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Abstract

The dispersion properties of ion acoustic waves and their nonlinear coupling to light waves

through ponderomotive and thermal forces are sensitive to the strength of electron-ion collisions.

Here, we consider the growth rate of stimulated Brillouin scattering when the driven acoustic

wave frequency and wavelength span the range of small to large compared to electron-ion collision

frequency and mean free path respectively. We find in all cases the thermal contributions to the

SBS growth rate are insignificant if the ion acoustic wave frequency is greater than the electron-ion

collision frequency and the wavelength is much shorter than the electron-ion mean free path. On

the other hand, the purely growing filamentation instability remains thermally driven for shorter

wavelengths than SBS even when the growth rate is larger than the acoustic frequency.

PACS numbers: 52.35.-g, 52.38.-r, 52.57.-z
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I. INTRODUCTION

The theory of stimulated Brillouin scatter (SBS) and filamentation in high-temperature,

low-Z, and low-density plasma, that is collisionless plasma, has a complete description in

terms of Maxwell’s equations and the linearized Vlasov equation [1, 2]. If linearized hydrody-

namic equations that include inverse bremsstrahlung heating in the electron energy equation

use classical Spitzer-Härm conduction [3], the temperature perturbation contribution to the

pressure force in laser produced plasma is typically small compared with the ponderomotive

force in the electron momentum equation. [4] However, it has been long recognized [5, 6] that

the conditions of applicability for this classical transport, namely, that the electron-electron,

λee and electron-ion, λei, mean free paths be less than the scale length of the temperature

perturbation, are often not satisfied. When they are not, the heat conduction is less than

the classical value and the temperature perturbations are greater than the classical value.

The significance of this increased pressure force to the growth of filaments was recognized

by Epperlein [7] who showed that the pressure gradient could dominate the ponderomotive

force even if kλei > 1 where k is the wavenumber of the ion acoustic wave. In that work,

the electron heat flow is treated as independent of time but as a nonlocal function of x/λe,

where λe ∼
√
λeiλee is the slowing down mean free path. Subsequent work by Epperlein and

others applied and improved on this approach to treat filamentation, forward and backward

SBS, and other parametric instabilities that drive ion acoustic waves.

In all this work, it is important to the derivation of the transport coefficients that the

frequency and growth rate of the instability be small compared with the electron-ion colli-

sion frequency, νei. Here, we take a different approach by allowing the complex ion acoustic

wave frequency to take on arbitrary values with respect to νei to find the SBS and fila-

mentation growth rate for any kλei. We find that thermally-driven SBS is insignificant

compared to ponderomotively-driven SBS provided both kλei � 1 and <ω > νei where νei

is the electron-ion collision frequency. For small angle scatter of light, filamentation and

forward SBS are two distinct branches of the same dispersion relation. However, filamen-

tation may remain predominantly thermally driven for wavenumbers where forward SBS is

predominantly ponderomotively driven.

Epperlein [7] found an effective thermal conductivity as a function of kλe which is less

than the Spitzer-Härm conductivity when kλe
>∼ 1 by fitting the time asymptotic steady
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state response of a Fokker-Planck code to a sinusoidal spatial modulation of the laser electric

field. The conductivity deduced is used in the linearized hydrodynamic equations in place of

the Spitzer-Härm conductivity. Large enhancement in the filamentation growth rate above

the ponderomotive rate was obtained under conditions when the Spitzer-Härm conductivity

would predict no thermal effects. Subsequently, this approach, albeit with somewhat dif-

ferent models for the thermal conductivity, was applied to stimulated Brillouin backscatter

by Short and Epperlein [8] and Rose and DuBois [9]. They demonstrated that the coupling

of the light to ion acoustic waves is enhanced. In an attempt to find a hydrodynamic for-

mulation valid both when a nonlocal heat conductivity is appropriate and the collisionless

limit where Landau damping of the ion acoustic waves can be represented with a Hammet-

Perkins conductivity [10], Kaiser [11] proposed an ad hoc interpolation between these two

approaches with an arbitrary cross over when kλe ∼
√
Z.

In related work, the damping of ion acoustic waves was found by solving the linearized

Fokker-Planck equation that included electron-ion collisions but not electron-electron col-

lisions. The electron-ion collisions are retained in lowest order with a Lorentz operator

where an expansion in Legendre polynomials, Pl, is convenient. In the diffusive limit where

expansion is truncated after the l = 1 coefficient, Bell [12] found an enhancement of the

damping above the fluid result for kλei
>∼ .01. For short wavelengths kλei

>∼ 1, the damp-

ing falls below the collisionless value because Landau damping is precluded by assumption.

