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Abstract

An intense charged particle beam with directed kinetic energy (γb − 1)mbc
2 propagates in the

z-direction through an applied focusing field with transverse focusing force modeled by Ffoc =

−γbmbω
2
β⊥x⊥ in the smooth focusing approximation. This paper examines properties of the ax-

isymmetric, truncated thermal equilibrium distribution Fb(r,p⊥) = A exp(−H⊥/T̂⊥b)⊕(H⊥−Eb),

where A, T̂⊥b and Eb are positive constants, and H⊥ is the Hamiltonian for transverse particle

motion. The equilibrium profiles for beam number density, nb(r) =
∫
d2pFb(r,p⊥), and transverse

temperature, T⊥b(r) =
∫
d2p(p2

⊥/2γbmb)Fb(r,p⊥), are calculated self-consistently including space-

charge effects. Several properties of the equilibrium profiles are noteworthy. For example, the beam

has a sharp outer edge radius rb with nb(r ≥ rb) = 0, where rb depends on the value of Eb/T̂⊥b. In

addition, unlike the choice of a semi-Gaussian distribution, FSG
b = A exp(−p2

⊥/2γbmbT̂⊥b)⊕(r−rb),
the truncated thermal equilibrium distribution Fb(r,p) depends on (r,p) only through the single-

particle constant of the motion H⊥ and is therefore a true steady-state solution (∂/∂t = 0) of the

nonlinear Vlasov-Maxwell equations.
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I. INTRODUCTION AND THEORETICAL MODEL

This paper makes use of the nonlinear Vlasov-Maxwell equations[1–4] to investigate the

properties of self-consistent intense beam equilibria (∂/∂t = 0) with sharp outer beam

edge at radius r = rb. The analysis considers an axially continuous charged particle beam

made up of particles with charge eb and rest mass mb propagating in the z-direction with

directed axial kinetic energy (γb − 1)mbc
2, where γb = (1 − β2

b )
−1/2 is the relativistic mass

factor, Vb = βbc is the average axial velocity of the beam particles, and c is the speed of

light in vacuo. The applied transverse focusing force on a beam particle is modeled in the

smooth-focusing approximation[1–3] by Ffoc = −γbmbω
2
β⊥x⊥, where ωβ⊥ = const. is the

applied focusing frequency, and x⊥ = xêx + yêy is the transverse displacement of a beam

particle from the axis. Finally, the particle motion in the beam frame is assumed to be

nonrelativistic. The main purpose of the present analysis is to describe a particular choice

of self-consistent beam equilibrium distribution function, with sharp outer beam edge, that

can serve as a useful alternative to a semi-Gaussian distribution.

By way of background, particle-in-cell simulations of intense beam propagation[5–9] often

make use of an input distribution function, known as a semi-Gaussian distribution, in which

the phase-space dependence of the transverse distribution function is taken to be of the form

F SG
b =

n̂b

2πγbmbT̂⊥b

exp

(
− p2

⊥
2γbmbT̂⊥b

)
⊕ (r − rb) . (1)

Here, p⊥ = (p2
x + p2

y)
1/2 is the transverse particle momentum, r = (x2 + y2)1/2 is the radial

distance of a particle from the beam axis, n̂b and T̂⊥b are positive constants, and ⊕(x) is

the Heaviside step-function defined by ⊕(x) = +1 for x < 0, and ⊕(x) = 0 for x > 0. An

important feature of Eq. (1) is that the corresponding number density of beam particles,

nb(r) =
∫
d2p⊥F SG

b , has the simple uniform-density step-function profile, nb(r) = n̂b ⊕ (r −
rb), with a sharp beam edge at radius r = rb, and nb(r > rb) = 0. Another feature of

Eq. (1) is that the local transverse temperature within the beam is spatially uniform with∫
d2p(p2

⊥/2γbmb)F
SG
b = T̂⊥bnb(r), where T̂⊥b = const. A disadvantage of Eq. (1), of course,

is that an input distribution function such as Eq. (1) does not correspond to a quasi-steady-

state equilibrium (∂/∂t = 0), since F SG
b is not constructed from single-particle constants of

the motion[1, 2, 10]. Because ∂F SG
b /∂t 6= 0, particle-in-cell simulations based on the initial

distribution F SG
b can have a significant transient evolution of the distribution function, even
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in circumstances where the beam propagation is nominally stable [9].

