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Abstract. Previous analytical and numerical studies have noted that the presence of fully non-
Maxwellian plasma species can significantly alter the dynamics of electromagnetic waves in
magnetized plasmas.  In this paper, a general form for the hot plasma dielectric tensor for non-
Maxwellian distributions is derived that is valid in the finite Larmor radius approximation. This
model provides some insight into understanding the limitations on representing non-Maxwellian
plasma species with equivalent Maxwellian components in modeling RF wave propagation and
absorption.

INTRODUCTION

Laboratory fusion plasmas as well as many space plasmas can be comprised of both
thermal and non-thermal species. In collisionless space plasmas, turbulent heating or
shock processes can accelerate particles, resulting in velocity-space distributions that
are Lorentzian or power-law-like in nature [1-3]. Neutral beam injection and fusion
reactions in laboratory fusion plasmas both introduce energetic ions, which follow a
slowing-down type distribution in velocity space. Finally, when electromagnetic
waves are applied to heat or else to drive noninductive currents in magnetized
plasmas, the wave-induced particle acceleration results in velocity-space distributions
that feature energetic �tails� or extended �quasilinear plateaus�. In all of these
situations, the question that arises is whether or not these non-thermal plasma species
have a noticeable impact on electromagnetic wave dynamics in these plasmas.

Previous analytical and numerical studies [1-6] have shown that wave dynamics
can be affected if a sizeable non-thermal ion population is present in the plasma. Most
of these studies have focused on modifications to wave absorption or to instability
thresholds.  A number of these studies [4,5,7] have noted that power absorption on a
non-Maxwellian distribution can be approximated by that on an equivalent
Maxwellian, chosen so that the thermal speed of the equivalent Maxwellian is equal to
the velocity-space averaged perpendicular speed of the non-thermal distribution.

More recently, a 1D all-orders local full wave, METS [8], has been extended to
include the effects of non-thermal species on both wave propagation and absorption.
Results from this code indicate that the absorption and wave propagation in plasmas
with isotropic, non-Maxwellian species can be reasonably simulated with equivalent



Maxwellian in many regimes. However, the spatial profile of power deposition on
short wavelength kinetic waves can be narrower and anisotropic effects can lead to
larger discrepancies with models based on equivalent Maxwellians [8].

In this paper, the hot plasma dielectric susceptibility for a fully non-Maxwellian but
still gyrotropic particle distribution function is derived that is valid in the finite Larmor
radius limit (FLR). This model provides some insight into understanding the
limitations on representing non-thermal species as equivalent Maxwellians in
modeling RF wave absorption and propagation. It also provides the basis for
generalizing the plasma dielectric operators in FLR-based 2D full wave simulation
codes.

DERIVATIONS

The hot plasma susceptibility for a given species, �s�, described by the gyrotropic
particle velocity distribution f0(v⊥ ,v//), in a homogeneous, uniformly magnetized
plasma can be written in the following form:
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where     
t
Tn  is given in Equation (10-48) of reference [9] by Stix. In the FLR limit, the

expressions in Equation (1) may be simplified by replacing the Bessel functions in     
t
Tn

by their series expansions, integrating by parts the terms involving
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where Ωs is the cyclotron frequency and   w⊥
2  is the velocity space average of the

perpendicular velocity. The resulting form of the plasma susceptibility is a
generalization of the Maxwellian-based FLR susceptibility given by Stix in Equations
(59-63) in Chapter 10 in reference [9]. It may be written in similar but generalized
form as:
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where, for j=0,1:
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In the limit that f0(v⊥ ,v//) = fmax(v⊥ ) h(v//), then the generalized susceptibility reduces to
that given in reference [9].



DISCUSSION

The local hot plasma susceptibility for a given species, �s�, described by the
gyrotropic particle velocity distribution f0(v⊥ ,v//), that is valid in the FLR
approximation has been derived by expanding the full hot plasma susceptibility to first

order in   λ ~  /k w s⊥ ⊥
2 2 2 2Ω . In the limit that k//⇒ 0, the FLR-based susceptibility for a

general distribution differs from that of a Maxwellian distribution only in terms of
O(λ ). The xx, xy, and yy elements will be the same as that of an equivalent
Maxwellian in this limit, provided that the thermal speed of the Maxwellian is chosen

to equal   w⊥
2 .   Hence, the propagation of waves, such as fast waves or ion Bernstein

waves, which depends on these elements, can be simulated exactly using the
equivalent Maxwellian. The χxz and χyz elements will be approximately equal in this
limit, provided the ratio:
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is close to unity. More generally, the FLR-based susceptibility elements for a general,
gyrotropic distribution can be computed using equivalent Maxwellians, if the
(velocity)n moments for the general distribution are similar to those of the equivalent
Maxwellian. Finally, the expressions for the FLR-based susceptibility given in
Equations (2)-(11) may be utilized to generalize the dielectric operator in 2D FLR-
based full wave codes. Such a generalization is required in order to self-consistently
integrate such codes with Fokker-Planck packages.
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