Epperlein [13] generalized this work by keeping higher order polynomials to obtain the elec-

tron damping of ion acoustic waves for arbitrary kλei and |ω|/νei where k and ω are the

wave’s real wavenumber and complex frequency. He found that the damping consisted of

a collisionally reduced Landau damping and a collisional (thermal diffusion) damping that

involve electrons in distinct regions of velocity space. The diffusive damping is done by

electrons that diffuse a wavelength in an oscillation period, τ ∼ ω−1.[12] That is, Lan-

dau damping is done by electrons with parallel velocity near the acoustic phase velocity,

v‖ = k · v/v ∼ ω/k << ve whereas diffusive damping is done by higher velocity electrons

with velocity, v‖ ∼ ve(kλei)
−1/5.

Electron-electron collisions affect the damping for wavenumbers, k, in the intermediate

region between the collisional and collisionless limits (1 < kλei < 100) [14] because they

drive perturbed distribution function to a more Maxwell-Boltzmann shape. For a given

kλei, then, electron self-collisions drive the damping towards the fluid result, and, because
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self collisions are more frequent in low Z plasmas, νee ∼ νei/Z, the damping in low Z

plasmas is more fluid-like than high Z plasmas for a given electron-ion collision rate. In

another important contribution to a general theory of stimulated scattering from ion waves,

Brantov, et al. [15] expanded in a Legendre polynomial series the linearized Fokker-Planck

equation where both ponderomotive forces as well as inverse bremsstrahlung heating and

transport were included through the electron-ion and electron-electron collision operators

given a transversely-polarized, high-frequency (ω0 � ωpe) electromagnetic field. In deriving

generalized transport coefficients that included the effects of the high frequency fields, the

limit that |ω|/νei < 1 was again invoked. This work allowed the theory of filamentation

and SBS [19] in weakly collisional plasma to be developed with a firm theoretical basis with

results in substantial agreement with Epperlein [7].

Here, we build on this work by keeping the frequency of the ion waves for all Legendre

polynomial coefficients and find the growth rate for filamentation and for backward and

forward SBS. In the next Section II, we derive the general dispersion relation. In Section III,

the dispersion relation is solved for backward SBS. Section IV and V consider forward SBS

and filamentation respectively followed by a discussion of the results in Section VI. The

Appendix concerns the inclusion of high order Legendre coefficients in the solution for the

lowest two coefficients for the perturbed distribution function.

II. DERIVATION OF GENERALIZED DISPERSION EQUATION FOR STIMU-

LATED SCATTERING

The electron distribution, f , is expanded according to,

f = F0 + δf, (1)

where F0 = (2π)−3/2N0eexp(−mev
2/Te), an isotropic Maxwellian with density N0e and tem-

perature Te, satisfies the lowest order equation that defines the equilibrium state about

which the system is perturbed by first order electric fields, E, and flows, u. The evolution

of the perturbed distribution function (in the frame oscillating with ions) is governed by the

equation, (
∂

∂t
+ v · ∇

)
δf −

(
e

me

E +
∂u

∂t

)
· ∂
∂v
F0 −

∂

∂xα

uβvα
∂

∂vβ

F0

= Cei (δf, Fi) + Cee (δf) + Snl, (2)
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where the linearized electron-electron collision operator is

Cee (δf) = Cee (δf, F0) + Cee (F0, δf) .

In Eq. (2), v is the electron velocity, e is the electron charge, me is the electron mass, Cei

is the linearized electron-ion Landau collision operator, and Snl are the terms coupling the

electrons to the light waves through the ponderomotive force and inverse bremsstrahlung

heating.

Because the collisions between electrons and ions depends only on the relative velocity

between species, the form of the ion distribution, Fi, is not important. In light of the

dominance of electron-ion collisions, we consider the Fokker-Planck equation for the electrons

in which the self-collisions are kept only in the equation for lowest order term in the Legendre

polynomial decomposition of the angular dependence of the perturbed distribution but the

collisions from the ions are kept to all orders in this decomposition. The linearized kinetic

equations have been derived in Reference[15] in which the perturbed electron distribution,

δf , is Fourier transformed in time and space and expanded in Legendre polynomials, Pl with

coefficients, fl(k, w, v). The Legendre expansion exploits the fact that these polynomials are

eigenfunctions of the Lorentz collision operator. In Ref. [15], however, the acoustic wave

frequency was considered small compared with the electron-ion collision frequency in the

equations for fl with l ≥ 1. Here, we follow the approach of [13] and keep the complex mode

frequency ω to all orders. Thus, to the equations (A1) for fl of Reference [15], we add the

term −iωfl to obtain,

−iωf0 + i
kv

3
f1 = Cee(f0) + Slin

0 + Snl
0 , (3)

−iωf1 + ikvf0 + i
2kv

5
f2 = −ν1f1 + Slin

1 + Snl
1 , (4)

−iωf2 + i
2kv

3
f1 + i

3kv

7
f3 = −ν2f2 + Slin

2 + Snl
2 , (5)

