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Abstract

In low-pressure discharges, when the electron mean free path is larger or comparable with the

discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy

distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate

kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductiv-

ity operator and calculation of the nonMaxwellian EEDF. The previous treatments made use of

simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study

a self-consistent system of equations for the kinetic description of nonlocal, nonuniform, nearly

collisionless plasmas of low-pressure discharges is derived. It consists of the nonlocal conductiv-

ity operator and the averaged kinetic equation for calculation of the nonMaxwellian EEDF. The

importance of accounting for the nonuniform plasma density profile on both the current density

profile and the EEDF is demonstrated.
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List of variables:

Tb is the bounce period,

T is half of the bounce period, T (εx) = Tb/2 =
∫ x+

x−

dx/ |vx(x, εx)|,
Ωb is the bounce frequency, Ωb = 2π/Tb ,

L is the gap width,

R is half of the gap width, which is used to model a cylinder geometry, R = L/2,

w is the electron kinetic energy, w = wx + wy + wz = m(v2
x + v2

y + v2
z)/2,

ϕ(x) is the electron potential energy, ϕ(x) = −eφ(x), and

φ is the electrostatic potential,

ε is the total electron energy, ε = w + ϕ,

ω is the frequency of the rf electric field,

ν is the electron transport collision frequency,

λ is the electron mean free path,

ν∗k is the electron inelastic collision frequency for the process number k,

x−(ε), x+(ε) are the left and right turning points [ε = ϕ(x±)],

τ is the time of flight from the left turning point x−(εx) to x: τ(x, εx) =
∫ x

x−

dx/ |vx(x, εx)|,
θ is the variable angle for bounce motion, defined as θ(x) = πsgn(vx)τ(x)/T (εx)

Φ(x, εx) is the generalized phase of the rf electric field, Φ(x, εx) =
∫ x

x−

(−iω +

ν)dx/ |vx(x, εx)|. If ω >> ν, Φ ' −iωτ ,
δ is the width of the skin layer,

f is the electron velocity distribution function (EVDF), f = f0(ε) + f1, where f0(ε) is

the main part of the electron velocity distribution function averaged over velocity directions

and over available space for electrons with a given total energy ε, which is referred in the

following as the electron energy distribution function (EEDF). Notwithstanding the fact

that f is defined in the velocity space, we shall look for f0(ε) as a function of the energy.

The EVDF is normalized as n =
∫

fd3v = 4π
√

2/m3/2
∫ ∞

ϕ(x)
f0(ε)

√

ε− ϕ(x)dε, where n is

the electron density, and the factor 4π
√

2/m3/2 is included later in the definition of f0 for

convenience. f1 is the rapidly varying, anisotropic part of the EVDF,

Esc(x) is the space charge stationary electric field,

Ey(x, t) is the rf nonstationary electric field,

St(f) is the collision integral, which is the sum of the elastic collision integral Stel(f),

the electron-electron collision integral Stee(f) and the inelastic collision integral Stinel(f),
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V rf is the oscillatory electron velocity driven by the rf electric field.

I. INTRODUCTION

Low pressure radio-frequency discharges are extensively utilized for plasma processing

and lighting [1]. Simulation of discharge properties is a common tool for optimization of

the plasma density profiles and ion and electron fluxes. Recent plasma technology tends to

decrease the gas pressures down to the millitorr range. For these low pressures it is eas-

ier to maintain uniform plasmas with well controlled parameters. Due to the large value

of the electron mean free path (λ) the electron current is determined not by the local rf

electric field (Ohm’s law), but rather is a function of the whole profile of the rf electric

field on distances of order λ (anomalous skin effect). Therefore, a rather complicated non-

local conductivity operator has to be determined for the calculation of the rf electric field

penetration into the plasma. Moreover, the electron energy distribution function (EEDF)

is typically nonMaxwellian in these discharges [2]. Hence, for accurate calculation of the

discharge characteristics at low pressures, the EEDF needs to be computed self-consistently.

Self-consistency is an important and difficult issue for the kinetic simulations of a plasma.

The EEDF, nonlocal conductivity and plasma density profiles are all nonlinear and nonlo-

cally coupled. That is why, the self-consistency aspect of the model is the main concern of

this study. The so-called ”nonlocal” approach relies on the direct semi-analytic solution of

the Boltzmann equation in the limiting regime where the electron energy relaxation length is

much larger than the discharge gap, but the electron mean free path is small compared with

the discharge dimension [3, 4]. Under these conditions the EVDF is almost isotropic and can

be well approximated as a sum of the main isotropic part of EVDF f0 and small anisotropic

part of the EVDF f1. Importantly, the main part of EVDF is a function of the total energy

only [f0(ε), where ε = mv2/2− eφ(r), φ(x) is the electrostatic potential], instead of being a

function of velocities and spatial coordinates as in a general case f0(r,v). This assumption

allows significant simplifications of the Boltzmann equation, which effectively reduces from a

six dimensional (3D3V ) problem in phase space to a 1D problem for f0(ε) as a function of

only ε. The final 1D equation for the electron energy distribution function is the temporal-

spatial averaged Boltzmann equation over phase space available for the electron with a given

total energy ε. The ”nonlocal” approach is the opposite case to the ”local” description of
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plasma, where f0(r,v) can be assumed as a function of only kinetic energy and the local rf

electric field f0[mv
2/2,E(r)] and gradients of the local rf electric field and influence of the

ambipolar electric field are neglected. The nonlocal approach has been successfully applied

to the self-consistent kinetic modelling of various low-pressure discharges, where the elec-

tron mean free path is small: the capacitively coupled plasmas [5, 6], the inductively coupled

plasmas [7, 8], [9, 10]; the dc discharges [11, 12]; the afterglow [13], and the surface-wave

discharges [14]. The additional references can be found in reviews: [15–17].

If gas pressure is lowered even farther (less than 10mTorr), the electron mean free path

becomes comparable or even larger than the discharge dimension and numerous collision-

less phenomena dominate the discharge characteristics [18]. Therefore wide utilization of

low pressure discharges calls for ”upgrading” of nonlocal approach by taking into account

collisionless phenomena. In the present paper the nonlocal approach is generalized for the

low-pressure discharges to incorporate the collisionless heating and transit-time (electron

temporal and spatial inertia) effects on plasma conductivity in the discharge description.

The main goal of the paper is to derive a general set of equations (formulary) for the

nonlocal approach with a rigorous, self consistent treatment of collisionless phenomena in

inhomogeneous plasmas. Similar approaches have been developed for calculation of the RF

heating in tokamaks [23] and for analysis of kinetic instabilities in intense beams [24].