Consistent with the assumptions summarized above, a self-consistent equilibrium solu-

tion (∂/∂t = 0) to the nonlinear Vlasov-Maxwell equations can be constructed from the

single-particle constants of the motion in the equilibrium field configuration. For an ax-

isymmetric beam (∂/∂θ = 0), the constants of the motion involving the transverse particle

dynamics correspond to the canonical angular momentum Pθ = xpy−ypx, and the transverse

Hamiltonian H⊥ defined by

H⊥ =
p2
⊥

2γbmb
+ ψ(r) , (2)

where

ψ(r) =
1

2
γbmbω

2
β⊥r

2 +
eb

γ2
b

φ(r)

is the effective radial potential. In Eq. (2), the equilibrium space-charge potential φ(r) is

determined self-consistently in terms of the equilibrium distribution function Fb(r,p⊥) from

Poisson’s equation
1

r

∂

∂r
r
∂

∂r
φ(r) = −eb

∫
d2p⊥Fb(r,p⊥) , (3)

where nb(r) =
∫
d2p⊥Fb(r,p⊥) is the number density of beam particles. In solving Eq. (3),

we take φ(r = 0) = 0 = ψ(r = 0) without loss of generality. Any transverse distribution

function Fb(r,p⊥) that depends on (r,p⊥) only through the variables H⊥ and Pθ is an exact

solution to the steady-state nonlinear Vlasov-Maxwell equations[1, 2, 10]. For a non-rotating

beam, this dependence occurs only through the perpendicular Hamiltonian H⊥, i.e.,

Fb(r,p⊥) = Fb(H⊥) , (4)

which is the class of beam equilibria considered in the present analysis.

The organization of this paper is the following. In Sec. 2, the truncated thermal equilib-

rium distribution is examined analytically. The implications of global radial force balance

is considered in Sec. 3. Finally, in Sec. 4, numerical solutions are obtained for the self-field

potential and radial density profile over a wide range of system parameters.

II. TRUNCATED THERMAL EQUILIBRIUM DISTRIBUTION

Equations (2)–(4) have been extensively analyzed in the literature[11–19] for the case of

a thermal equilibrium distribution, Fb(H⊥) = A′ exp(−H⊥/T̂⊥b), and for a waterbag equilib-

rium distribution, Fb(H⊥) = A′′⊕(H⊥−Eb), where A′, A′′, T̂⊥b and Eb are positive constants.
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One characteristic of the thermal equilibrium distribution is that the (bell-shaped) density

profile has an exponentially small (but non-zero) value beyond the beam edge. While the

waterbag equilibrium has a sharp beam edge at radius r = rb, there is no variation of Fb(H⊥)

with energy H⊥ in the beam interior. In the present paper, we combine these two distri-

bution functions into a single so-called truncated thermal equilibrium distribution Fb(H⊥)

defined by

Fb(H⊥) =
n̂b

(2πγbmbT̂⊥b)[1 − exp(−Eb/T̂⊥b)]
exp(−H⊥/T̂⊥b) ⊕ (H⊥ − Eb) . (5)

Here, n̂b, T̂⊥b, and Eb positive constants, and n̂b ≡ nb(r = 0) can be identified with the on-

axis (r = 0) value of number density because φ(r = 0) = 0 = ψ(r = 0) is assumed. Equation

(5) is a fully self-consistent equilibrium solution (∂/∂t = 0) to the nonlinear Vlasov-Maxwell

equations within the context of the assumptions enumerated earlier.

Substituting Eq. (5) into the definition of nb(r) = 2π
∫∞
0
dp⊥p⊥Fb(H⊥) and carrying out

the integration over p⊥ readily gives the equilibrium density profile

nb(r) =

{
n̂b

[exp(−ψ/T̂⊥b) − exp(−Eb/T̂⊥b)]

[1 − exp(−Eb/T̂⊥b)]
, 0 ≤ r < rb ,

0 , rb < r ≤ rw ,

(6)

where rw = const. is the radius of a cylindrical, perfectly conducting wall. Here, the outer

edge radius of the beam (r = rb) is determined self-consistently in terms of the constant Eb

from

ψ(r = rb) = Eb ≡ ψb = const. (7)

This follows for the choice of distribution function in Eq. (5) because the particle motion is

constrained to H⊥ < Eb, or equivalently, p2
⊥/2γbmb < Eb − ψ(r). Therefore, the edge radius

rb is determined from ψ(r = rb) = Eb (where p⊥ = 0), and there are no particles for r > rb.

