbacks. First, tritium does

not exist in substantial quantities. Second, the D-T reaction produces neutrons; neutrons

activate other material and damage the first wall. Therefore, it would be desirable to utilize

controlled thermonuclear reactions that produce the fewest neutrons or no neutrons. The

most promising fuel with no neutron (sometimes called advanced fuel) is proton-boron-11

[P +B11 → 3α(2.7 MeV)] and deuterium-helium-3 [D+He3 → p(14.7 MeV)+α(3.6 MeV)].

But all advanced fuels require a much higher temperature than does the D-T mixture. There

are many costs to maintaining the high temperature. In particular, the bremsstrahlung losses

in this regime might be greater than the fusion power, which makes self-burning of advanced

fuels unlikely [1].

In classical plasmas, both the fusion power and the radiation losses are proportional to

the square of the density. Thus, the power balance is essentially a function only of the

temperature and the ratio of the fuel concentration since the power balance is insensitive to

the density, and self-sustained aneutronic fusion burning remains unlikely [2]. However, in

Fermi degenerate plasmas, the prospect of the aneutronic fuel burning can be very different

due to the reduction of electron collisions, which both allows the ion temperature to exceed

the electron temperature and reduces the bremsstrahlung loss.

In previous work [3, 4], we showed that certain properties of degenerate plasmas such as

reduced i-e collisions enable an attractive fusion regime. We also showed that the fusion

byproducts are primarily stopped not by electrons but by ions, even in the limit when

the electron temperature goes to zero, thus allowing a regime of operation in which ions

are hotter than electrons, the so-called “hot-ion mode” of operation. We estimated that

the density should be more than 105 g/cm3, at which the ion temperature is more than

100 keV and the electron temperature is 30 keV. This regime has more favorable energy

balance than the equal temperature mode, and so can facilitate the self-sustained burning of

aneutronic fuel. This reduction of i-e coupling also can affect the current drive efficiency [5].

However, we did not consider the effects of partial degeneracy and the relativistic effects on

the i-e collisions, the reduction of the bremsstrahlung, and the energy that goes from fusion

byproducts into the electrons. In this paper, we calculate these effects more accurately. As
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a consequence, we can show that the possible self-sustained burning regime is larger than

what we have predicted previously, and how even larger ion-electron temperature differences

can be sustained.

This paper is organized as follows. In Sec. (II), we explain the self-burning requirements of

aneutronic fuels, and discuss the power balance in classical plasmas. We also summarize prior

work on fusing advanced fuel using inertial confinement. In Sec. (III), we explain essential

differences between degenerate electron plasmas and classical plasmas. In Sec. (IIIA), we

show how the i-e collision rate in a degenerate plasma is greatly reduced from the classical

prediction. In Sec. (III B), we apply the result by Maynard and Deutsch [6] to obtain

the partial degeneracy effects on the i-e collision rate. In Sec. (III C), we calculate how

the stopping power formula changes in a relativistic plasma. In Sec. (IIID), we calculate,

based on the reduced stopping power formula, the fraction of energy that goes from the

fusion byproducts to electrons or ions. In Sec. (III E), we apply the result by Eliezer [7] to

calculate the effects of degeneracy on bremsstrahlung. These new effects tend to enlarge

the regime for hot-ion fusion that we identified previously. The calculation of the precise

enlargement is left to a separate paper. In Sec. (IV), our conclusions are summarized.

II. SELF-BURNING REQUIREMENT OF ANEUTRONIC FUEL

A. Self-Burning requirements

Ignition requires that the fusing fuel be maintained at high ion-temperature long enough

to produce enough fusion reactions, and that the fusion power (energy produced from fusion)

should be more than the total power losses (e.g. losses due to plasma instability, continuous

bremsstrahlung losses, cyclotron radiation, line radiation and particle losses from trans-

port) [8]. Due to the large fusion cross-section at relatively low kinetic energy, Deuterium-

Deuterium (D-D) and Deuterium-Tritium (D-T) in magnetic fusion satisfy the above require-

ments. However, aneutronic fuel (e.g. P-B-11 and D-He-3) is only self-burning with difficulty.