The derivations are lengthy. Therefore, to be specific, the present analysis considers only

an inductively coupled plasma. But the approach has been designed in the most generalized

way, so that derivations can be readily performed for other discharges. For example, in

Ref.[19] the capacitive discharge; in Ref. [20] the electron-cyclotron-resonance discharge

and in Ref.[21] the surface-wave discharge were considered with self-consistent account for

collisionless heating.

Most previously reported theoretical studies assume a uniform plasma, in a semi-infinite

[22] or a slab geometry [25]. In this case the analytical treatment considerably simplifies,

because electron trajectories are straight. In the semi-infinite geometry, electrons traverse

the region of the rf electric field (skin layer) and are reflected back into the plasma at the

discharge walls. An acquired velocity kick then dissipates in the plasma on distances of

order the electron mean free path and subsequent kicks can be assumed independent. If

the plasma dimension is small or comparable with λ, the subsequent kicks are correlated.

The resonance between the wave frequency and the bounce frequency of the electron motion

4



between walls may result in modification of the nonlocal conductivity [26, 27] and may

yield an enhanced electron heating [28–30]. The anomalous skin effect has been studied

experimentally in cylindrical [26] and planar discharges [31]. Additional references can

be found in the reviews of classical and recent works on the anomalous skin effect in gas

discharge plasmas [32, 33]. The theoretical studies in cylindrical geometry are much more

cumbersome, and has been done for uniform plasma in Refs. [34–36] and for a parabolic

potential well in Ref.[37]. Qualitative results in the cylindrical geometry are similar to the

results in the plane geometry, therefore, in the present study only one-dimensional slab

geometry is considered.

For the case of a bounded uniform plasma, the electrostatic potential well is flat in the

plasma and infinite at the wall (to simulate the existence of sheaths). In this square potential

well, electrons are reflected back into the plasma only at the discharge walls. In a realistic

non-uniform plasma, however, the position of the turning points will depend on the electron

total (kinetic plus potential) energy and the actual shape of the potential well, i.e., low total

energy electrons bounce back at locations within the plasma and may not reach regions of

high electric field at all. As a result the current density profiles in a nonuniform plasma

may considerably differ from the profiles in a uniform plasma. The theory of the anomalous

skin effect for an arbitrary profile of the electrostatic potential and a Maxwellian EEDF was

developed by Meierovich et al. in Refs.[38–40] for the slab geometry. Although some rigorous

analytical results of non-uniform plasmas have been reported, the detailed self-consistent,

nonlocal simulations related to such plasmas and comparison with experimental data are

lacking. Self-consistent, nonlocal simulations based on the developed in this paper approach

were completed recently and presented in our separate publications [41, 42] and will be

additionally reported elsewhere. The alternative approaches to nonlocal approach are based

on particle-in-cell simulations, and only recently were cable of the detailed self-consistent,

nonlocal kinetic simulations of low pressure discharges [43].

The kinetic description of the anomalous skin effect is based on a well known mechanism

of collisionless power dissipation – the Landau damping [44]. In the infinite plasma, the

resonance particles moving with a velocity (v) close to the wave phase velocity, so that

ω = v · k, intensively interact with wave fields. Therefore, the collisionless electron heating

(and the real part of the surface impedance) depends on the magnitude of a Fourier harmonic

of the electric field [E(k)] and the number of the resonant particles [f(vx = ω/k), x ‖ k].
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That is why, the momentum acquired in the skin layer of width δ is maximal if the projection

of velocity perpendicular to the plasma boundary (x- axis direction) is of order ωδ. If

the interaction with the skin layer are repeated in a resonance manner the momentum

changes mount up. Therefore, the main contribution to the electron heating and the resistive

part of the surface impedance comes from these resonant electrons. The first unambiguous

measurements of a bounce-resonance effect were performed in a non-neutral plasma. In

Ref.[45] it was shown that the heating rate increases by a factor of 104 as the oscillation

frequency of the externally applied rf field is increased by a factor of 10 near the thermal

electron bounce frequency. In a bounded plasma, the resonance condition requires the

bounce period (Tb) be equal to one or several rf electric field periods: Tb = 2πn/ω, where

n is an integer number. The maximum interaction occurs for n = 1 (see below). For a

slab of width L, Tb = 2L/vx. The maximum electron heating occurs if both aforementioned

conditions are satisfied simultaneously, which gives ωδ = vx and 2L/vx = 2π/ω or L = δπ

[27]. Hence, the optimum conditions for the power transfer to the plasma corresponds to

the plasma of size comparable with 3 times of the skin depth. Because the bounce frequency

depends on the electrostatic potential, accounting for the plasma nonuniformity is important

for a correct calculation of the efficient power coupling.

As discussed before, the collisionless heating is determined by the number of resonant

particles, and, hence, is dependent on the EEDF. The EEDF, in its turn, is controlled by the

collisionless heating. The only particles, which are in resonance with a wave, are heated by

the collisionless heating. It means that in the regime of the collisionless dissipation, the form

of the electron energy distribution function is sensitive to the wave spectrum. Therefore, the

plateau in the EEDF can be formed in the regions of intensive collisionless heating, if the

wave phase velocities are confined in some interval [46]. The evidences of a plateau formation

for the capacitive discharge plasma were obtained in Ref. [30]. The cold electrons, which are

trapped in the discharge center, do not reach periphery plasma regions where an intensive

rf electric field is located, and as a result, these electrons are not heated by the rf electric

field. The coupling between the EEDF shape and collisionless heating may result in new

nonlinear phenomena: an explosive generation of the cold electrons [47]. The experimental

evidences of the influence of collisionless phenomena on the EEDF shape were obtained in

Ref. [31, 48–51].

In the linear approximation the collisionless dissipation does not depend explicitly on the
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collision frequency. However, as shown in Ref. [52], if the electron elastic collision frequency

is too small, heating can actually decrease due to nonlinear effects akin of the nonlinear

Landau damping. At low frequencies ω << VT/δ the nonlinear Lorentz force eVrf ×Brf/c,

where Vrf is the electron oscillatory velocity, VT is the thermal velocity (VT ≡
√

2T/m),

and Brf is the rf magnetic field has to be taken into account [49, 53].