We substitute Eqs. (2) and (6) into Poisson’s equation (3). This readily gives the closed

nonlinear differential equation for ψ(r),

1

r

∂

∂r
r
∂

∂r

ψ(r)

T̂⊥b

=
2γbmbω

2
β⊥

T̂⊥b

[
1 − ŝb

[exp(−ψ/T̂⊥b) − exp(−Eb/T̂⊥b)]

[1 − exp(−Eb/T̂⊥b)]
⊕ (r − rb)

]
. (8)

In Eq. (8), the constant

ŝb =
ω̂2

pb

2γ2
bω

2
β⊥

(9)
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is a dimensionless measure of the normalized beam intensity, and ω̂pb = (4πn̂be
2
b/γbmb)

1/2 is

the relativistic plasma frequency at r = 0. A careful examination of Eqs. (6) and (8) shows

that the condition for existence of a radially confined density profile [the condition for nb(r)

to be a non-increasing function of r] is that the normalized beam intensity satisfy ŝb < 1.

From Eq. (8), the inequality ŝb < 1 assures that {r−1(∂/∂r)[r∂ψ/∂r]}r=0 > 0 and hence that

nb(r) decreases monotonically as a function of increasing r (see also discussion on pages 200

– 201 of Ref. 1). Whenever the inequality ŝb < 1 is satisfied, the solution to Eq. (8) for ψ(r)

increases monotonically from ψ(r = 0) = 0 to the value ψ(r = rb) = Eb ≡ ψb at the outer

edge of the beam. Correspondingly, from Eq. (6), the number density nb(r) decreases from

the value nb(r = 0) = n̂b at r = 0, to nb(r = rb) = 0 at the beam edge.

Other equilibrium properties can also be calculated for the choice of truncated thermal

equilibrium distribution in Eq. (5). For example, the transverse pressure profile is defined

by P⊥b(r) = nb(r)T⊥b(r) = 2π
∫∞
0
dp⊥p⊥(p2

⊥/2γbmb)Fb(H⊥)[10, 18]. Making use of Eqs. (5)

and (6), and integrating over p⊥, some straightforward algebraic manipulation shows that

the transverse temperature profile T⊥b(r) for the choice of distribution function in Eq. (5)

is given by

T⊥b(r) = T̂⊥b
{exp(−ψ/T̂⊥b) − [1 + (Eb − ψ)/T̂⊥b] exp(−Eb/T̂⊥b)}

[exp(−ψ/T̂⊥b) − exp(−Eb/T̂⊥b)]
(10)

for 0 ≤ r < rb. From ψ(r = 0) = 0, we note from Eq. (10) that the on-axis value of transverse

temperature is T⊥b(r = 0) = T̂⊥b{1 − (Eb/T̂⊥b)/[exp(Eb/T̂⊥b) − 1]}. Furthermore, for finite

value of Eb/T̂⊥b, it can be shown directly from Eq. (10) that the transverse temperature

near the beam edge decreases monotonically to zero value, T⊥b(r = rb) = 0, with T⊥b(r) '
(1/2)[Eb − ψ(r)] as r → rb and ψ(r) → Eb = ψ(rb).

For specified values of the dimensionless parameters ŝb = ω̂2
pb/2γ

2
bω

2
β⊥ and Eb/T̂⊥b,

Eq. (8) can be solved numerically for ψ(r)/T̂⊥b, and the corresponding density profile

nb(r) and transverse temperature profile T⊥b(r) determined self-consistently from Eqs. (6)

and (10), respectively, over a wide range of system parameters. Of course, in the lim-

iting case Eb/T̂⊥b → ∞, Eqs. (6) and (10) reduce to the bell-shaped density profile,

nb(r) = n̂b exp[−ψ(r)/T̂⊥b], and uniform transverse temperature profile, T⊥b(r) = T̂⊥b =

const., corresponding to thermal equilibrium[10, 18]. On the other hand, as noted earlier,

for finite value of Eb/T̂⊥b the beam equilibrium described by Eqs. (5), (6), (8) and (10) has

a sharp radial edge at r = rb determined from ψ(r = rb) = Eb. Moreover, the density and
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temperature profiles in Eqs. (6) and (10) decrease monotonically to zero as r → rb. This is

expected for the choice of distribution function in Eq. (5) because the maximum transverse

Hamiltonian is [H⊥]max = Eb, and the radial location r = rb corresponds to the envelope of

turning points in the transverse particle orbits for which [p2
⊥] = 0 and ψ(r = rb) = Eb [see

Eq. (2)].