This is because the P-B-11 fusion reaction is appreciable only when Ti ≥ 200 keV, but at this

temperature, the fusion power, PF , of the P-B-11 is less than the bremsstrahlung losses, PB,

if the electron temperature is the same as the ion temperature, i.e. PB(Te = Ti) > PF (Ti)

[1]. Apart from the apparent insurmountable task of recycling or reflecting these power
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FIG. 1: To achieve a hot-ion mode, the fusion by-products must dissipate their energy mostly not

into electrons but ions. The ions then will dissipate their energy into the electrons via Coulomb

collisions, and the electrons will lose energy by bremsstrahlung losses.

losses, the only way to overcome this difficulty would be if the fuel were burned at high

ion temperature and low electron temperature (Ti > Te). To achieve this hot-ion mode,

the fusion by-products (α-particle for the P-B-11, α + p for the D-He-3) should primarily

dissipate their energy not on electrons but on ions as shown in Fig. (1).

To find an attractive parameter regime for the hot-ion mode in an ideal plasma, consider

that the rate of energy transfer from α-particle to electrons via Coulomb collisions is given

by the classical formula:

νC
i,e = 3.2 × 10−9 1

µiT
3/2
e

neZ
2
i log Λ , (1)

where log Λ is the Coulomb logarithm, Te in eV, µi in esu and Zi is the charge number of

the alpha particle and ne in cm−3. Note that νC
i,e is inversely proportional to the electron

temperature. The rate of energy transfer from α particles to ions via Coulomb collisions can

be given as

νC
i,j = 1.8 × 10−7(

µ
1/2
i

µj
)

1

E3/2
njZ

2
i Z

2
j log Λ, (2)

where Zj is the charge number of background ions and E is the energy of the alpha particle

in eV. Note that νC
i,j is independent of the electron temperature and the ion temperature.

We note from Eqs. (1) and (2) that the energy of the α particle will be dissipated on

electrons if the electron temperature is too low (νC
i,e is inversely proportional to the electron

temperature). This critical electron temperature is 30 keV.
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Assuming that the energy of the fusion byproducts goes into ions (Te > 30 keV), we

can obtain the electron temperature for given ion temperature by the balance between

the bremsstrahlung losses PB and the energy transfer rate Pie from ions into electrons via

Coulomb collision: PB(Te) = Pie(Ti, Te). Now, with electron temperature known, we can

obtain the ratio F = PF (Ti)/PB(Te, Ti). There then appears to exist a band around Ti
∼=

300 keV at which F is larger than unity [1]. Unfortunately, this computation [1] was based

on an old data of the fusion rate: the recent data suggests much reduced rate [9], so there

is no self-burning regime.

In the case of the D-He-3, the fusion rate is already appreciable at 50 keV and there exists

a self-burning regime. However, deuterium ions do produce neutrons via D +D → He3 +n,

D + D → T + p and D + T → n + α. Therefore, the minimum amount of deuterium

density should be small; something like nD/nHe ≤ 0.1 might be desirable. However, under

the condition nD/nHe ≤ 0.1, one can show that there exists no self-burning regime.

In summary, it is possible to self-burn advanced fuel only by maintaining a hot-ion mode.

For the P-B-11, according to the recent reduced activity data, it seems impossible to sustain

fusion reaction even in a hot-ion mode. In the D-He-3 case, due to the production of neutrons

from deuteriums, it is desirable to have small deuterium density such as nD/nHe ≤ 0.1.

However, at this fuel concentration, there exists no self-burning regime.

B. Hot-Ion Regime in advanced fuel burning

The hot ion mode is always desirable in fusion devices. For example, in the D-T reactor,

it can enhance the performance and the confinement vastly [10]. In magnetic fusion devices,

the hot-ion mode can be obtained, in principle, by catalyzing alpha particle power to ions

using injected rf waves, i.e. alpha channeling [11]. Note, however, that the hot-ion mode is

a necessary condition for advanced fuel while it is just advantageous for in the D-T fuel.

To achieve a hot-ion mode in inertial confinement fusion using P-B-11, there have been

proposals to generate a detonation wave [12–15]. Eliezer [13] showed that compressed fuel

can be burned by an expanding ion fusion-burning wave preceded by an electron-conduction

heat detonation wave. A large gap between the electron temperature Te
∼= 80 keV and

the ion temperature Ti
∼= 200 keV might then be achievable. However, they withdrew

this claim later because the activity data was revised lower [14]. More recently, however,
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the bremsstrahlung was predicted to be much reduced, giving brighter prospect for P-B-11

fusion [7]. Leon et al. [16] showed that plasma degeneracy lower the ignition temperature

for D-T, and that for P-B-11, the ignition temperature can be lower than 20 keV when

ρ = 3.3 × 107 g/cm3. They implied that the density is too large for economical fusion

reactor.