The present article presents a self-consistent system of equations describing the non-local

electron kinetics in a 1-D slab (bounded) non-uniform plasma. The system consists of a

nonlocal conductivity operator, and an averaged over fast electron motions kinetic equation

for the EEDF. Transit time (non-local) effects on the current density profile and collision-

less heating are of particular interest. Rigorous derivations for the nonlocal conductivity

operator have been performed. The analytic results of Ref.[38] for the Maxwellian EEDF

were generalized for the nonMaxwellian EEDF. The spectral method was developed to find

the rf electric field profile. A quasilinear approach was used for calculating the collisionless

heating. The quasilinear theory developed in Ref.[29] was generalized for an arbitrary value

of the collision frequency. As a result, the simulations can be done in a wide range of the

background gas pressures ranging from the collisional case (λ << δ) to the fully collisionless

case (λ > L). Self-consistency of the nonlocal conductivity operator and the energy diffusion

coefficient has been verified: both yield the same expression for the power deposition. The

robust time-averaging procedure was designed for the kinetic equation in a most general

way. As a result, the procedure can be readily repeated for other discharges, see for example

Ref. [19, 20]. Note that the previous papers [41, 42] are the self-consistent, nonlocal simula-

tions based on the developed in this paper approach. These papers present a comprehensive

numerical study and demonstrate realistic example of the developed approach. Moreover

we have added three numerical examples shown in Figs 1-3, which demonstrate the newly

developed spectral method for solving the Maxwell equation for the rf electric field, not

presented in Refs. [41, 42]. In Ref. [30] the present approach was applied for capacitive

discharge assuming uniform plasma density in the plasma bulk and taking into account only

heating by the oscillating sheathes (neglecting the rf electric field in the plasma bulk). As

it was shown in the Ref. [19] accounting for the rf electric field in the plasma bulk may lead

to significant reduction of collisionless heating. Therefore, these new findings call for new

self-consistent calculations of capacitively coupled plasma.
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II. CALCULATION OF ANISOTROPIC PART OF THE ELECTRON VELOCITY

DISTRIBUTION FUNCTION f1

In low-pressure discharges, where the energy relaxation length is large compared with

the plasma width, the main part of the electron velocity distribution function (EVDF) is a

function of the total energy only [15–17]. Therefore, we look for f = f0 + f1, where f0(ε) is

a function of the total energy ε, ε = w + ϕ(x), where w = m(v2
x + v2

y + v2
z)/2 is the kinetic

energy, ϕ = −eφ is the electron electrostatic potential energy, and φ is the electrostatic

potential. f1 does not contribute to the electron density (the integral f1 over the velocity

space is equal to zero
∫

f1d
3v = 0), but f1 contributes to the electron current (the integral f0

over the velocity space weighted with the electron velocity is equal to zero
∫

vf0d
3v = 0).

Typically the mean electron flow velocity (V rf =
∫

vf1d
3v/

∫

f0d
3v) is small compared

with the thermal velocity VT . Therefore, the isotropic part of the EVDF is larger than the

anisotropic part f1 ∼ (V rf/VT )f0 << f0 [15–17].

The Boltzmann equation for electron velocity distribution function reads

∂f1

∂t
+ vx

∂f1

∂x
− eEsc(x)

m

∂f1

∂vx
− eEy(x, t)

m

∂(f0 + f1)

∂vy
= St(f1 + f0), (1)

where Esc(x) is the space-charge stationary electric field, and Ey(x, t) is the rf nonstationary

electric field, St(f) is the collision integral. In the Eq.(1), we used the fact that

vx
∂f0(ε)

∂x
− eEsc(x)

m

∂f0(ε)

∂vx
= vx

∂f0(ε)

∂x
|εx

= 0, (2)

because εx is constant along a trajectory. After applying the standard quasilinear theory,

Eq.(1) splits into two equations [29]: a linear equation for f1

∂f1

∂t
+ vx

∂f1

∂x
− eEsc(x)

m

∂f1

∂vx
− eEy(x, t)

m

∂f0

∂vy
= St(f1), (3)

and a quasilinear equation for f0

−eEy(x, t)

m

df1

dvy
= St(f0), (4)

where the upper bar denotes space-time averaging over the phase space available for the

electron with the total energy ε [54–56].

The rf electric field Ey(x, t) = Ey0(x) exp(−iωt) and the anisotropic part of the EVDF

f1 = f10 exp(−iωt) are harmonic functions, where ω is the discharge frequency. In what
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follows the subscript 0 is omitted. Eq.(3) becomes

−iωf1 + vx
∂f1

∂x
|εx

− evyEy(x)
df0

dε
= −νf1. (5)

In transformation from Eq.(3) to Eq.(5) the BGK approximation was used St(f1) = −νf1,

where ν is the transport collision frequency and we introduced a new variable the total energy

along x-axis εx = mv2
x/2 + ϕ(x). There have been a number of studies, which explored the

effects of the exact collision integral on collisionless phenomena [57, 58]. These treatments

use expansion in series of spherical functions in velocity spaces. The exact calculations are

important only if the collision frequency is a strong function of the polloidal scattering angle.

If the differential cross section does not depend on the polloidal scattering angle, the BGK

approximation is correct exactly [58]. For partially ionized plasma, the electron-neutral

collisions are the most frequent scattering mechanism. In the low-pressure discharges a

typical electron energies are in the range 1-5 eV [2]. and the differential cross section weakly

depends on the polloidal scattering angle. As a result, the BGK approximation has a good

accuracy [58].

Equation (5) can be solved by a number of different methods. First, let us consider a

direct solution. Alternative derivation using Fourier series is performed in Appendix C. After

some straightforward algebra described in Appendix A, the symmetric part of the EVDF

f1s ≡ 1/2(f1+ + f1−) is given by

f1s(v,x) = −mvyV
rf
y (x, εx)

df0

dε
, (6)

where V rf
y (x, εx) = 1/2(V rf

y+ + V rf
y−), V rf

y± are the oscillatory velocities of an electron with a

given εx, ± signs denote vx > 0 and vx < 0, respectively;

V rf
y (x, εx, v⊥) = − e

m sinh Φ+





cosh Φ
∫ x+

x
Ey(x

′) cosh(Φ+ − Φ′)dτ ′+

cosh(Φ+ − Φ)
∫ x

x−

Ey(x
′) cosh Φ′dτ ′



 , (7)

τ ≡
∫ x

x−

dx

|vx(x, εx)|
, (8)

Φ(x, εx, v⊥) ≡
∫ x

x−

(−iω + ν)dτ, (9)

Φ+(εx, v⊥) ≡ Φ(x+, εx, v⊥), (10)

where x−(εx), x+(εx) are the left and right turning points, respectively, for the electron with

energy εx [corresponding to zero velocity vx or εx = eϕ(x−)], τ is the time of flight from
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the left turning point x−(εx) to x, v⊥ =
√

v2
y + v2

z . The functions V rf
y and Φ depend on the

electron speed via the collision frequency ν(v).