−iωf3 + i
3kv

5
f2 + i

4kv

9
f4 = −ν3f3 + Snl

3 , (6)

−iωfl +
l

2l − 1
ikvfl−1 +

l + 1

2l + 3
ikvfl+1 = −νlfl, (l > 3), (7)

where νl = (l (l + 1)/2) ν1, ν1 = 4πNeZe
4`n (Λ)/(m2

ev
3), λt = v/ν1, and

Slin
0 =

ikv

3
u
∂F0

∂v
, (8)

Slin
1 = Ẽ

∂F0

∂v
− iωu

∂F0

∂v
, (9)
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Slin
2 =

2ikv

3
u
∂F0

∂v
, (10)

where Ẽ = eE/me. Electron-electron collisions are retained only for l = 0 because electron-

ion collisions do not contribute to the l = 0 equation and, for l > 0, the electron-ion collision

rate is much faster than the electron-electron rate if Z � 1. The coupling of the acoustic

waves to the light waves is from the terms, Snl
l , given by

Snl
0 =

1

6

[
ν1|vE|2

(
δ(v) + v

∂

∂v

1

v

)
+
∂|vE|2

∂t

(
3

2v
+
v

2

∂

∂v

1

v

)]
∂F0

∂v
, (11)

Snl
1 =

ik

2
|vE|2

[
1 +

(
2 cos2 φ0 + 1

) v2

10

∂

∂v

1

v

]
∂F0

∂v
, (12)

Snl
2 =

1

6

(
ν1|vE|2v4 ∂

∂v

1

v4
+
∂|vE|2

∂t

v

2

∂

∂v

1

v

)
∂F0

∂v

(
3 cos2 φ0 − 1

)
, (13)

Snl
3 =

ik

20
|vE|2

(
3 cos2 φ0 − 1

)
v2 ∂

∂v

1

v

∂F0

∂v
, (14)

where cos2 φ0 = |k · E0|2/k2E2
0 . Because we are interested in the transition from collisional

to collisionless behavior, the neglect of electron-electron collisions is justified for frequencies,

|ω| ∼ ν1 > νee if Z > 1.[16] In the collisional limit defined by kλth = kλt(ve) � 1, Snl
0 is the

dominant nonlinear term and only f0 and f1 need be kept.

In Appendix A, by generalizing Eqs. (A3) and (A4) of Reference [15] given by Eqs. (A7)

and (A9), we obtain expressions for f0 and f1 in terms of F0, E, etc. namely,

Ω2f0 =
ikv

3

∂F0

∂v

(
−Ẽ + ν1u

)
+

(
ν̃1S

nl
0 −

ikv

3
S̃nl

1

)
, (15)

Ω2f1 =
∂F0

∂v

(
u
(
Ω2 + iων1

)
− iωẼ

)
−
(
ikvSnl

0 + iωS̃nl
1

)
, (16)

where

νl,ω = νl − iω, (17)

ν̃l,ω = νl,ω +
(l + 1)2

(2l + 1) (2l + 3)

k2v2

ν̃l+1,ω

, (18)

and, for convenience, we introduce

Ω2 = −iων̃1 +
k2v2

3
, (19)

H1 = ν̃1,ω/ν1,ω. (20)

The low frequency beat pressure perturbation, meNcv
2
E is related to the high frequency

light waves, E0 (k0, ω0) and E (k ± k0, ω ± ω0) by
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|vE|2 = (E0E
∗ (k + k0, ω + ω0) + E∗0E (k − k0, ω − ω0)) /4πmeNc, (21)

where Nc is the plasma critical density ( ω2
0 = 4πNce

2/me).

The plasma response is completed with the cold ion fluid equations for a single species,

−iωni + ikNiui = 0 (22)

−iωNimiui = ZNimeẼ +Rie (23)

where the ion-electron momentum exchange rate is

Rie =
4πme

3

∞∫
0

dvv3ν1f1 (24)

and, with the quasi-neutrality approximation, the perturbed electron and ion charge densi-

ties are,

ne = 4π

∞∫
0

dvv2f0 = Zni (25)

The set of equations is completed with the wave equations for the scattered light waves,

D±E
± = D (k ± k0, ω ± ω0)E (k ± k0, ω ± ω0) =

4πe2

me

E0ne (k, ω) , (26)

where

D± = (ω ± ω0)
2 − 2iνabs (ω ± ω0)− ω2

pe − c2 (k ± k0)
2 . (27)

The inverse bremsstrahlung absorption rate is, νabs = (Ne/2Nc) νei where νei =

4
√

(2π)NeZe
4 ln Λ/ (3m2

ev
3
e) = νth

1 /(3
√
π/2), ve =

√
Te/me, and νth

1 = ν1 (ve). The collision

frequency νth
1 and the mean free path λth = ve/ν

th
1 , are related to the Braginskii electron-ion

collision frequency and mean free path[17] by νth
1 = 3

√
(π/2)νei and λth = λei/(3

√
(π/2)).