In the D-He-3 ICF, Honda [17] pointed out that, due to the nuclear elastic scattering,

there will be more energy transfer to ions from the 14 MeV proton. While this is still smaller

than energy transfer to electrons, it nevertheless improves the fusion reactivity. However,

the electron temperature is still the same as the ion temperature according to their scenario.

III. DEGENERATE PLASMA

In dense plasmas, the power balance becomes very different, in ways that favor the hot-

ion mode. In quantum electron plasmas, the electron distribution satisfies Fermi-Dirac

statistics, since electrons obey the exclusion principle. In the Fermi distribution, the oc-

cupation number g is defined as g(E) = 1/(exp[(E − µ)/Te] + 1), where µ is the chem-

ical potential, E = ~
2k2/2me is the kinetic energy of an electron, and g is normalized as

ne =
∫

2gd3k/(8π3). If the final state has the occupation number gs, a transition from the ini-

tial state to the final state is forbidden with the probability 1−gs. If the electron De Broglie

wave length is comparable to the inter-particle spacing, this exclusion principle becomes im-

portant to consider. This is usually when θ = Te/EF < 10, where EF = ~
2(3π3ne)

2/3/2me

is the Fermi energy.

An an example, consider metals at ρ = 10 g/cm3, and ne
∼= 1022 cm−3 corresponding to

the Fermi energy EF of a few eV. At room temperature, we then obtain θ ∼= 0.01. Consider,

as another example, a D-T ICF target with ρ = 103 g/cm3 (EF being a few keV) and the

temperature Te
∼= 10 keV. We obtain θ ∼= 2 − 5. As shown later, the relevant parameter

regime for aneutronic burning will be ρ ∼= 105 g/cm3, at which the Fermi energy is a few

tens of keV. For the electron temperature of a few tens of keV, the degeneracy parameter θ

is order of unity.
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FIG. 2: Electron velocity space. Because the Fermi-sea (inside the circle) is already occupied, only

electrons on the Fermi-surface (the area filled with black) can participate in slowing down the ion.

A. Reduction of Ion-Electron Collisions in a Degenerate Plasma with Te = 0

In a degenerate plasma, certain collisions are forbidden because of the exclusion principle,

which reduces the total collision rate. If the velocity of an ion is slower than the electron

Fermi-velocity, then as the ion moves in the plasma, it slows down giving its kinetic energy

away to electrons. However, because the Fermi-sea is already occupied by electrons, only

electrons on the Fermi-surface can take part in these collisions as shown in Fig. (2). The

original calculation of the collision rate has been obtained by Fermi [18] and Lindhard [19].

Later on, the electronic stopping power in an electron degenerate metal has been intensively

studied theoretically [20–27] and experimentally [27–33], in the case when the velocity of an

ion is smaller than the electron Fermi-velocity.

Lindhard derived the stopping power formula:

dK

dl
=

q2

2π2

∫
[

k · v
k2v

ImD(k,k · v)

|D(k,k · v)|2
]

d3k . (3)

where K is the energy of the ions, q is the charge of the ion, and D is the electron dielectric

function. Note that the right hand side is the kinetic energy loss of the ion per length. By

using the dielectric function from the quantum random phase approximation, he obtained

the stopping frequency,

dE

dt
= C(χ)

8

3π

m2Z2e4

µ~3
E, (4)

where µ is the ion mass, E is the ion energy, m is the electron mass, χ2 = e2/π~vF , vF is the

Fermi velocity, and C(χ) ∼= (1/2)[log(1+1/χ2)−1/(1+χ2)] [20]. The above formula is valid
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if v � vF and rs � 1, where v is the ion velocity, and rs = (me2/~)(3/4πne)
1/3 [18, 19, 21].

The collisions occur between the ion and the fastest electrons rather than, as in a weakly-

coupled hot plasma, between the ion and the thermal electrons. The collisional cross-section

decreases as 1/v4
F . This strong dependence of the cross-section on vF just suffices to cancel

the effect of the greater electron density, the greater energy loss per collision, and the great

relative velocity of the colliding particles. A surprising result is that the stopping frequency

is almost independent of the electron density. From Eq. (4), the i-e collision frequency is

given as

νie = 3.47 × 1013(Z2/µ)
1

sec
(5)

where µ is the nucleus mass in the unit of the proton mass, and C(χ) ∼= 2 when n ∼=
1028(1/cm3).

