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Magnetic moment conservation in toroidal systems

Roscoe White, David Gates
Plasma Physics Laboratory, Princeton University, P.O.Box 451,

Princeton, New Jersey 08543

Abstract

Nonsecular variation of the magnetic moment in a large aspect
ratio toroidal system is calculated. The cyclotron motion is shown
to modify the bounce frequency of trapped particles by a factor of√

2 over the value obtained using the guiding center approximation in
the large aspect ratio limit. The increased bounce frequency causes
a decrease of the radial diffusion by the same factor, and thus the
standard expression for neoclassical diffusion at large aspect ratio is
also incorrect by a factor of

√
2.

PACS numbers: 52.20.Dq 52.65.Cc 52.25.Fi
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Adiabatic conservation of the magnetic moment is held to be one of the
fundamental principles of the motion of charged particles in a magnetic field,
provided only that the variation of the field be small on the scale of the
cyclotron radius and the temporal variation slow on the scale of the cyclotron
frequency[1, 2, 3]. In this letter we show that for trapped particles in a
toroidal configuration, the changes in the magnetic moment, although small,
add in a coherent manner to produce a significant nonsecular variation of the
magnetic moment during the bounce time, and hence a modification of the
bounce frequency.

The energy in guiding center approximation for charged particle motion
in an axisymmetric system is

E =
mv2

‖
2

+ µB (1)

with µ the magnetic moment, v‖ the velocity component parallel to the mag-

netic field ~B, and m the particle mass. The field magnitude B is a function
of r, a flux label, and θ, the poloidal angle. The guiding center motion is
best studied using a Hamiltonian formulation[4, 5, 6, 7].

We directly calculate the nonsecular modification of the magnetic moment
due to the cyclotron motion, ignored in the guiding center approximation.
For simplicity consider a large aspect ratio circular equilibrium, with field
given by

~B

B0
=

φ̂R

X
− zx̂

Rq
+

xẑ

Rq
(2)

with X, z, φ right handed cylindrical coordinates, X = R + x the distance
from the symmetry axis, R the major radius of the torus, φ the toroidal
angle, and the safety factor q is a function of r =

√
x2 + z2, the minor radius

variable, which also labels the flux surfaces.
The magnetic moment is given by

µ =
E

B
− mv2

‖
2B

(3)

where for this large aspect ratio field

v‖ =
~v · ~B

B
= − zẋ

qRB
+

xż

qRB
+

φ̇R

B
, (4)
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and E is the conserved particle energy.
Separate the guiding center motion from the cyclotron motion, writing

x = xgc + ρcos(ξ)

z = zgc + ρsin(ξ)

φ = φgc (5)

where the subscript refers to guiding center, ξ is the gyro phase, and ρ the
gyro radius. There is also a term proportional to ρ in φ which is higher order
in the inverse aspect ratio ε = r/R, which we neglect. Now calculate the
time derivative of the magnetic moment

µ̇ = −EḂ

B2
+

Ḃmv2
‖

2B2
− mv‖v̇‖

B
, (6)

and substitute the expressions from Eqs. 4, 5, neglecting the higher order
time derivatives of ρ and keeping only the lowest order term in the derivative
of ξ, ξ̇ = ω0, the on-axis cyclotron frequency. Then average Eq. 6 over the
cyclotron period time scale, and note that terms involving the guiding center
variables alone vanish, since µ is conserved by the guiding center equations,
and terms linear in ρ average to zero. Thus there remain only terms in ρ2, ie
the terms which describe the effect of the finite extent of the gyro radius on
the particle motion. We refer to transport theory which retains both neoclas-
sical (banana) effects and cyclotron radius effects as omniclassical[9], since
the result is not simply an addition of neoclassical and classical efffects. We
keep only leading order contributions in the quantities ε and ρ/R. Regarding
the ordering note that we are interested in trapped particles, and thus the
parallel velocity at the midplane (θ = 0) is v‖(0) ∼ v

√
ε. Other orderings are

xgc ∼ εR, ẋgc ∼ ε3/2v, and similarly for zgc, and Rφ̇ ∼ v
√

ε, with v ∼ ρω0.
We also neglect terms arising from the shear, dq/dr.

Both the second and third terms of Eq. 6 contribute to leading order, and
the sum of these contributions gives, (using Bbµb = E where the subscript b
refers to the bounce point where v‖ = 0),

µ̇ =
zgcφ̇gc

qR
µb. (7)

The order of this term is ε3/2µω0ρ/R. The scale length of the field variation
is L = R, and thus this term is of order (ρ/L)5/2. The proof of the invariance
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of the magnetic moment[1], shows that the time derivative of µ is zero to
within terms of order (ρ/L)2 and thus Eq. 7 does not contradict the classical
proof of the conservation of the magnetic moment. However this expression
changes sign only on the time scale of the bounce motion, and thus during
a bounce it adds a coherent correction to µ. Furthermore the bounce time
Tb ∼ 1/(v

√
ε) and thus during a bounce time the order of the change in

µ is ∆µ ∼ εµ, the scaling of the bounce time reducing the ordering of the
final result by one factor of ρ. It is this coherent modification of µ over many
cyclotron periods (infinitely many in the limit of zero energy) which produces
a significant modification of µ.

Substituting the lowest order expressions zgc = rsin(θ), φ̇gc = qθ̇ we find

µ = µb

[
1− r

R
(cos(θ) − cos(θb))

]
. (8)

Thus we find the maximum modification of µ from the value at the bounce
point to occur at θ = 0 with δµ/µ = −ε(1 − cos(θb)). Energy is of course
conserved, so there is a resulting increase in the parallel velocity, and for a
particle with bounce angle θb = π/2, to leading order v‖ = v

√
2εcos(θ), a

factor of
√

2 increase over the guiding center result. Since the functional form
is unchanged, this also leads to a similar increase in the bounce frequency.