In the local limit the electron mean free path is small λ << δ and the phase is large

Re(Φ) >> 1. Therefore, cosh Φ ≈ sinh Φ ≈ 1/2 exp(Φ). The main contribution in the both

integrals in Eq.(7) are near the point x′ = x, and since dΦ = (−iω + ν)dτ,

V rf
y ≈ − e

m

Ey(x)

(−iω + ν)
, (11)

as it should be in the local limit.

III. CALCULATION OF NONLOCAL CONDUCTIVITY

Knowing the EVDF f1s, one can calculate the current density

j = −em
3/2

4π
√

2

∫

f1svyd
3v. (12)

Substituting f1s from Eq.(6) into Eq.(12) and making the transformation to the spherical

coordinates in the velocity space dvxdvydvz = v2dv sin ϑdϑdψ (cosϑ = vx/v; tanψ = vy/vz )

Eq.(12) becomes

j(x) = e
√

2m3/2

∫ ∞

0

w
〈

v2
yV

rf
y

〉 df0(ε)

dε
dv, (13)

where the averaged over velocity direction factor
〈

v2
yV

rf
y

〉

is

〈

v2
yV

rf
y

〉

=
v2

4π

∫ π

0

∫ 2π

0

V rf
y (x, εx, v)[sinϑ]3[cosψ]2dψdϑ. (14)

Because V rf
y does not depend on ψ, the integration over ψ-angle can be completed. Changing

integral from ϑ to vx = v cosϑ gives

〈

v2
yV

rf
y

〉

=
1

4v

∫ v

−v

V rf
y (x, εx, v⊥)(v2 − v2

x)dvx, (15)

or
〈

vyV
rf
y

〉

=
1

2m
√
w

∫ ε

ϕ(x)

V rf
y (x, εx, v⊥)

ε− εx
√

εx − ϕ(x)
dεx. (16)

Substituting Eq.(16) into Eq.(13) and changing integration from v to ε yields

j(x) =
e

2

∫ ∞

ϕ(x)

[

∫ ε

ϕ(x)

ε− εx
√

εx − ϕ(x)
V rf

y dεx

]

df0(ε)

dε
dε. (17)
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Further simplifications are possible if the collision frequency ν is small (ν << ω) or ν does

not depend on electron velocity. In this case V rf
y (x, εx, v⊥) is the only function of (x, εx).

Integrating Eq.(17) in parts yields

j(x) = −e
2

∫ ∞

ϕ(x)

[

∫ ε

ϕ(x)

V rf
y (x, εx)

√

εx − ϕ(x)
dεx

]

f0(ε)dε. (18)

If V rf
y is a constant Eq.(18) gives trivial result: j = −enV rf

y .

Introducing a new function Γ(ε)

Γ(ε) ≡
∫ ∞

ε

f0(ε)dε, (19)

and integrating Eq.(18) in parts one more time gives

j(x) = −e
2

∫ ∞

ϕ(x)

V rf
y (x, ε)Γ(ε)
√

ε− ϕ(x)
dε. (20)

For the Maxwellian EVDF f0, Eq.(20) is equivalent to Liberman et al.’s result [38].

Substituting Eq.(7) into Eq.(20) yields the nonlocal conductivity operator

jy(x) =

∫ x

0

G(x, x′)Ey(x
′)dx′ +

∫ L

x

G(x′, x)Ey(x
′)dx′ (21)

where

G(x, x′) =
1

2

e2√
2m

∫ ∞

max(ϕ,ϕ′)

cosh Φ cosh(Φ+ − Φ′)

sinh Φ+

Γ(ε)
√

ε− ϕ(x)
√

ε− ϕ(x′)
dε. (22)

Note that G(x, x′) has a logarithmic singularity at x = x′ [38], but because calculation of

the electron current in Eq.(21) requires additional integration, there is no singularity in the

current.

In the limit of large gap, where δ < λ << L, Re(Φ) >> 1 and cosh Φ cosh(Φ+ −
Φ′)/ sinh Φ+ → cosh Φ exp(−Φ′). And the region of integration in Eq.(21) beyond the skin

layer can be omitted. In the local limit, where λ << δ , Eq.(21) gives the standard local

conductivity, see Eq.(11).

IV. CALCULATION OF THE TRANSVERSE RF ELECTRIC FIELD PROFILE

Maxwell’s equations can be reduced to a single scalar equation for the transverse electric

field [32]
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d2Ey

dx2
+
ω2

c2
Ey = −4πiω

c2
[j(x) + Iδ(x) − δantiIδ(x− L)] , (23)

where the electron current j is given by Eq.(21), I is the current in the coil at x = 0,

δanti = 0, if there is the grounded electrode and no any coil with the current located at

x = L, and δanti = 1, if there is a coil with the current −I at x = L. The 1D slab system

of two currents flowing in opposite directions describes very well a cylindrical configuration

with the radius R, where a coil produces rf currents at both plasma boundaries x = 0 and

x = 2R, R = L/2 [25, 26]. The Eq.(23) and Eq.(21) can be solved numerically using a finite

difference scheme. There is major difficulty in such approach. Straightforward computing

of the complex Green’s function in Eq.(22) is slow and time consuming [41]. The better

approach is to solve the integro-differential Eq.(23) making use of a spectral method, where

the electric field is represented as a sum of harmonic functions.

A. Solving the Maxwell equations for the rf electric field using Fourier Series

System that has an antenna at x = 0 and a grounded electrode at x = L in the uniform

plasma was studied theoretically in Ref.[27]. The papers [25, 35] considered a cylindrical-like

system in the uniform plasma. Both papers used Fourier series to solve Maxwell’s equations.

Here, we generalize the procedure for a case of a nonuniform plasma.