B. Reduction of Ion-Electron Collision: Te 6= 0

The stopping power in a partially degenerate plasma has been obtained by Maynard and

Deutsch [6]. We apply their formula to our regime of interest. The starting equations is

Eq. (3) with the dielectric function,

Dl(k, ω) = 1 +
2m2ω2

pe

~2k2
Σn

g(En)

N

(

1

k2 + 2k · kn − 2m
~

(ω + iγ)

)

(6)

+
2m2ω2

pe

~2k2
Σn

g(En)

N

(

1

k2 + 2k · kn − 2m
~

(ω − iγ)

)

,

where g is the occupation number and N = Σng(En) is the total number of electrons. We

numerically integrate Eq. (3) for the density ne = 1029 cm−3, and obtain the stopping power

as a function of the temperature in Fig. (3). As shown in the figure, for non-zero electron

temperature, the i-e collision frequency decreases further with the electron temperature. See

for details [6, 34, 35]
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FIG. 3: C(Te) in Eq. (4) for 0 < Te < 250 keV with ne = 1.3 × 1029 cm−3 (the Fermi energy

EF = 93 keV, Y-axis: χ(Te), X-axis: electron temperature Te in keV ).

C. Relativistic Effect and Reduction of Ion-Electron Collision

For a plasma with the density ne
∼= 1029 cm−3, the Fermi energy is not negligible with

respect to the rest-mass energy (500 keV), and the relativistic effect should be taken into

account. While the exact dielectric function with full consideration of the relativistic effect

can be found in the literature [36], a simpler approach with approximations is adopted here.

The stopping power formula for a degenerate plasma [19] can be written as

dK

dl
=

4πZ2e4

mev2
neL , (7)

where K is the kinetic energy of the ion, and L is

L =
6

π

∫ v
vF

0

udu

∫ ∞

0

z3dz
fi(u, z)

(z2 + χ2fr(u, z))2 + χ4fi(u, z)2
, (8)

where vF is the Fermi velocity, z = k/2kF , u = |ω|/kvF , χ2 = e2/π~vF , and fi (fr) is

related to the longitudinal dielectric function as Dl(k, ω) = 1 + (3ω2
pe/k

2v2
F )(fr + ifi), where

ωpe =
√

4πne2/me is the plasma frequency.

For the relativistic dielectric function, we use Lindhard’s except that the dispersion

relation between the momentum and the energy is different from the classical one, i.e.

E(k) = ~ωk =
√

m2c4 + ~2k2c2 rather than Ek = ~
2k2/2me. Then, the dielectric function is

given as

9



Dl(k, ω) = 1 +
mω2

pe

k2
Σn

g(En)

N

1

E(k + kn) − E(kn) + ~(ω + iγ)

(9)

+
mω2

pe

k2
Σn

g(En)

N

1

E(−k + kn) − E(kn) − ~(ω + iγ)
,

In Eq. (8), we need to integrate fr and fi with respect to u and z. Lindhard has shown

firstly that when the velocity of the ion is much smaller than the electron Fermi velocity, the

major contribution to L comes from the region in the integration over the region z � 1 and

u ∼= 0, and secondly that fi is proportional to u when u � 1. Based on these observations,

we can use two approximations. First, in the denominator of Eq. (8), we ignore fi and

consider fr(u, z) only when u = 0 and z � 1. Second, fi(z, u) in the numerator only needs

to be obtained to the first order in u as a function of z. Therefore, we only need to evaluate

fr(z, 0) when ω = 0 and z � 1, and fi(z, u) to the first order in u.