III. GLOBAL RADIAL FORCE BALANCE

Before examining specific numerical solutions to Eqs. (6), (8) and (10), we summarize

here an important constraint corresponding to global radial force balance[20, 21] satisfied

by the entire class of beam equilibria described by Eq. (4). We define the statistical average

of a phase function χ by

〈χ〉 =
1

Nb

∫
d2xd2pχFb(H⊥) , (11)

where Nb =
∫
d2xd2pFb(H⊥) = 2π

∫ rb

0
drrnb(r) is the number of beam particles per unit

axial length, and nb(r) = 2π
∫∞

0
dp⊥p⊥Fb(H⊥) is the number density. Therefore, from

Eq. (11), the mean-square beam radius R2
b = 〈r2〉 and the average transverse kinetic energy

〈(p2
x + p2

y)/2γbmb〉 can be expressed as

R2
b = 〈r2〉 =

2π

Nb

∫ rb

0

drrr2nb(r) ,

〈
p2

x + p2
y

2γbmb

〉
=
〈
T⊥b(r)

〉
=

2π

Nb

∫ rb

0

drrT⊥b(r)nb(r) , (12)

where nb(r)T⊥b(r) = P⊥b(r) = 2π
∫∞

0
dp⊥p⊥(p2

⊥/2γbmb)Fb(H⊥) is the transverse pressure

profile. For the general class of equilibrium distributions in Eq. (4), it can be shown that local

radial force balance on beam fluid element is given by[10, 20, 21] ∂P⊥b/∂r = −γbmbω
2
β⊥nbr−

(nbeb/γ
2
b )∂φ/∂r. Without presenting algebraic details, operating with (2π/Nb)

∫ rb

0
drr · · ·

gives the exact global radial force balance condition[10, 20, 21]

γbmbω
2
β⊥R

2
b =

Nbe
2
b

γ2
b

+ 2〈T⊥b(r)〉 , (13)

where R2
b and 〈T⊥b(r)〉 are defined in Eq. (12).

Equation (13) shows clearly that there are two contributions to the mean-square beam

radius R2
b = 〈r2〉. The term proportional toNbe

2
b/γ

2
b = Nbe

2
b(1−β2

b ) corresponds to the space-

charge contribution (Nbe
2
b) reduced by self-magnetic field effects (−Nbe

2
bβ

2
b ), and the term
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proportional to 2〈T⊥b(r)〉 corresponds to the emittance contribution, proportional to the

average transverse temperature of the beam particles. Indeed, it is instructive to introduce

the familiar quantities corresponding to self-field perveance (Kb), smooth-focusing lattice

coefficient (κsf ), and unnormalized beam emittance (ε) defined by

Kb ≡ 2Nbe
2
b

γ3
bmbβ2

b c
2
, κsf ≡ ω2

β⊥
β2

b c
2
,

ε2 ≡ 4〈x2 + y2〉
〈

p2
x + p2

y

γ2
bm

2
bβ

2
b c

2

〉
=

8

γbmbβ2
b c

2
R2

b〈T⊥b(r)〉 . (14)

Then, making use of Eq. (14), the radial force condition in Eq. (13) can be expressed in the

equivalent form (
κsf − Kb

2R2
b

)
Rb =

ε2

4R3
b

, (15)

which is identical to the familiar envelope equation relating the rms beam radius Rb to κsf ,

Kb and ε. For specified values of self-field perveance (Kb), focusing field strength (κsf ), and

transverse emittance (ε), Eq. (15) gives a closed expression for the mean-square beam radius,

R2
b =

Kb

4κsf
+

[(
Kb

4κsf

)2

+
ε2

4κsf

]1/2

. (16)

The radial force balance condition in Eq. (13), or equivalently, Eq. (15), is applicable to

the entire class of self-consistent beam equilibria described by Eq. (4), including the special

choice of Fb(H⊥) in Eq. (5). Moreover, Eqs. (13) and (15) are applicable over the full range

of system parameters ranging from emittance-dominated beams, where

R2
b ' 2

γbmbω2
β⊥

〈T⊥b(r)〉 =
ε

2
√
κsf

(17)

for 〈T⊥b(r)〉 � Nbe
2
b/2γ

2
b (or ε � Kb/2

√
κsf ), to space-charge-dominated beams, where

R2
b ' Nbe

2
b

γ3
bmbω2

β⊥
=

Kb

2κsf
(18)

for Nbe
2
b/2γ

2
b � 〈T⊥b(r)〉 (or Kb/2

√
κsf � ε).