Similarly to the previous analysis, it is convenient to continue the rf electric field sym-

metrically Ey(x) = Ey(−x) outside of the slab. Then, the electric field is given by Fourier

series [27]

Ey(x) =

∞
∑

s=0

Ξs cos(ksx), (24)

where s is an integer, ks = (2s + 1)π/(2L), for the case of the grounded electrode, and

ks = (2s+ 1)π/L, for the case of the cylindrical-like system. Substituting (24) into Eq.(23)

and integrating with the weight 2 cos(ksx)/L over the region [0, L] yields

(

−k2
s +

ω2

c2

)

Ξs = −4πiω

c2

[

js +
2I [1 + δanti,k]

L

]

, (25)

where

js =
2

L

∫ L

0

j(x) cos(ksx)dx. (26)

12



Substituting the equation for the current density form Appendix C Eq.(C9) gives

js =
e2

m

1

(2s+ 1)ΩbT

∞
∑

l=0

ΞlZ
gen
s,l

(

ω + iν

(2s+ 1)ΩbT

)

, (27)

where ΩbT = VTπ/L, and we introduced the generalized plasma dielectric function

Zgen
s,l (ξ) ≡

√

2

m

(2s+ 1)πΩbT

L

∞
∑

n=−∞

∫ ∞

0

Γ(ε)

nΩb(ε) − (2s+ 1)ΩbT ξ

Gs,n(ε)Gl,n(ε)

Ωb(ε)
dε, (28)

where the coefficients Gl,n(ε) are the temporal Fourier transform of cos(klx) in the bounce

motion of the electron in the potential well (dx/dt = −eEsc(x)/m)

Gl,n(ε) =
1

T

[
∫ T

0

cos[klx(τ)] cos
(πnτ

T

)

dτ

]

. (29)

Finally, the Maxwell equation (25) together with the equations for the electron current

(27) and (29) comprise the complete system for determining profiles of the rf electric field.

B. Examples of calculation of rf field profiles for a given EEDF

In the limit of uniform plasma [Esc(x) = 0] τ = x/vx, T = L/vx and Eq.(29) gives

Gl,n(ε) =
1

L

[
∫ L

0

cos(klx) cos
(nπx

L

)

dx

]

. (30)

For a cylindrical-like system coefficients Gl,n(ε) are particular simple

Gl,n(ε) =
1

2
δ(2l+1),|n|, (31)

and the generalized plasma dielectric function for a given Maxwellian EEDF is

Zgen
s,l (ξ) = δs,lZ(ξ), (32)

where Z(ξ) is the ”standard” plasma dielectric function

Z(ξ) = π−1/2

∫ ∞

−∞

dt
exp(−t2)
t− ξ

. (33)

System of Equations (25), (27) and (29) is identical to the results of Ref.[25] for cylindrical-

like configuration uniform plasma with a Maxwellian EEDF. Figure 1 shows the calculated

profile of rf magnetic field and its comparison with the analogous result from Ref. [25] for

ω/ΩbT = 1.5, ν/ΩbT = 0.3 and Rωp/c = 4.5, where ωp is the plasma frequency and R = L/2
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is half width of the slab. The electron temperature is Te = 2.5eV and the uniform spatial

electron density is n0 = 1012cm−3.

For the case of a sufficiently wide slab (L >> VT/ω) the results of the described above

formalism coincide with the results from Ref. [22] for a semi-infinite uniform plasma with

a Maxwellian EEDF as it is shown in Fig.2. . The parameter Λ = v2
Tω

2
pω/(c

2|iω + ν|3)
determines the square of the ratio of the effective electron mean free path to the skin depth.

The parameter Λ can serve as a measure of ”anomality” of the rf field profiles [22]. For

example, the rf electric field profiles depart from a simple exponential function for large

Λ > 0.5, see Fig.2.

For a nonuniform plasma taking into account an ambipolar potential makes simulation

of the rf field profiles much more cumbersome than for a uniform plasma. Nevertheless,

electric field profiles can be effectively computed making use of the fast Fourier transform

for numerical computation of Gl,n(ε) coefficients in Eq.(29). The off-diagonal coefficients

are generally very small, that is why, utilizing this spectral method makes computing much

faster than the straight forward application of the finite difference method as it was done in

Refs.[41, 42]. Figure 3 shows the rf electric field profiles calculated for a bounded plasma

in a slab geometry with and without the ambipolar potential φ = −4(x/R − 1)2 (in Volts)

for the same parameters in Fig.1 for two cases: 1) the electron density at the electrode n(0)

is equal to the electron density of the uniform plasma n0, n(0) = n0 2) the electron density

in the center n(R) is equal to n0, n(R) = n0, respectively. From Fig.3 it can be seen that

taking into account an ambipolar potential greatly alters the rf electric field profile.

V. AVERAGING OF KINETIC EQUATION FOR THE MAIN PART OF THE

EEDF

Kinetic equation for f0 averaged over the discharge period is

vx
∂f0

∂x
− e

m
Esc(x)

df0

dvx
− e

2m
Re

[

E∗
y(x)

df1

dvy

]

= St(f0), (34)

St(f) = Stvel(f) + Stεel(f) + Stee(f) + Stinel(f), (35)

Stvel(f) =

∫

(f ′ − f)vdσ, (36)

Stεel(f) =
∂

v∂w
(vVelf) , (37)
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Stee(f) =
∂

v∂w

(

vDee
∂

∂w
f

)

+
∂

v∂w
(vVeef) , (38)

Stinel(f0) =
∑

k

[

√

(w + ε∗k)√
w

ν∗k(w + ε∗k)f0(ε+ ε∗k) − ν∗kf0

]

, (39)

where w = mv2/2 is the kinetic energy . Here, the elastic collision integral splits into two

parts Stel(f) = Stvel(f) + Stεel(f), where Stvel(f) is the part of the elastic scattering collision

integral, which takes into account only changes of the electron momentum in the collisions

with differential cross section dσ, and Stεel(f) accounts for an energy change in the elastic

collisions. Stee(f0) is the electron-electron collision integral, and Stinel(f0) is the sum over

all inelastic collisions with the electron energy loss ε∗k and inelastic collision frequency ν∗k

(see Refs. [5, 20]) for more details on simulating ionization and wall losses). In equation

(38), the coefficients Dee, Vee, Vel are given by [55, 60]

Vel =
2m

M
wν, (40)

Vee =
2wνee

n

(
∫ w

0

dw
√
wf

)

, (41)

Dee =
4

3

wνee

n

(
∫ w

0

dww3/2f + w3/2

∫ ∞

w

dwf,

)

(42)

νee =
4πΛeen

m2v3
, (43)

where νee is the Coulomb collision frequency and Λee is the Coulomb logarithm. Note

that at large electron energies ε >> Te Vee ≈ 2wνee and Dee ≈ 2wTeνee, where Te =

2/3
∫ w

0
dww3/2f/n, and Stee(f) describes relaxation of the EEDF to a Maxwellian.