Firstly, let us evaluate fr. We can write fr from Eq. (9) as

fr =
3

2

~
2k2

F

2me
Σn

f(En)

N

[

2E(kn)

E(k + kn)2 − E(kn)2
+

2E(kn)

E(−k + kn)2 − E(kn)2

]

. (10)

After integration of the angle between k and kn, Eq. (10) becomes

fr =
3

2
k2

f

1

2π2ne

∫

g(kn)
E(kn)

mc2

kn

k
log(

kn + k/2

kn − k/2
)dkn, (11)

where g(k) is the occupation number. Assuming k/2kn � 1, we can expand the logarithmic

terms in terms of k/2kn and simplify Eq. (11) as

fr
∼= 1

kF

∫

g(kn)
E(kn)

mc2
dkn, (12)

For a plasma with zero-temperature, we obtain fr
∼= 1 since g(kn) = 1 if kn < kF , and

g(kn) = 0 if kn ≤ kF . If we calculate Eq. (12) to the first order, we obtain fr(0, 0) =

1 + (1/6)(~2k2
F /m2

ec
2). For a plasma with non-zero temperature, Eq. (12) should be used

with appropriate g(k).

Secondly, we consider fi in the denominator of the right-hand side of Eq. (8). As men-

tioned, we only need to evaluate fi to the first order in u. From Eq. (9), we can write fi

as
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fi = +
3

2

~
2k2

F

2me
Σn

f(En)

N
πδ (E(k + kn) − E(kn) + ~ω)

− 3

2

~
2k2

F

2me
Σn

f(En)

N
πδ (E(−k + kn) − E(kn) − ~ω) .

After integrating out the angle between k and kn, it becomes

fi(z, u) = +
3

2

k2
F

2mec2

1

2π2ne

∫

R1

[

g(kn)
kn

2k
(E(kn) + ~ω)

]

dkn

+
3

2

k2
F

2mec2

1

2π2ne

∫

R2

[

g(kn)
kn

2k
(−E(kn) + ~ω)

]

dkn ,

where R1 is a set in real axis with R1 = {k > 0 : (E(|k| + |kn|) > E(kn) + ~ω)}, and

R2 = {k > 0 : (E(−|k|+ |kn|) > E(kn) + ~ω}. Assuming ~ω/mec
2 � 1, to the first order in

u, it can be shown that

fi(k, ω) ∼= π

2
u

[

g(k)
E(k)

mec2
− ~

2

m2
ec

2

∫

g(kn)kndkn

]

. (13)

where the first term of the right-hand side in Eq. (13) is from
∫

R1

g(kn)(kn/2k)E(kn)dkn −
∫

R2

g(kn)(kn/2k)E(kn)dkn and the second term is from
∫

R1

g(kn)(kn/2k)~ωdkn +
∫

R2

g(kn)(kn/2k)~ωdkn. For a plasma with zero-temperature, in the limit z � 1, we ob-

tain fi from Eq. (13) as

fi(u, z) =
π

2
u(1 − 1

2

~
2k2

F

m2
ec

2
), if z < 1

fi(u, z) = 0, if z > 1, (14)

which is the same as the classical formula in the limit (~k2
F/m2

ec
2) � 1.

We now return to the original problem of the relativistic correction to the stopping power.

If the temperature is zero, from Eqs. (8) and (14), we can conclude that the stopping power

is smaller due the relativistic effect than the classical calculation by a factor:
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FIG. 4: The ratio of the relativistic stopping power to the classical stopping power for 0 < Te <

80 keV with ne = 1029 cm−3 (the Fermi energy EF = 78 keV, Y-axis: R = Lrel/Lclassical, X-axis:

electron temperature Te in keV).

Lrel

Lcla

=

[

1 − (
1

2
− 1

12 log(χ)
)
~

2k2
F

mec2

]

. (15)

For a non-zero temperature, we should use Eqs. (8), (12) and (13). An approximate

correction can be made by calculating the stopping power from classical mechanics [34], and

then correcting for the relativistic effect, so that

Lrel

Lcla

∼=
[

1 − ~
2

m2
ec

2g(0)

∫

g(kn)kndkn +
1

2

log(A)

log(χ)

]

. (16)

where

A =

∫

g(kn)
E(kn)
mec2

dkn
∫

g(kn)dkn.
(17)

Eqs. (15) and (16) are the major results of this section. In Fig. (4), R = Lrel/Lclassical is

plotted as a function of the electron temperature for ne = 1029 cm−3. In short, the reduction

of the stopping power due to relativistic effects are 10-20 % of the classical result. Nagy [37]

has obtained the exact stopping power formula for zero electron temperature:

C(χ) = 1
2

1+a2

a2

[

log(1 + π
α(1+a2)1/2

) − π
π+α(1+a2)1/2

]

, (18)

where α = e2/~c ' 1/137 and a = mc/pF . By comparing this formula with a classical

formula in Eq. (4):
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C(χ) =
1

2

[

log(1 +
1

χ2
) − 1

1 + χ2

]

, (19)

where χ2 = αa/π, we can also predict 10-20 % of reduction in the stopping due to the

relativistic correction. Our result agrees well with Nagy’s for zero temperature.