In analyzing Eqs. (6), (9) and (10) it is important to recognize the powerful constraint on

system parameters imposed by the radial force balance condition in Eq. (13) [or Eq. (15)],

which relates R2
b , Nb and 〈T⊥b(r)〉. For example, when solving Eq. (9) for ψ(r) for specified

value of normalized beam intensity ŝb = ω̂2
pb/2γ

2
bω

2
β⊥, the low-intensity regime (ŝb � 1)

corresponds to an emittance dominated beam satisfying Eq. (17). On the other hand, the
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high-intensity limit (ŝb → 1) corresponds to the space-charge-dominated regime satisfying

Eq. (18).

In addition to ŝb, another convenient measure of self-field intensity is provided by the

rms-equivalent tune depression ν/ν0 defined by

ν

ν0

=

(
1 − Kb

2κsfR
2
b

)1/2

=

(
1 − Nbe

2
b

γ3
bmbω

2
β⊥R

2
b

)1/2

. (19)

In the low-intensity regime (ŝb � 1 and Kb/2κsfR
2
b � 1) note that Eq. (19) reduces to

ν/ν0 ' 1−Kb/4κsfR
2
b . On the other hand, in the space-charge-dominated limit (ŝb → 1 and

Kb/2κsfR
2
b → 1), Eq. (19) reduces to ν/ν0 → 0.

IV. EXAMPLES OF EQUILIBRIUM PROFILES

For specified values of the dimensionless parameters ŝb = ω̂2
pb/2γ

2
bω

2
β⊥ and Eb/T̂⊥b, Eq. (8)

can be solved numerically for the normalized self-field potential ψ(r)/T̂⊥b, integrating from

r = 0 where ψ(r = 0) = 0 = [∂ψ/∂r]r=0. For specified values of ŝb and Eb/T̂⊥b, note

from Poisson’s equation (8) that a natural dimensionless radial coordinate is r/rβ where

rβ = (2T̂⊥b/γbmbω
2
β⊥)1/2.Once ψ(r) is determined numerically, the edge radius rb of the beam

is obtained from ψ(r = rb) = Eb, and the density profile nb(r) and transverse temperature

profile T⊥b(r) are determined self-consistently from Eqs. (6) and (10), respectively. Analyt-

ical solutions to Eq. (8) are accessible in two limiting cases, which are useful to benchmark

the numerical solutions. The first case corresponds to a low-intensity (emittance-dominated)

beam with ŝb � 1 and 〈T⊥b(r)〉 6= 0. The second case corresponds to a high-intensity (space-

charge-dominated) beam with ŝb → 1 and 〈T⊥b(r)〉 → 0.

Low-Intensity Beam Equilibrium (ŝb � 1): For ŝb � 1, the space-charge contribution

proportional to ŝb in Eq. (8) can be neglected to leading order, which gives ψ(r) '
(γbmbω

2
β⊥/2)r

2. We determine rb from ψ(r = rb ) = Eb, which gives r2
b = 2Eb/γbmbω

2
β⊥.

Substituting into Eqs. (6) and (10) then gives the density and temperature profiles

nb(r) = n̂b

{
exp

[
−(r2/r2

b )(Eb/T̂⊥b)
]
− exp(−Eb/T̂⊥b)

}
{

1 − exp(−Eb/T̂⊥b)
} ⊕ (r − rb) , (20)
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and

T⊥b(r) = T̂⊥b

{
exp

[
(−r2/r2

b )(Eb/T̂⊥b)
]
−
[
1 + (Eb/T̂⊥b)(1 − r2/r2

b )
]
exp(−Eb/T̂⊥b)

}
{

exp
[
(−r2/r2

b )(Eb/T̂⊥b)
]
− exp(−Eb/T̂⊥b)

} ⊕(r−rb) .