The generalized dispersion relation for scattering light waves from thermally and pon-

deromotively driven acoustic waves is given by,

ε (k, ω) =
−1

4
k2v2

0χe (k, ω)

(
1

D (k + k0, ω + ω0)
+

1

D (k − k0, ω − ω0)

)
(28)

where

ε (k, ω) =
ω2

k2C2
s

+ η
(√

2/π/3 + ηeJ1

)
− (1 + ηeJ4) (1 + ηJ4)

J7

, (29)
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where η = ηe = iω/kve/kλth, and

χe (k, ω) = −2
ω2

pe

k2v2
e

(
(1 + ηeJ4)

J7

n̄e − ηeR̄ie

)
(30)

where n̄e = n̄e,s + n̄e,a.

n̄e,s = −J7 +
1

6
J9 +

1

3ηek2λ2
th

(
J6 − i

ωE

2νth
1

(J9 − 3J7)

)
(31)

n̄e,a = n̄e,a,1 + n̄e,a,2 + n̄e,a,3 (32)

n̄e,a,1 = −ψ0η

2

(
3J2 −

1

2
J4 + i

ω − ωE

2νth
1

J6

)
(33)

n̄e,a,2 =
ψ0

6

νth
1

(−iω)

(
3J4 − 3Γ(−1)− 1

2

(
J6 −

√
2/π

)

+ i

(
ω − ωE

νth
1

)
(J8 − 3)

)
(34)

n̄e,a,3 =
ψ0

2k2λ2
th

(
3J−1 −

1

2
J1 + i

ω − ωE

2νth
1

J3

)
(35)

where ψ0 = 3 cos2 φ0 − 1, −iωE = ∂ln (|vE|)2/∂t, and Γ (n) =
√

2/π
∫∞
0 dxxn exp (−x2/2).

The divergent terms, Γ(−1) and J−1, combine to produce a finite result as shown in Appendix

B. The contributions from the friction force are:

R̄ie = R̄ie,1 + R̄ie,2 (36)

R̄ie,1 = −J4 +
1

6
J6 +

1

3ηek2λ2
th

(
J3 − i

ωE

2νth
1

(J6 − 3J4)

)
(37)

R̄ie,2 =
ψ0

2

(
η
(
3K−1 −

1

2
K1

)
− ω (ω − ωE)

2k2v2
e

K4

− 1

k2λ2
th

(
3K−4 −

1

2
K−2

)
− η

(
1− ωE

ω
K1

))
(38)

In the notation introduced by Epperlein[13],

Jm =

√
2

π

∞∫
0

dV
V m exp (−V 2/2)

V 5 − 3ηe (1− iω/ν1)H1

(39)

where H1 is defined by Eq. (20). The additional integral needed is

Km =

√
2

π

∞∫
0

dV
V m exp (−V 2/2) (H1 − 1)

V 5 − 3ηe (1− iω/ν1)H1

(40)

Given the negative powers of V in the integrand of Km in Eq. (38), we note that, because

H1− 1 → 0 as V → 0, the integrals are well behaved provided |ω| is not zero. A distinction
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between η and ηe has been maintained to facilitate a subsequent discussion of the influence

of electron self-collisions.

Setting the LHS of Eq.(28) to zero recovers the linear ion acoustic dispersion equation

obtained by Epperlein[13] which showed (see Fig. 1 of reference[13]) that the electron

damping rate of ion acoustic waves, νa, was given by the collisionless Landau value when

kλth ≥ 200 and νa/kCs, the ratio of the damping to the isothermal acoustic frequency where

Cs =
√

(ZTe/mi), reached a maximum when kλth ∼ .01. The ion acoustic wave frequency,

not shown in reference[13], is
√

5
3
kCs for kλth << 1 and kCs for kλth >> 1. These results

are also shown in Fig. 1 of this manuscript. In the collisionless limit, the RHS of Eq.(28)

reduces to the familiar result for ponderomotively driven stimulated Brillouin scattering and

filamentation if |η| << 1 in which case J7 ∼ 1, J9 ∼ 3, ηJ4 << 1, and the real part of the

term in brackets in Eq. (30) equals −1/2. For reference, the dispersion relation in the

collisionless Vlasov theory has a form similar to Eq. (28), namely,

ε(k, ω) =
k2v2

0

4
χe (k, ω) (1 + χi (k, ω))

(
1

D (k + k0, ω + ω0)
+

1

D (k − k0, ω − ω0)

)
(41)

In the quasi-neutral limit, the collisionless dielectric function is given by ε = χe + χi,

|χe| � 1, and χe = (1 + ξeZ(ξe))/k
2λ2

de where the plasma dispersion function, Z(ξ) =√
1/π

∫∞
−∞ dx exp(−x2)/(x− ξ) and ξe = ω/(

√
2kve). In the cold ion limit χi = −ω2

pi/ω
2.