D. Fraction η of energy that goes from fusion by-products to electrons

In this section, the fraction η of energy that goes from fusion byproducts into the electrons

is calculated, more exactly, using the result in Secs. (IIIA) (III B) and (III C), as a function

of the electron temperature, density and fuel concentrations.

First, remember that the ion-ion collision frequency is given as in Eq. (2), where log(Λ) is

the Coulomb logarithm. The Coulomb logarithm, log Λ can be obtained from the integration

of the impact parameter [38]: log Λ =
∫ ρmax

0
dρρ/(ρ2

C + ρ2), where ρC = ZiZje
2/2E0 is the

distance at the closest approach, ρmax is the maximum impact parameter, and E0 is the

kinetic energy of the fusion byproduct. In our partially degenerate relativistic plasma, the

maximum impact parameter can be estimated as the screening length Ds, which has been

calculated, through the quantum random phase approximation [39]:

a/Ds = 0.1718 , (20)

where a is the inter-particle spacing. Then, we can estimate

log Λ ∼= log
[

(ne)
−1/3/0.1718ρC

]

. (21)

For an example, an alpha particle with ε = 3.7 MeV and ne = 3 × 1028 cm−3, we obtain

log(Λ) ∼= 10.8, which is larger than the Coulomb logarithm used in [3] by a factor 2. With

the change of the Coulomb logarithm and the reduction of the electron stopping power in

mind, we now obtain η-equation:

η = re(Te) =

∫ E0

0

dE

E0

νie(Te)

νie(Te) +
∑

j να,j(E)
. (22)

where E0 is the initial energy of the α particle, and νie is given in Eq. (4). This equation

can be simplified to
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FIG. 5: The function g [Y-axis: g(ζ), X-axis: ζ].

FIG. 6: The fraction of energy transfer from an alpha particle (2.7 MeV) to electrons as a function

of electron temperature. The P-B-11 with density ne = 4 × 1028 1/cm3, nB/nP = 0.3, and the

Fermi energy EF = 43 keV, (Y-axis: re, X-axis : the electron temperature Te in keV)

η(Te) =

∫ 1

0

1/(1 + ζ(Te)/s
3/2)ds , (23)

where

ζ(Te) =
∑

j

1.8 × 10−7
njZ

2
i Z2

j λ

ε3/2νie(Te)

(

m
1/2
i

mj

)

. (24)

We plot g(ζ) = η as a function of ζ in Fig. (5). For an example, in the P-B-11 fuel with

nB/nP = 0.3 and ne = 4 × 1028 cm−3, we plot η(Te) as a function of Te in Fig. (6).

In the D-He-3, proton (E0 = 14.7 MeV) and alpha particle (E0 = 3.6 MeV) are fusion

by-products. The fraction of the energy from an alpha particle to electrons, re,α, can be

obtained in the same way in the case of the P-B-11. For proton, the nuclear elastic collision

14



FIG. 7: The fraction of energy transfer from fusion by-products (a 3.6 MeV alpha particle and a

14.7 MeV proton) to electrons as a function of electron temperature. The D-He-3 with density

ne = 3 × 1028 1/cm3, nD/nhe = 0.3, and the Fermi energy EF = 35 keV, (Y-axis: re, X-axis : the

electron temperature Te in keV.)

(NEC) must be also taken into account. The NEC is an elastic collision between nuclei in

which nuclei only exchange their kinetic energy. Especially, the NEC between proton and

He-3 is quite large. Including the NEC, we can express re,p as

re,p(Te) =

∫ E0

0

dE

E0

[

νie(Te)

νie(Te) +
∑

j να,j(E) + σN(E)v(E)f(E)

]

. (25)

where E0 is the initial energy of the proton, v(E) is the proton velocity, σN is the

NEC cross-section, and f(E) is the fraction of the proton energy per a NEC. By as-

suming σN(E)v(E)f(E) as constant with respect to energy (this is a good approxima-

tion for the NEC between proton and He-3), we can use re,p(Te) = γ(Te)g(γ(Te)ζ), where

γ(Te) = νie(Te)/(νie(Te) + σN(E)v(E)f(E)). Then, the total fraction can be obtained as

η = (14.7re,p + 3.6re,α)(14.7 + 3.6) with re,α is the fraction of energy from the alpha particle

to electrons given in Eq.(22). For an example, we plot η as a function of Te in Fig. (7) when

nd/nhe = 0.2 and ne = 3 × 1028 cm−3.