If the electron energy relaxation length (roughly inelastic electron mean free path λ∗ =

VT/ν
∗
k) is large compared with gap (λ∗ >> L), the first two terms on the left hand side

of Eq.(34) are dominant and the sum of two first terms equals to zero ( in a asymptotic

series with the parameter λ∗/L). Any function of the longitudinal energy εx ≡ mv2
x/2+ϕ(x)

nullifies the first two terms on the left hand side of Eq.(34). Therefore, f0 is approximately a

function of εx only, not a function of both variables x, vx separately. Similarly, Stvel(f) is the

largest term from the remaining terms in the equation. Any isotropic function of the electron

speed nullifies Stvel(f0) = 0. To satisfy both conditions: isotropy and to be a function of

εx, f0 must be a function of total energy ε ≡ mv2/2 + ϕ(x) only [56]. This assumption

was verified experimentally in Refs. [16, 17, 59] and by comparison with particle-in-cell
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simulations in Ref.[5] for a capacitive coupled plasma, in Ref.[8, 36] for a inductive coupled

plasma, and in Ref.[20] for a ECR discharge.

To obtain f0, it is necessary to average Eq.(34) over fast electron bouncing and over all

velocity angles. First, let us average over fast electron bouncing. In order to do so, we

integrate all terms of Eq.(34) over the full period of electron bouncing
∮

dtTerm(x, vx) ≡
∫ x+

x−

dx

vx
Term(x, vx > 0) +

∫ x+

x−

dx

|vx|
Term(x, vx < 0),

where Term(x, vx) is a term in Eq.(34). Because the first two terms represent the full time

derivative df/dt along trajectory, they disappear after integration, and Eq.(34) becomes

−
∮

dt
e

2m
Re

[

E∗
y(x)

df1

dvy

]

=

∮

dtSt(f0). (44)

Second, we integrate Eq.(44) over all possible perpendicular velocities dvydvz with a given

total energy m(v2
y + v2

z) < 2ε [54, 56].

Total averaging is a triple integral

Term(x,v) ≡ 1

4π

∫ ∫

dvydvz

∮

dtTerm(x,v), (45)

where factor 1/4π is introduced for the normalization purposes. Note, that integral in

Eq.(45) describes averaging over all phase space available for the electron with the total

energy ε and can be rewritten as

1

4π

∫ ∫

dvydvz

∮

dtTerm(x,v) =
m

4π

∫

dxd3vδ [ε− w − ϕ(x)]Term(x,v). (46)

If the Term(x,v) depends on the electron velocity only via speed v, which is the case for

Stεel(f), Stee(f), Stinel(f) collision integrals, then integration in Eq.(46) simplifies to become

Term(x,v)(ε) =

∫ x+

x−

dxv(x, ε)Term[x, v(x, ε)], (47)

v(x, ε) =
√

2[ε− ϕ(x)]/m. (48)

Thus, averaging of the collision integral terms, responsible for energy relaxation in Eq.(44)

reduces to integrating over the entire available discharge volume weighted with the velocity

for an electron with a given total energy ε. This procedure is identical for both collisionless

(λ > L) and collisional (λ - L) cases (compare Eq.(45) with the collisional (λ - L) case

[3, 4, 54]). However, as we shall see next, the electron heating in the rf electric field differs

greatly for collisionless and collisional cases.
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A. Calculation of the nonlocal energy diffusion coefficient

The term describing electron heating originates from the averaged left hand side of

Eq.(44). Making use of averaging procedure Eq.(46), the left hand side of Eq.(44) becomes

eEy(x, t)

m

df1

dvy
=

e

8π

∫

dxd3vδ [ε− w − ϕ(x)]Re

[

E∗
y(x)

df1

dvy

]

. (49)

Using chain rule for the integration in dvy and the fact that dδ(ε−w−ϕ)/dvy = mvydδ(ε−
w − ϕ)/dε, Eq.(49) becomes

eEy(x, t)

m

df1

dvy

=
em

8π

d

dε
Re

∫

dxd3vδ [ε− w − ϕ(x)] vyE
∗
y(x)f1. (50)

Substituting f1 from Eq.(6) and integrating in the velocities vy and vz yields

eEy(x, t)

m

df1

dvy

=
d

dε
Dε

df0

dε
, (51)

where we introduced the energy diffusion coefficient Dε

Dε = − e

4m
Re

∫ ε

0

dεx (ε− εx)

∫ x+(εx)

x−(εx)

dx

vx

E∗
y(x)V

rf
y (x, εx). (52)

As shown in Appendix B, Eq. (52) is the general expression for the energy diffusion coeffi-

cient. In the limiting regime of the small mean free path (λ << δ), Dε tends to the known

collisional limit [3, 4, 54]. In the intermediate pressure range (δ << λ << L), Eq.(52) cor-

responds to the hybrid heating, where the electron motion is collisionless in the skin layer,

but the randomization of the velocity kick acquired during a single pass through the skin

layer occurs due to collisions in the plasma bulk [28]. And in the collisionless limit, where

the mean free path is large (λ > L), Eq.(52) describes collisionless heating (see Appendixes

B and C for details). If the collision frequency does not depend on the kinetic energy the

direct substitution of V rf
y from Eq.(7) gives

Dε(ε) =
πe2

4m2

∞
∑

n=−∞

∫ ε

0

dεx |Eyn(εx)|2
ε− εx

Ωb(εx)

ν

[Ωb(εx)n− ω]2 + ν2
, (53)

where

Eyn(εx) =
1

π

[
∫ π

0

Ey(θ) cos (nθ) dθ

]

. (54)

Note that expression for Dε(ε) in Eq.(53) accounts for the bounce resonance Ωb(εx)n = ω

and the transit time resonance ω = v/δ, which corresponds to maxima of Eyn(εx).
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VI. SELF-CONSISTENT SYSTEM OF EQUATIONS

In summary, the self-consistent system of equations for the kinetic description of low-

pressure discharges accounting for nonlocal and collisionless electron dynamics contains the

averaged kinetic equation for f0, the Maxwell equation for the rf electric field, the quasineu-

trality condition for the electrostatic potential, and the ion density profile given by fluid

conservation equations for ion density and ion momentum.

1. The averaged kinetic equation for f0 reads

− d

dε

(

Dε +Dee

) df0

dε
− d

dε

[

Vee + Vel

]

f0 =
∑

k

[

ν∗k(w + ε∗k)

√

(w + ε∗k)√
w

f0(ε+ ε∗k) − ν∗kf0

]

,

(55)

where the upper bar denotes averaging according to Eq.(47) and Dee is given by Eq.(42),

Vee by Eq.(41) Vel by Eq.(40), and Dε by Eq.(52) or by Eq.(53).