Because the phase velocity is much less than the electron thermal velocity, Z(ξe)) ∼ i
√
π,

and to lowest order, ω = kCs(1 − i
√
πZme/2mi/2) = kCs(1 − .01i

√
2Z/A). Here, A is the

atomic mass.

In Ref. [20], the wavelength dependence of the ion acoustic damping rate was computed

with electron-electron collisions included. In Fig. 1, this Z dependence of the damping rate is

compared to that without electron-electron collisions. Over the range of interest to the SBS

growth rates shown in Fig. 2, the damping rate without self-collisions is nearly the same as

that for the charge state Z = 64, with electron self-collisions included. The damping rate for

Z = 8 with electron self-collisions is lower as shown. Thus, caution should be taken before

applying to low Z plasmas the growth rates that are obtained in the subsequent sections

which neglect self-collisions.
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kλth
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kC

s

FIG. 1: (left) The frequency and cold-ion damping rate of acoustic waves is displayed as a function

of kλth. (right) The ion acoustic damping rate in units of kCs is shown versus kλth as given by the

solution to Eq. (29) (solid) and as given in Reference [20] for Z = 64 (dash) and Z = 8 (dashdot).

III. CONVECTIVE TEMPORAL GROWTH RATE FOR STIMULATED BRIL-

LOUIN BACKSCATTER

Consider the important case of three-wave Brillouin backscatter where k = 2k0 + δk,

|δk| << k0, and E (k + k0, ω + ω0) is not resonant. Using the fact that the incident light

wave satisfies ω2
0 = ω2

pe + c2k2
0,

D (k − k0, ω − ω0) = D− = 2ω0(−ω − vg0δk + iνabs) (42)

where vg0 = c2k0/ω0 is the incident light wave group velocity. With this approximation,

Eq.(28) becomes,

ω − ωa − dΩ + iνabs +
1

8
k2v2

0χe (k, ω) /ω0ε (k, ω) = 0, (43)

where dΩ = vg0δk − ωa with ωa ≡ kCs. In the collisionless limit and ZTe/Ti >> 1 so

that ion Landau damping is much smaller than the small electron Landau damping, νa,
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ε (k, ω) ≈ (ω − ωa − iνa)∂ε/∂ω where ∂ε/∂ω ≈ 2ω/ (kCs)
2. This quadratic equation gives

the weak coupling (|=(ω)| � |ω| ∼ ωa) convective SBS growth rate,

ω = ωa +
1

2
dΩ− i

2
(νa + νabs)±

[
1

4
(dΩ− i (νa − νabs))

2 − γ2
0,sbs

]1/2

, (44)

where

γ2
0,sbs =

1

16

Nev
2
0ωaω0

Ncv2
e

. (45)

The maximum growth rate occurs for perfect frequency matching, dΩ = 0 for which

δk = −2Csω0/c
2. For arbitrary kλth, we solve Eq.(43) for ω̂ = ω/ωa given the ra-

tio of the electron density to the critical density, Ne/Nc, and the coupling strength,

βc = ω0v
2
0/4ωav

2
e so that γ2

0,sbs/ω
2
a = (Ne/4Nc)βc. The light absorption rate is then

ν̂abs ≡ νabs/ωa = 1/(3
√

2π)(Ne/Nc)
√

(mi/(Zme) (kλth)
−1. Clearly, the light absorption

rate becomes comparable to the acoustic frequency in the long wavelength limit.

In Fig. 2, the growth rate of SBS is shown as a function of kλth for Ne/Nc = .05 and

βc = 0.2 with thermal and ponderomotive coupling and with only ponderomotive coupling.

The cutoff at long wavelengths is due to inverse bremsstrahlung absorption of the scattered

light wave. At short wavelengths, kλth
>∼ 60, only ponderomotive coupling is important.

Without light or acoustic wave absorption all cases have the same growth rate which in the

collisionless limit is .05ωa. These calculations show a strong enhancement of the backward

SBS growth rate above the collisionless rate for kλth < 10 provided that the electron density

is low enough that collisional absorption of the light wave is weak.