E. Reduction of Bremsstrahlung due to Partial Degeneracy

In previous work [3], the classical formula for bremsstrahlung was used. But

bremsstrahlung power is greatly reduced in a degenerate plasma. While any reduction

of bremsstrahlung leads to make electrons hotter, the reduction of the i-e collision frequency
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due to higher electron temperature further reduces the energy transfer from ions to electrons.

Therefore, the degeneracy effects on bremsstrahlung is important in limiting the energy flow

from the ions. The exact formula for bremsstrahlung, which Eliezer [7] has recently derived,

is applied in our particular regime. An electron emits photons as it collides with background

ions, and the rate of the emission of photons by this electron is given by Greene [40]:

B(ω, E) = niZ
2ve(E)

dσ

d~ω
, (26)

where B is the rate of photons emission per second in the units of erg−1 sec−1, and ve(E) =
√

2E/me is the velocity of the electron, and (dσ/d~ω) = (A/~ω)(η2
0/π

√
3), where A =

(8π/3)(e2h/m2c3) = 5.728 × 10−22 cm2, and η0 = (e2/~ve). The Cramer’s approximation

[40], which is valid when η0 � 1, is used in Eq. (26). Considering Fermi-Dirac statistics, the

radiation power PB then can be written as [7]:

PB = K(
E2

F

~
)θ2f(Te), (27)

where µ is the chemical potential, EF is the Fermi energy, θ = Te/Ef and K =

(32π/3
√

3)(Z2nie
6/c3

~
3). and f(Te) is

f(Te) =

∫ ∞

0

[

log(1+exp(µ̃−a)
1+exp(µ̃)

)

exp(a) − 1

]

da, (28)

where µ̃ = µ(Te)/Te. PB is in the units of eV cm−3 sec−1, or energy per volume per second.

The radiation power density W (ω) is given as

W (ω) = K
log(1+exp(µ/Te−~ω/Te)

1+exp(µ/Te)
)

exp(~ω/Te) − 1
Te, (29)

where PB =
∫

dωWB(ω).

In Fig. (8), for the density ne = 1029cm3 (EF = 79keV), the ratio of PB to the clas-

sical result is plotted as function of the temperature. For the calculation of the radiation

re-absorption, the radiation power density should be used, which is quite different from

the classical black body radiation. As an example, for the density ne = 1029cm3 and the

temperature Te = 15 keV, the ratio of W (ω) to the classical calculation is plotted in Fig. (9).
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FIG. 8: The ratio of the exact radiation power P to the classical radiation power for 0 < Te <

300 keV with ne = 1029 cm−3 and the Fermi energy Ef = 78 keV (Y-axis: P/PC , X-axis : the

electron temperature Te in keV)

FIG. 9: The ratio of the exact radiation power density W to the classical radiation power density

at Te = 15.7 keV with ne = 1029 cm−3 and the Fermi energy EF = 78 keV (Y-axis: W/WC , X-axis

: the photon energy ~ω in keV).

IV. CONCLUSION

In degenerate plasmas, the electronic processes are much slower than the classical predic-

tion due to Fermi-Dirac statistics. This aspect of degenerate plasmas enhances the prospect

of controlled fusion of advanced fuels, since the reduction of the ion-electron coupling and

the bremsstrahlung losses eventually impede energy dissipation from hot fusing ions. In

particular, the ion energy losses are no longer proportional to the square of the density.

The power balance is then quite sensitive to density, which makes the advance fuel burning

feasible.
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Building on our previous work [3], we show here that the partial degeneracy and the

relativistic effects reduces the ion-electron collision frequency considerably compared to the

zero temperature result previously assumed. This reduction means that the fraction of

energy that goes from fusion byproducts into ions is larger than previously obtained. Since

the bremsstrahlung is simultaneously much reduced compared to the classical result that was

used in previous work, the parameter regime that we identified previously [3] will expand

considerably. The precise calculation of the self-sustained burning regime is treated in a

companion paper.
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