We find it remarkable that an effect which depends on the ratio of the
gyro radius to the scale length of the field variation persists in changing
the bounce time by an energy independent factor with a limit of

√
2 at large

aspect ratio. Furthermore this effect results from a term held to be negligible
in the standard proofs of the invariance of the magnetic moment.

We have verified these results using two numerical codes; ORBIT[6] for
guiding center motion and GYROXY[8] for full cyclotron motion, using large
aspect ratio circular cross section toroidal geometry. The q(r) profile was
taken to vary from q = 0.8 at the magnetic axis to q = 4 at the plasma edge.
In Fig. 1 is shown the variation of µ in time over one bounce period for a
trajectory on a flux surface with r/R = 1/8. The ratio of µ to µb is plotted,
with µb the value at the bounce point. The solid line is the code result, and
the dashed line the first order prediction, Eq. 8. The orbit is initiated at
θ = π/2 with zero parallel velocity and low energy, with ρ/R ∼ 10−3. In
Fig. 2 is shown the magnitude of the maximum variation of µ at θ = 0 as
a function of the inverse aspect ratio, ε, for a series of orbits initiated at
different radii. Excellent agreement with Eq. 8 is obtained in the limit of
large aspect ratio.
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In Fig. 3 is shown the ratio of the actual bounce frequency resulting
from following the complete cyclotron orbits to the value obtained using the
guiding center code, seen to approximate

√
2 for large aspect ratio. The same

series of orbits were launched at θ = π/2 with zero parallel velocity in both
codes.

Radial diffusion is obtained by depositing particles uniformly on a flux
surface with a uniform pitch distribution, and observing the spread of the
resulting Gaussian under the action of energy conserving pitch angle scatter-
ing. The results are shown in Fig. 4. In the case of full cyclotron motion,
the initial conditions also included random gyro phase. These results were
obtained with r/R = 1/8, again using a circular cross section equilibrium.
Plotted is the square of the deviation from the initial flux surface vs time.
The initial jump, occuring on the order of a bounce time, reflects the banana
width in the case of guiding center motion and the cyclotron orbit modified
banana width in the case of full cyclotron orbits. After this, the slope of the
resulting straight line gives the diffusion in the flux coordinate. The upper
curve (G) is the result using the guiding center code, and the lower curve (C)
is that resulting from the complete cyclotron motion. The relevant number
determining the diffusion is ν∗, the ratio of the collision frequency to the
bounce frequency[10], and the two diffusion rates are observed to differ by
the factor

√
2.

Care was taken to use exactly the same collision frequency, since the colli-
sion operators in the two representations are substantially different. Energy
conserving pitch angle scattering was used in both codes. In the guiding
center code we used the Lorentz collision operator[11]

λ′ = λ(1− ντ )± [(1− λ2)ντ ]1/2 (9)

with λ = v‖/v the pitch and τ the magnitude of the time step. In the cy-
clotron orbit code the velocity vector was moved in a random direction by
a small angle on the surface v = constant. The equivalance of these opera-
tors was checked by observing the spread in velocity space of a distribution
initially with v‖ = 0 up to the point of obtaining a distribution with uni-
form pitch, the two curves of mean square pitch, < λ2 >, matching within
statistical accuracy of a few percent over the entire history. The pitch angle
scattering frequency used was ν = 10−6ω0 giving ν∗ = 0.05. Also shown
is the neoclassical analytic banana regime result (A) for large aspect ratio,
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dΨ2 = 2DΨt, with Ψ the normalized poloidal flux, and

DΨ = ν
( ρ

R

)2 √
r/R. (10)

The intercept at t = 0 is simply to avoid confusion with the other curves,
only the slope of this plot is relevant.

We have also verified numerically that the guiding center trajectory of the
orbit, including cyclotron motion, is not changed, as is expected. The result
described in this paper has no effect on the banana width nor on the toroidal
precession, these both being due to drift motion, which can be calculated
directly and is correctly given by the guiding center equations. All that is
changed by the order ρ2 cyclotron orbit corrections is the parallel velocity
along the orbit, and hence the bounce frequency. However, this modification
applies also to passing particles near the trapped-passing boundary, and thus
we expect also an increase in the bootstrap current by the same factor of√

2, although we have not calculated this. Other effects include of course a
modification of any resonance phenomena which involve the bounce frequency
or the trapped particle velocity.

In conclusion, we find the assumption of µ conservation to be incorrect,
in that terms thought previously to be inconsequential in fact modify the
trapped particle bounce time by a factor of

√
2 in the large aspect ratio limit.

This modification also has a direct effect on radial diffusion, the standard
neoclassical expression being incorrect by the same factor.

This work was supported by the U.S. Department of Energy contract AC02-76CH03073.
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Figure 1: Magnetic moment vs time over one bounce period Tb, for an orbit
initiated at θ = π/2 and r/R = 1/8 with zero parallel velocity. the dashed
curve is the lowest order analytical result.

8



Figure 2: Maximum change in the magnitude of the magnetic moment vs
r/R, with orbits initiated at θ = π/2 with zero parallel velocity.
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Figure 3: Ratio of the bounce frequency ωb obtained using the full cyclotron
equations, to ωgc, resulting from the guiding center equations, vs the aspect
ratio.
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Figure 4: Diffusion from the flux surface r/R = 1/8 for full cyclotron motion
(C), guiding center motion (G), and the large aspect ratio analytic estimate
(A).
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