Previous treatments of thermal enhancement of backward SBS have relied on fluid equa-

tions with Braginskii transport[18] and with nonlocal transport [8],[9],[19]. Taking advan-

tage of the fact the dominant terms in the electron temperature equation are the inverse

bremsstrahlung heating and the heat flow, the fluid dispersion equation for these latter cases

is given by,

(ω − ωa − dΩ + iνabs)(ω
2 + 2iωνa − ω2

a) +
1

8

v2
0

v2
e

Ne

Nc

ω0ω
2
aAk = 0, (46)

where Ak encompasses the thermal enhancement of the coupling of the acoustic wave to the

light waves. For Ak given by,

Ak = 1 +
3π

64

(1 + rqk)

(kλei)2
, (47)

the results of Short and Epperlein[8] are obtained if

rqk = (21kλe)
1.44, (48)

11
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FIG. 2: The real (upper set of curves) and imaginary parts (lower set) of ω/(kCs) are displayed

as a function of kλth. The solid curves with ψ0 = −1 that is, k⊥E, are the kinetic frequency and

growth rates ; the dashed curves are the solution to the collisionless dispersion equation (41); the

dash-dot curves are for the Bychenkov model [19] with Z = 64.The fluid models of Ref. [8] and

that of [19] agree for Z = 64.

and the results of Rose and DuBois [9] if rqk = 50kλe. Here, λe =
√
Zλth =

√
Zλei/3.76 in

the Lorentz gas (high Z) limit. A more recent treatment by Bychenkov et al. [19] uses,

Ak = 1 + 2

(
0.074

(kλei)
2 +

0.88Z5/7

(kλei)4/7
+

2.54Z

(1 + 5.5Z(kλei)2

)
. (49)

The equations derived in our paper by introducing a complex frequency ω to all orders in

the equations for the Legendre polynomial coefficients (apart from the neglect of electron-

electron collisions) extend this last treatment which is also based on the results derived in

Reference[15].

In Fig. (2), the growth rates obtained by solving Eq. (46) with Ak given by Eq. (49) is also

shown. This model does not converge to the ponderomotive growth rate as quickly as our

Lorentz model because it neglects the acoustic wave frequency compared with the electron-

12



ion collision frequency in the higher order Legendre polynominal coefficients. The merging

of the ponderomotive growth rate with the kinetic solution occurs when Re(ω) ' νei, viz.,

for kλth ' 60 in Fig. (2). There are substantial differences at longer wavelengths where

Re(ω) � νei. One source of the difference is the influence of electron self-collisions which

are neglected in Eq. (43) and treated with a linearized Landau operator in Ref. [19]. As

shown in Fig. 1, self-collisions had little influence on the linear properties of ion acoustic

waves for high Z plasma over the range of kλth shown in Fig. 2.

IV. CONVECTIVE TEMPORAL GROWTH RATE FOR STIMULATED BRIL-

LOUIN FORWARD SCATTER

Small angle scattering of light involves long wavelengths such that k << k0 and kλei
<∼ 1

even if k0λei � 1. Thus, thermal enhancement of the scattering rate is not necessarily

accompanied by a strong damping of the scattered light wave. Despite the much lower

frequency of the ion acoustic wave, the upper light sideband, E (k + k0, ω + ω0) can still be

neglected because k � k0Cs/c except for very small angles. The weakly coupled SBS growth

rate given in Eq. (44) for perfect matching and with damping neglected is,

γ0 =
√
ωaω0αe/8 (50)

αe = (1/2)(Ne/Nc)(v
2
0/v

2
e) (51)

where αe is a measure of the strength of the parametric coupling. Because of the large ratio of

ω0 to ωa, [ω0/(kCs) ∼ 103 when k = k0], forward SBS is easily driven strongly with |ω| >∼ ωa.

In Fig. 3, the growth rate is shown as a function of the ion acoustic wavenumber times the

electron-ion mean free path for a fixed value of k0λth = 100 for which the light wave damping

is relatively weak. The upper set of relatively flat curves in this figure are the frequencies

for which the growth rate is maximum. The lower dashed curve and the solid curve that

merges with it at large kλth are the growth rates for forward SBS. Since, in this case, the

ponderomotive growth rate (dashed line) satisfies the weakly driven approximation for all

kλth, the frequency for which the growth rate is a maximum is the cold-ion, isothermal

acoustic frequency, kCs = k
√
ZTe/mi to which all (complex) frequencies are normalized.

The total growth rate is much larger than the ponderomotive one at long wavelengths and

is a strongly driven one. The frequency that maximizes this growth rate differs from the

13
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FIG. 3: The frequency and growth rate of stimulated Brillouin forward scatter is displayed as a

function of kλth for the solution to the collisionless dispersion Eq. (41) (dashed) and for pon-

deromotive and thermal dispersion Eq.(28). The coupling parameter, αe = 10−6, Z/A = 1/2,

ψ = −1.

frequency shown in Fig. 1 as one expects for strongly driven SBS[2, 21]. For short wavelength

ion acoustic waves, there is no thermal enhancement above the ponderomotive rate once the

frequency of the ion wave exceeds the electron-ion collision frequency, νei. Taking ω = kCs,

we find the thermal contributions are small when kλt >
√

(mi/Zme).