2. The rf electric field is determined from the Maxwell Eq.(23), where the electron current

is given by Eq.(21). A robust procedure to solve these equation by FFT method is described

by Eqs.(25), (27) and (29).

3. The electrostatic potential is obtained using the quasineutrality condition

ni(x) =

∫ ∞

ϕ(x)

f0(ε)
√

ε− ϕ(x)dε, (56)

where ni(x) is the ion density profile given by a set of fluid conservation equations for ion

density and ion momentum [41]. Eq.(56) is solved in the form of a differential equation [5]

dϕ

dx
= −T scr

e (x)
d ln[ni(x)]

dx
, (57)

where T scr
e (x) is the electron screening temperature

T scr
e (x) =

[

1

2n(x)

∫ ∞

ϕ(x)

f0(ε)
dε

√

ε− ϕ(x)

]−1

. (58)

4. The power deposition can be computed as

P (x) =
1

2
Re

[

E∗
y(x)j(x)

]

. (59)

Substituting Eq.(17), integrating over the discharge length and changing the integration

order, Eq.(59) becomes

P = −
√

2m

∫ ∞

0

Dε(ε)
df0(ε)

dε
dε. (60)
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Equation (60) can be used as a consistency check.
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APPENDIX A: DERIVATION OF f1

Direct integration of Eq.(5) yields

f1+(x, v) = evy
df0

dε

[
∫ x

x−

e−[Φ(x)−Φ(x′)]E ′dτ ′ + C1e
−Φ(x)

]

. (A1)

f1−(x, v) = evy
df0

dε

[

−
∫ x

x−

eΦ(x)−Φ(x′)Ey
′dτ ′ + C2e

Φ(x)

]

. (A2)

where ± signs denote vx > 0 and vx < 0, respectively, and for brevity we introduced

Ey
′ ≡ Ey(x

′) and dτ = dx/|vx|, and

Φ(x) ≡
∫ x

x−

(−iω + ν)dτ. (A3)

The two constants C1, C2 are to be determined from the boundary condition at the turning

points. The EVDF is continues at the turning points

f1−(x−) = f1+(x−), f1−(x+) = f1+(x−). (A4)

Substituting the boundary condition at the turning points Eqs.(A4) into Eqs.(A1) and (A2)

yields

C1 = C2 ≡ C (A5)

and

−
∫ x+

x−

eΦ+−Φ′

Ey
′dτ ′ + CeΦ+ =

∫ x+

x−

e−(Φ+−Φ′)Ey
′dτ ′ + Ce−Φ+,

or

C =
1

sinh Φ+

∫ x+

x−

cosh(Φ+ − Φ′)Ey
′dτ ′. (A6)

Here Φ ≡ Φ(x), Φ′ ≡ Φ(x′), and Φ+ ≡ Φ(x+). f1 enters into the current calculation only as

a sum f1+ + f1−. Therefore, we compute f1s ≡ 1/2(f1+ + f1−) from Eqs.(A1) and (A2)

f1s = evy
df0

dε

{

C cosh Φ −
∫ x

x−

sinh(Φ − Φ′)Ey(θ
′)dτ ′

}

, (A7)
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substituting C from Eq.(A6) gives

f1s = −mvyV
rf
y

df0

dε
, (A8)

where

V rf
y = − e

m

1

sinh Φ+





cosh Φ
∫ x+

x−

cosh(Φ+ − Φ′)Ey
′dτ ′−

sinh Φ+

∫ x

x−

sinh(Φ − Φ′)Ey
′dτ ′



 . (A9)

Splitting the first term into two integrals
∫ x+

x−

=
∫ x

x−

+
∫ x+

x
, and accounting for the fact that

cosh Φ cosh(Φ+ − Φ′) − sinh Φ+ sinh(Φ − Φ′) = cosh Φ′ cosh(Φ+ − Φ′) (A10)

gives

V rf
y = − e

m

1

sinh Φ+





cosh Φ
∫ x+

x
Ey

′ cosh(Φ+ − Φ′)dτ ′+

cosh(Φ+ − Φ)
∫ x

x−

Ey
′ cosh Φ′dτ ′



 . (A11)

APPENDIX B: DIFFUSION COEFFICIENT IN THE ENERGY SPACE

The equation for the energy diffusion coefficient

Dε = − e

4m
Re

∫ ε

0

dεx (ε− εx)

∫ x+

x−

dx

vx
E∗

y(x)V
rf
y (x, εx) (B1)

has correct limits in collisional and collisionless cases.

1. Collisional case λ << δ

In the collisional case, the mean free path is small. Substituting V rf
y from Eq.(11) into

Eq.(B1) gives

Dε =
e2

4m2
Re

∫ ε

0

dεx (ε− εx)

∫ x+

x−

dx
√

2(εx − ϕ)/m

E∗
y(x)Ey(x)

−iω + ν
. (B2)

Changing the order of the integration and accounting for the fact that

1

m2

∫ ε

0

dεx
ε− εx

√

2(εx − ϕ)/m
=

2

3
v3,

Dε =
e2

6
Re

∫ x+

x−

dx|Ey|2
νv3

(ω2 + ν2)
, (B3)

which corresponds to the collisional case [16, 17].
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2. Hybrid case δ << λ << L

In the Hybrid case, collisions are rare during the electron motion in the skin layer.

Therefore, V rf
y± is simply the velocity ”kick” due the rf electric field. Recalling that

V rf
y (x, ε) = (V rf

y+ + V rf
y−)/2, the last factor in Eq.(B1) can be written as

−1

2

e

m

∫ x+

x−

dx

vx

E∗
y(x)V

rf
y (x, εx) =

〈

1

2

∮

dτ
d∆Vy(τ)

dτ
∆Vy(τ)

〉

=
1

4

〈

∆V 2
y∞

〉

, (B4)

where
∮

dτ is an integral along the electron trajectory entering and leaving the skin layer,

∆Vy∞ is the total velocity kick after a single path through the skin layer, and the angular

brackets denote averaging over phases of the rf field. Eq.(B1) simplifies to become

Dε =
1

8

∫ ε

0

dεx (ε− εx)
〈

∆V 2
y∞

〉

. (B5)

In the limit of a uniform plasma Eq.(B5) was proposed in Ref. [28, 36].

3. Collisionless case λ >> L

The energy diffusion coefficient Eq.(B1) is determined by the following integral Int =
∫ x+

x−

E∗
y(x)V

rf
y dτ . Substitution of V rf

y from Eq.(A11) Int = 1
sinhΦ+

∫ x+

x−

E∗
y(x)dτ

[

cosh Φ
∫ x+

x
Ey(x

′) cosh(Φ+ − Φ′)dτ ′ + cosh(Φ+ − Φ)
∫ x

x−

Ey(θ
′) cosh Φ′dτ ′

]

.

