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Abstract. The launch of High-Harmonic Fast Waves (HHFW) routinely provides auxiliary
power to NSTX plasmas, where it is used to heat electrons and pursue drive current. H-mode
transitions have been observed in deuterium discharges, where only HHFW and ohmic heating,
and no neutral beam injection (NBI), were applied to the plasma. The usual H-mode signatures
are observed. A drop of the Dα light marks the start of a stored energy increase, which can
double the energy content. These H-mode plasmas also have the expected kinetic profile
signatures with steep edge density and electron temperature pedestal. Similar to its NBI driven
counterpart – also observed on NSTX – the HHFW H mode have density profiles that features
"ears" in the peripheral region. These plasmas are likely candidates for long pulse operation
because of the combination of bootstrap current, associated with H-mode kinetic profiles, and
active current drive, which can be generated with HHFW power.

INTRODUCTION

The application of High Harmonic Fast Wave (HHFW) constitutes an important
element of the NSTX research program, where it is used to heat bulk electrons and
pursue non-inductive drive current [1,2]. Substantial progress has been achieved over
the results presented at the previous meeting of this conference [3], and effective
heating has been achieved in helium and deuterium plasmas for different antenna k//.
In particular electron temperature, Te, up to 3.9 keV has been measured, with profile
behavior suggestive of a thermal electron internal transport barrier [4]. NSTX operates
naturally at high beta, with parameters entailing wave physics with dielectric constant
ε ≡ ωpe

2/Ωε
2≈ 50-100, which is large compared to conventional tokamak, where ε ≈ 1.

For such high ε−value plasmas, an attractive fast-wave window opens in the high
harmonic frequency range, Ωi<<ω<<ωLH, which permits electron heating and current
drive [5]. A welcome result has been the observation of H-mode transition during
HHFW heating. Such transitions are readily observed when HHFW provides the sole
source of auxiliary heating. So far all the H-mode transitions have been observed with
lower single null configuration (LSN) and at plasma current lower or equal to 0.5 MA.
Attempts made at higher current were not successful, but a systematic study has not
been performed to date. In this paper we review some of the parameters of these
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plasmas and make use of a recent implementation of the ray tracing code CURRAY
[6] into the data regression code TRANSP [7] to study the time dependent power
deposition under HHFW driven H-mode conditions.

HHFW DRIVEN H-MODE
PLASMAS

The relevant parameters for a
HHFW driven H-mode discharge in
deuterium are shown in Fig.1. The
plasma current is 0.36 MA, and the
magnetic field is 0.45 T.  HHFW power
of 3.3 MW is applied during interval
0.12-0.32 s. The HHFW frequency is
30 MHz with k// = 14 m-1. Te0 rapidly
responds to the HHFW power by
increasing from 0.3 keV to nearly 1.5
keV in 0.05 s. The H transition
occurred at 0.195 s and was
accompanied by further heating of the
electrons and a doubling in the stored
energy. The decrease in central

electron temperature observed later on could have resulted from power-coupling
losses caused by MHD activity or the ELMs (visible on the Dα trace). TRANSP
analysis predicts a 40% bootstrap current fraction for this discharge.

Kinetic Documentation

We can see in Fig. 2 a temporal
overlay of plasma parameters for a
deuterium discharge with plasma
current of 0.5 MA and toroidal field of
0.45 T. The HHFW power 3.2 MW
pulse is applied from 0.2 to 0. 4 s and
is the sole source of auxiliary power.
The antenna k// is 14 m-1 and the
frequency 30 MHz. As a result of the

HHFW heating, the central electron
temperature Te0 increases from ≈ 0.4 keV
to ≈  1.1 keV, before the onset of the H
phase occurring during the interval 0.235-

0.285 s as can be seen on the Dα trace. Four time points indicated with vertical dotted
lines – 0.193, 0.227, 0.243, 0.277 s – correspond respectively to the ohmic phase
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Figure 1. Time evolution of an HHFW driven H-
mode discharge. The transition is seen at 0.195 s on
the D_ trace; stored energy WMHD doubles. A
drop in Te0 occurs during the ELM activity.

Figure 2. Time evolution of HHFW driven H
mode discharge. Time markers OH, L, H1 and
H2 shown with dotted lines.
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(OH), the L phase (L), the early and late H phase (H1 and H2). Also seen in the figure
are the line-integrated density, nel, and the magnetically derived stored energy, WMHD.

Kinetic profiles of HHFW driven H-mode plasmas show the expected signatures of
this high confinement regime. In Fig. 3, we show Te(R) and ne(R) profiles for the time
points marked OH, L, H1 and H2 in Fig. 2. During the ohmic phase, the Te profile is
flat and limited to 0.3 keV; the density profile is peaked. During the L phase, we
observe a Te increase over the whole profile with the center reaching 1.1 keV; the
density profile changes from peaked to triangular shape. There is a hint of a edge
profile steepening visible on Te(R) and ne(R) outboard data. The early H-mode ne(R)

data show a well established edge
gradient. The plasma column has
shifted inwards by ≈  3 cm and the
electron temperature is slightly
increased. The temperature edge
pedestal is ≈ 0.12 keV. During the later
H-mode phase, we observe a fully
developed edge density gradient with
“ears” near the peripheral regions.
Meanwhile the central electron
temperature has fallen to 0.6 keV.

The discharge shown in Fig. 4 has
the same nominal parameters as the
one just discussed above, but short
neutral beam pulses lasting 0.02 s were
applied from 0.16 s on to measure the

ion temperature profile Ti(R) by charge exchange recombination spectroscopy at 0.06-
second intervals. As in the above case, the HHFW power is 3.2 MW. Each beam pulse
has a power of 1.7 MW, but TRANSP calculations indicate that only a power level ≈
0.6 MW contributes to plasma heating. We can see in Fig. 5 plots of the Ti and Te and
ne profiles during the L and H phases at respectively ≈ 0.230 s and 0.290 s.
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Figure 3. Temporal overlays of Te(R), and ne(R) for a HHFW driven H-mode discharge. Four times
are shown: ohmic (OH), L-mode (L), early H-mode (H1), late H-mode (H2).

Figure 4. Time evolution of HHFW driven H mode
discharge. Short NBI pulses added for Ti

measurements
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Time Dependent Power
Deposition with CURRAY

The ray tracing code
CURRAY has recently been
incorporated into the TRANSP
code and we can see in Fig. 6
some preliminary analysis
results. In panel (a) we see the
predicted power absorbed by the
electrons.  Besides the total
power, we also show the power
absorbed in the inner region and
in the outer region. One can see
that during the H phase, indicated
by dotted lines, more power is
absorbed in the outer region as a
result of the higher peripheral
electron density. There are over
150 time points during the
HHFW pulse, which gives true
temporal information on the
power deposition. For example,
the drops in the absorbed power
occurring, when neutral-beam
pulses are present, are caused by
wave absorption by fast particles
[8]. Panel (b) show the power
absorbed by the ions. Absorption by the fast particle constitutes the dominant term and
one can see the ion heating staying in sync with the neutral beam pulses. The quick
rise in ion heating at the onset of the HHFW pulse – 0.2 s – comes from the residual
fast ions generated by the beam blip at 0.16 s.

*This work is supported by U.S. DOE contract DE-AC02-76CH03073.
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Figure 5. Kinetic profile data at two times near 0.230 s
and 0.290 s. T i from charge exchange recombination
spectroscopy. Te and ne from Thomson scattering.

Figure 6. Time evolution of power absorption: (a) power
to the electrons; (b) power to the ions. Dotted lines
delineate H phase. Neutral beam blips shown for reference.
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