V. CONVECTIVE TEMPORAL GROWTH RATE FOR FILAMENTATION

The dispersion relation (28) also describes a purely growing 4-wave instability for which

D (k − k0, ω − ω0) and D (k + k0, ω + ω0) contribute equally and k⊥k0. Using the dispersion

relation for the pump, ω2
0 = ω2

pe + c2k2
0, the scattered light dispersion can be simplified as

D (k ± k0, ω ± ω0) = ±2iγω0 − c2k2 ± iνabsω0 where ω = iγ. The ponderomotively driven

growth rate is determined from the equation,

14



(
γ (γ + νa) + ω2

a

)(
(γ + νabs)

2 +
c4k4

4ω2
0

)
=
k2v2

0

4ω2
0

c2k2

2
ω2

pi (52)

If the growth rate satisfies the inequality,

γ > ωa, νabs, (53)

then the maximum growth rate is

γmax
p =

1

8

v2
0

v2
e

ω2
pe

ω2
0

ω0 (54)

for

kp =
1

2

v0

ve

ωpe

ω0

ω0

c
(55)

At large wavenumbers, k >
√

2kp, diffraction overcomes the focusing effects and filamenta-

tion is stable.

Consider the relative strength of filamentation and forward SBS driven ponderomotively.

Because damping by the ions is assumed negligible, ωa/(2νa) ∼ 50 >> 1, γ > νa, and the

weakly damped SBS growth rate given by Eq. (50) applies. Considering the ponderomotive

growth rate for weakly-damped forward SBS and filamentation at the wavenumber, kp,

divided by the acoustic frequency, kpCs,

γwd
sbs(kp)

ωa(kp)
=

√
2

4

√
ωpe

ω0

v0

ve

c

Cs

(56)

γfil(kp)

ωa(kp)
=

1

4

ωpe

ω0

v0

ve

c

Cs

, (57)

one notes the single parameter, ρp = (ωpe/ω0)(v0/ve)(c/Cs), determines which growth rate

is faster at that wavenumber. For the parameters of the example given in Fig. 3, ρp ∼ 1.4

for which the two rates are comparable. Moreover, the filamentation instability barely

satisfies the supersonic criterion (Eq. (53)) made in obtaining Eq. (54) and is limited to

long wavelengths, λp/λ0 = k0/kp = 1.4 × 103 for which kinetic effects on the thermal

contributions are minimal. Thus, we will consider an example of the filamentation response

when αe = 1× 10−4, one hundred times the value in Fig. 3

Thermal enhancement of the ponderomotive growth both increases the maximum growth

rate and extends the range of unstable wavenumbers. As with SBS, thermally enhanced

growth rates have been found previously by multiplying the right hand side of Eq. (52)

by the factor Ak as in Eq. 46. In Fig. 4, the ponderomotive growth rate, the growth rate
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FIG. 4: The filamentation growth rate, normalized to the isothermal acoustic frequency,

k
√
ZTe/mi, is plotted vs the wavenumber divided by the laser wavenumber, ω0/c from Eq. (28)

(solid), for the collisionless dispersion Eq.(41) (dash-dot), for the thermally enhanced rate with Ak

given by Eq. (49)and Z = 64 (dash) , and for rate thermally enhanced by Ak and Z = 8(dash-dot-

dot). The parameters are Te = 2 keV, Ne/Nc = .05, v0/ve = 0.063, and k0λei = 3.76 k0λth = 376.

In all cases, Z/A = 1/2 and ψ0 = −1.

enhanced by the thermal factor, Ak, and the growth rate from Eq. (28) are plotted for

Te = 2 keV, Z = 64, Z/A = 1/2, Ne/Nc = .05, v0/ve = 0.063, and k0λei = 3.76k0λth = 376.

For the ponderomotive rate, Z is not a factor . Although the maximum growth rates are

larger than ωa, the growth rate is still larger than the ponderomotive rate unlike the SBS

growth which relaxes to the ponderomotive rate once <ω ∼ ωa and k0λei >> 1. Also, our

Lorentz gas results have the peculiar behavior that the growth rate has a ”tail” above the

diffraction cutoff for the other curves. This behavior has its source in terms like the third

term in Eq. (31) which diverges for finite k as γ → 0. This behavior does not occur if

electron-electron collisions are kept[20] because, then, the left hand side of Eq. (15) remains

nonzero as γ → 0 and v → 0 so that the integrands of the integrals (Eqs. (39) and (40))
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that define Jm and Km respectively remain well behaved for all k, ω.

VI. CONCLUSIONS

We have studied stimulated Brillouin scattering and filamentation for arbitrary electron-

ion spatial and temporal collisionality, that is, for any value of kλei and ω/νei. Of particular

interest is the transition from thermally driven SBS to ponderomotively driven SBS. We

find that once ω > νei and kλei > 1, the thermal forces are insignificant compared with the

ponderomotive forces. Because we neglected electron self-collisions altogether , the results

are strictly valid only for high-Z plasma. One approach to including self-collisions might

be to use a Krook operator in Eq. (3) for Cee. The simplest form is the nonconservative

−νee(ve)f0 which has the effect that ηe = (iω − νee)/kve/kλth but η remains unchanged.