The term in the brackets can be expressed as cosh Φ+ cosh Φ
∫ x+

x−

Ey cosh Φ′dτ ′+

sinh Φ+

[

cosh Φ
∫ x+

x
Ey sinh Φ′dτ ′ + sinh Φ

∫ x

x−

Ey cosh Φ′dτ ′
]

.

Therefore, Int = cosh Φ+

sinhΦ+

∫ x+

x−

E ′
y cosh Φ′dτ ′

∫ x+

x−

E∗′
y cosh Φ′dτ ′ + Int1, where

Int1 =
∫ x+

x−

E∗
ydτ

[

cosh Φ
∫ x+

x
E ′

y sinh Φ′dτ ′ + sinh Φ
∫ x

x−

E ′
y cosh Φ′dτ ′

]

. Integrating in

parts gives Int1 =
∫ x+

x−

sinh Φdτ
[

∫ x

x−

[

Ey
′E∗

y + EyE
∗
y

]

cosh Φ′dτ ′
]

In the collisionless limit sinh Φ ' i sinωτ + ντ cosωτ. Because the energy diffusion coef-

ficient is determined by the real part of the integral and the real part of the phase is small

(∼ ν ), Int1 can be neglected. Therefore,

Dε =
e2

4m
Re

∫ ε

0

dεx (ε− εx) cothΦ+

∫ x+

x−

Ey
′ cosωτ ′dτ ′

∫ x+

x−

E∗
y
′′ cosωτ ′′dτ ′′, (B6)

where sinh Φ+ ' i sinωT + νT cosωT . Main contribution comes from the points, where

ωT = πn and cothΦ+ ' π
∑

n δ(ωT − πn).

Dε(ε) =
πe2

4m

∞
∑

n=−∞

∫ ε

0

dεx |Ef |2 (ε− εx) δ [ωT (εx) − πn] , (B7)
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Ef(εx) =

∫ x+(εx)

x−(εx)

Ey(x
′) cosωτ ′dτ ′ (B8)

This corresponds to the pervious results of Ref.[29].

APPENDIX C: ALTERNATIVE DERIVATIONS IN FOURIER SPACE.

The direct calculation described in the previous sections are rather cumbersome. The

alternative derivation can be done easier using Fourier series.

It is convenient to introduce the variable angle of the bounce motion

θ(x, εx) =
πsgn(vx)

T (εx)

∫ x

x−

dx

|vx(εx)|
, (C1)

where T is the half of the bounce period of the electron motion in the potential well ϕ(x),

which is given by

T (εx) =

∫ x+

x−

dx

|vx(εx)|
. (C2)

The bounce frequency for the electron in the potential well is Ωb(εx) = π/T (εx). Utilizing

angle variable, Eq.(5) simplifies to become

−iωf1 + Ωb
∂f1

∂θ
|εx

− vyeEy(θ)
df0

dε
= −νf1. (C3)

We shall use Fourier series in variable θ:

g(x, εx) =

∞
∑

n=−∞

gn exp (inθ) , (C4)

gn =
1

2π

[
∫ π

−π

g(θ, εx) exp (−inπθ) dθ
]

. (C5)

Note that in the last integral, the region 0 < θ < π corresponds to vx > 0 , and the region

−π < θ < 0 corresponds to vx < 0. Utilizing the Fourier series Eq.(C5), the Boltzmann

equation becomes

(inΩb − iω + ν)f1n = eEynvy
df0

dε
, (C6)

where

Eyn(εx) =
1

π

[
∫ π

0

Ey(θ) cos (nθ) dθ

]

. (C7)

Making use of Fourier series Eq.(C4), Eq.(C6) gives

f1s(x, εx) = −mvyV
rf
y (x, εx)

df0

dε
,
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where

V rf
y (x, εx) = − e

m

∞
∑

n=−∞

Eyn cos[nθ(x)]

inΩb − iω + ν
. (C8)

Eq.(C8) is the alternative form of Eq.(A11).

Substituting the function V rf
y (x, εx) from Eq.(C8) into Eq.(20) gives the current density

j(x) =
e2

2m

∞
∑

n=−∞

∫ ∞

ϕ(x)

Γ(ε)
√

ε− ϕ(x)

Eyn cos[nθ(x)]

inΩb − iω + ν
dε. (C9)

The averaged energy coefficient is given by Eq.(B1). Substituting the function V rf
y (x, εx)

from Eq.(C8) into Eq.(B1) gives

Dε =
e2

4m2
Re

∫ ε

0

dεx (ε− εx)

∫ x+

x−

dx

vx
E∗

y(x)
∞

∑

n=−∞

Eyn cos[nθ(x)]

inΩb − iω + ν
,

or

Dε(ε) =
πe2

4m2

∞
∑

n=−∞

∫ ε

0

dεx
|Eyn(εx)|2 (ε− εx) ν

Ωb(εx)
{

[Ωb(εx)n− ω]2 + ν2
} . (C10)

Note that Eq.(C10) is valid for any collision frequency, and Eq.(B7) is valid only for ν << ω.
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FIG. 1: The normalized magnetic field amplitude and its phase for the case of cylindrical-like

geometry (slab geometry and two antisymmetric currents at x = 0 and x = L) as functions of the

normalized coordinate x/R, where R = L/2. Lines denote the results of the system of equations

(25), (27) and (29) and symbols show the results from Ref.[25] for ω/ΩbT = 1.5, ν/ΩbT = 0.3 and

Rωp/c = 4.5. The electron temperature is Te = 2.5eV and the uniform spatial electron density is

n0 = 1012cm−3.
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FIG. 2: The normalized electric field amplitude for semi-infinite uniform plasma as a function of

normalized depth |iω + ν|x/vT for ω = ν and different Λ = v2
T ω2

pω/(c2|iω + ν|3). Lines denote the

results of the system of equations (25), (27) and (29) and symbols show the results from Ref.[22].
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FIG. 3: The profile of the normalized amplitude of the rf electric field calculated for a bounded

plasma in a slab geometry with and without the ambipolar potential φ = −4(x/R − 1)2 (in Volts)

for the same parameters as in Fig.1 for two cases: 1) the electron density at the electrode n(0) is

equal to the electron density of the uniform plasma n0, n(0) = n0 2) the electron density in the

center n(R) is equal to n0, n(R) = n0, respectively.
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