(21)

Illustrative plots of nb(r)/n̂b and T⊥b(r)/T⊥b(r = 0) versus r/rb are shown in Fig. 1 for the

case where Eb/T̂⊥b = 0.1, 1, 10. Note from Eqs. (20) and (21) that the beam has a sharp

edge at radius r = rb, and that the profiles for nb(r) and T⊥b(r) approach zero continuously

as r → rb. Furthermore, in the limit Eb/T̂⊥b → ∞, Eqs. (20) and (21) reduce to the

Gaussian density profile nb(r) = n̂b exp(−γbmbr
2ω2

β⊥/2T̂⊥b) and uniform temperature profile

T⊥b(r) = T̂⊥b = const. On the other hand, for Eb/T̂⊥b � 1, Eqs. (20) and (21) can be

approximated by the parabolic profiles nb(r) = n̂b(1−r2/r2
b ) and T⊥b(r) = (Eb/2)(1−r2/r2

b )

for 0 ≤ r < rb.

Space-Charge-Dominated Beam Equilibrium (ŝb → 1, 〈T⊥b〉 → 0): As a second limiting

case that is analytically tractable, we consider Eqs. (5), (6), (8) and (10) in the cold, space-

charge-dominated regime with ŝb = ω̂2
pb/2γ

2
bω

2
β⊥ → 1, and 〈T⊥b(r)〉 → 0 corresponding to

T̂⊥b → 0 and Êb → 0. In this case, the applied focusing force and the (repulsive) space-

charge force exactly cancel in the beam interior, and the solutions to Eqs. (8), (10) and (6)

reduce to ψ(r) = 0, T⊥b(r) = 0 and

nb(r) = n̂b ⊕ (r − rb) (22)

for 0 ≤ r < rb. Note from Eq. (21) and Fig. 2 that the beam density profile is uniform with

nb(r) = n̂b = const. in the beam interior. Furthermore, for ŝb → 1, the beam edge radius

rb =
√

2Rb is readily determined from r2
b = 2Nbe

2
b/γ

3
bmbω

2
β⊥ [see Eq. (18)], where Nb = n̂bπr

2
b

is the axial line density.

Comparing Figs. 1 and 2, there is a large variation in the shape of the density profile nb(r)

between the low-intensity regime (ŝb � 1 in Fig. 1) and the space-charge-dominated regime

(ŝb → 1 in Fig. 2). For general values of ŝb and Eb/T̂⊥b, Eq. (8) can be solved numerically

for ψ(r), and the corresponding self-consistent profiles for nb(r) and T⊥b(r) determined from

Eqs. (6) and (8). Typical numerical solutions are illustrated in Figs. 3–6.

Shown in Fig. 3 are plots of the normalized potential ψ(r)/T̂⊥b versus r/rb obtained

numerically from Eq. (8) for several values of normalized beam intensity ŝb = ω̂2
pb/2γ

2
bω

2
β⊥ and

values of Eb/T̂⊥b ranging from 0.1 to 10. The corresponding values of tune depression ν/ν0

9
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FIG. 1: Plots of normalized (a) density nb(r)/n̂b and (b) temperature T⊥b(r)/T⊥b(r = 0) versus

r/rb obtained from Eqs. (20) and (21) for ŝb << 1, and Eb/T̂⊥b = 0.1, 1, 10.

[Eq. (19)] are also shown in Fig. 3. Note from Fig. 3 that ψ(r) increases monotonically from

ψ(r = 0) = 0 to ψ(r = rb) = Eb at the beam edge. Moreover, comparing Figs. 3(a) and 3(b),

ψ(r) is nearly parabolic in the beam interior when ŝb << 1 [ ŝb = 0.1 in Fig. 3(a)], whereas

ψ(r) remains close to zero in the beam interior, and increases rapidly to ψ(rb) = Eb near

the beam edge when ŝb → 1 [ ŝb = 0.999 in Fig. 3(d)]. At high space-charge intensity with

ŝb → 1, note from Fig. 3(d) that the effective potential ψ(r) = γbmbω
2
β⊥r

2/2 + (eb/γ
2
b )φ(r)

is approximately zero over a broad interior region of the beam, corresponding to a near-

cancellation of the applied focusing force and the (repulsive) self-field force. The solutions

for ψ(r)/T̂⊥b in Fig. 3 are used to determine the corresponding self-consistent density and

10
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FIG. 2: Plot of normalized density nb(r)/n̂b versus r/rb [Eq. (22)] for space-charge-dominated beam

with ŝb → 1.

temperature profiles from Eqs. (6) and (10). The results are illustrated in Figs. 4 and 5

where the normalized density nb(r)πr
2
b/Nb and temperature T⊥b(r)/T̂⊥b are plotted versus

r/rb for values of ŝb and Eb/T̂⊥b similar to those in Fig. 3. Note from Fig. 4(a) that nb(r)

has a diffuse, bell-shaped profile for ŝb = 0.1, whereas in Fig. 4(d) nb(r) has an extended

flat-top profile in the beam interior for ŝb = 0.999, as expected. Moreover, from Fig. 5, the

transverse temperature profile T⊥b(r) decreases rather abruptly to zero at the beam edge

(r = rb), although T⊥b(r) tends to be relatively uniform in the beam interior for Eb/T̂⊥b > 2.