That change has the desirable effect that the integrals defining Jm and Km are well behaved

as |ω| → 0 and v → 0. However, with this approximation for self-collisions, the linear

dispersion properties of the ion acoustic waves in the long wavelength limit differ markedly

from the known properties of the ion acoustic waves with self-collisions. Even use of a

form that conserves density was inadequate in that self-collisions either had no effect or too

strong an effect on the linear dispersion. However, electron self-collisions are known to be

important for kλei ∼ 1− 10 where only a few Legendre polynomials are needed to represent

the dominant electron-ion collisions. More importantly, this neglect doesn’t affect the general

conclusion about the transition from thermal to ponderomotive stimulated scatter.

The filamentation instability is a purely growing instability. Here there is no ”transition”

to purely ponderomotively driven scatter even when the growth rate exceeds the ion acoustic

normal mode frequency for the wavelength of the unstable mode. Thus, for the same wave-

length, a thermally driven filament and a ponderomotively driven traveling acoustic wave

may co-exist for the same linear dispersion relation. This behavior presents fluid codes[22]

that use model equations to represent intricate light wave propagation in hot, dense plasma

clear difficulties if SBS and filamentation are to be treated faithfully.

RLB is grateful to the Princeton Plasma Physics Laboratory, in particular Drs. William

Tang and Nathaniel Fisch, where this work was done for their hospitality. The work of RLB

was performed under the auspices of the U.S. Department of Energy by the University of

California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
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APPENDIX A: THE REDUCTION OF HIGHER ORDER LEGENDRE TERMS

BY USE OF CONTINUED FRACTIONS

We start with Eqns. (3)-(14). For l > 3, the higher Legendre polynomials can be found

in terms of the lower ones,

ν̃lfl = −ikv
(

l

(2l − 1)

)
fl−1 (A1)

where ν̃l is defined by Eq. (18). Substituting in turn for fl+1 in the equation for fl for

l = 3, 2, we obtain the equation for f1,

ν̃1f1 + ikvf0 = −2

5

ikv

ν̃2

(
S2 −

3

7

ikv

ν̃3

S3

)
+ S1. (A2)

The terms ν̃1
−1 for l = 2, 3 are eliminated by using Eq. (18) to arrive at

ν̃1f1 + ikvf0 = Slin
1 + (ν1 − iω) (H1 − 1)u

∂F0

∂v
+ S̃nl

1 (A3)

S̃nl
1 = S̃nl

1,s + S̃nl
1,a (A4)

where

S̃nl
1,s = ik

|vE|2

2

(
∂F0

∂v
+
v2

6

∂

∂v

(
1

v

∂F0

∂v

))
(A5)

S̃nl
1,a = −iψ0

(
|vE|2

6

)
3

2kv
(ν1 − iω) (H1 − 1)

[
ν1v

4 ∂

∂v

(
1

v4

∂F0

∂v

)

+
1

2

(
iω − ν2 +

∂

∂t
ln|vE|2

)
v
∂

∂v

(
1

v

∂F0

∂v

)]
(A6)

where ψ0 = 3 cos2 φ0 − 1 and H1 is defined in Eq. (20). Substituting f0 into Eq. (A3), we

obtain the equation,

Ω2f1 =
∂F0

∂v

(
u
(
Ω2 + iων1

)
− iωẼ

)
+
(
−ikvSnl

0 − iωS̃nl
1

)
(A7)

where

Ω2 = −iων̃1 +
k2v2

3
. (A8)

Substituting Eq. (A3) for f1 into Eq. (3) for f0, we obtain the equation,

Ω2f0 =
ikv

3

∂F0

∂v

(
−Ẽ + ν1u

)
+

(
ν̃1S

nl
0 −

ikv

3
S̃nl

1

)
(A9)
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APPENDIX B: THE NONDIVERGENCE OF CERTAIN TERMS

Here, we demonstrate that the divergent terms proportional to Γ(−1) in Eq. (34) and

J−1 in Eq. (35) combine to produce a finite result. Using the definition of ηe the integrand

of the sum of these terms is proportional to,

I =
νth

1

−iωV

(
1 +

3ηe

V 5 − 3ηe(1− iω/ν1)H1

)
(B1)

=
νth

1

−iωV

(
V 5 + iωH1/ν1 − 3ηe(H1 − 1)

V 5 − 3ηe (1− iω/ν1)H1

)
(B2)

Since H1 − 1 → 0 faster than V and ν−1
1 ∼ V 3, this integral is well behaved if |ω| is

nonzero.
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