Finally, we have made use of Eqs. (6)-(8) and (12) to determine the edge radius rb and

rms beam radius Rb over a range of system parameters ŝb and Eb/T̂⊥b. Shown in Fig. 6 are

plots of (a) rb/Rb versus ŝb and (b) rb/Rb versus ν/ν0 obtained from Eqs. (6)-(8) and Eqs.

(12) and (19) for several values of Eb/T̂⊥b. Note from Fig. 6 that rb/Rb is a slowly varying

function of ŝb and ν/ν0, and increases as Eb/T̂⊥b is increased.

V. CONCLUSIONS

In this paper, we examined properties of the axisymmetric truncated thermal equilibrium

distribution defined in Eq. (5). General equilibrium properties were discussed in Secs. 2 and

3, and expressions for the density profile nb(r) and transverse temperature profile T⊥b(r)

were derived in terms of the effective potential ψ(r) [see Eqs. (6) and (10)], where ψ(r)

11
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FIG. 3: Plots of normalized potential ψ(r)/T̂⊥b versus r/rb obtained from Eq. (8) for (a) ŝb = 0.1,

(b) ŝb = 0.4, (c) ŝb = 0.7 and (d) ŝb = 0.999, and values of Eb/T̂⊥b corresponding to Eb/T̂⊥b =

10, 7.5, 5.0, 2.5, 1.0, 0.1.The corresponding values of tune depression ν/ν0 [Eq. (19)] are also shown

in the figure.

solves the nonlinear Poisson equation (8). Detailed numerical solutions to Eqs. (6), (8)

and (10) were presented in Sec. 4 for a wide range of dimensionless system parameters

corresponding to sb = ω̂2
pb/2γ

2
bω

2
β⊥ and Eb/T̂⊥b. Several properties of the equilibrium profiles

are noteworthy. For example, the beam has a sharp outer edge radius rb with nb(r ≥ rb) = 0,

where rb depends on the value of Eb/T̂⊥b. In addition, unlike the choice of a semi-Gaussian

distribution, F SG
b = A exp(−p2

⊥/2γbmbT̂⊥b) ⊕ (r − rb), the truncated thermal equilibrium

distribution in Eq. (5) depends on (r,p⊥) only through the single-particle of the motion H⊥

and is therefore a true steady-state solution (∂/∂t = 0) of the nonlinear Vlasov-Maxwell

equations. It is anticipated that the choice of distribution function in Eq. (5) will be useful

in implementing particle-in-cell simulations of intense beams without large initial transient

evolutions, and incorporating the important feature of a beam with sharp outer edge radius.
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FIG. 4: Plots of normalized density profile nb(r)πr2b/Nb versus r/rb obtained from Eqs. (6) and (8)

for (a) ŝb = 0.1, (b) ŝb = 0.4, (c) ŝb = 0.7 and (d) ŝb = 0.999, and several values of Eb/T̂⊥b and

ν/ν0 identical to those in Fig. 3.

Finally, it should be pointed out that the present analysis also applies to an intense ro-

tating beam propagating through a uniform solenoidal magnetic field B0êz in circumstances

where the beam particles have zero average canonical angular momentum < Pθ >= r(<

pθ > +ebB0r/2c) = 0. In this case, we make the replacement ωβ⊥ → ωcb/2, and all variables

are interpreted as being measured in a frame of reference rotating with the Larmor frequency

ωcb/2 = −ebB0/2γbmbc relative to the laboratory frame.
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FIG. 5: Plots of normalized temperature profile T⊥b(r)/T̂⊥b versus r/rb obtained from Eqs. (8) and

(10) for (a) ŝb = 0.1, (b) ŝb = 0.4, (c) ŝb = 0.7 and (d) ŝb = 0.999, and several values of Eb/T̂⊥b

and ν/ν0 identical to those in Fig. 3.
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