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Pullback Transformations in Gyrokinetic Theory

H. Qin and W. M. Tang

Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

Abstract

The Pullback transformation of the distribution function is a key component of the gyrokinetic

theory. In this paper, a systematic treatment of this subject is presented, and results from ap-

plications of the uniform framework developed are reviewed. The focus is on providing a clear

exposition of the basic formalism which arises from the existence of three distinct coordinate sys-

tems in gyrokinetic theory. The familiar gyrocenter coordinate system, where the gyromotion is

decoupled from the rest of particle’s dynamics, is non-canonical and non-fabric. On the other hand,

Maxwell’s equations, which are needed to complete a kinetic system, are initially only defined in the

fabric laboratory phase space coordinate system. The pullback transformations provide a rigorous

connection between the distribution functions in gyrocenter coordinates and Maxwell’s equations in

laboratory phase space coordinates. This involves the generalization of the usual moment integrals

originally defined on the cotangent fiber of the phase space to the moment integrals on a general

6D symplectic manifold, is shown to be an important step in the proper formulation of gyroki-

netic theory. The resultant systematic treatment of the moment integrals enabled by the pullback

transformation. Without this vital element, a number of prominent physics features, such as the

presence of the compressional Alfvén wave and a proper description of the gyrokinetic equilibrium,

cannot be readily recovered.

PACS numbers: 52.25Fa, 52.25Dg, 52.35Py
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I. INTRODUCTION

Most of the interesting plasmas in laboratory and space are magnetized. The particle’s

motion in a magnetized equilibrium plasma consists of fast gyromotion and slow guiding

center motion. It is the fast gyromotion which restricts the allowable time step in particle

simulations of the associated dynamics in the laboratory phase space coordinate frame. In

the past twenty years, gyrokinetic theory has been developed to remove the fast gyromotion

from the kinetic system for low frequency and long parallel wavelength phenomena [1–13].

Gyrokinetic particle simulations, which use a much larger time step than the time scale of

gyromotion [4, 14–20], have been successfully applied in studies of the transport problems

of fusion plasmas. In particular, gyrokinetic theory offers a simplified version of the Vlasov-

Maxwell system by utilizing the fact that in strongly magnetized plasmas the particle’s

gyroradius is much smaller than the scale length of the magnetic field: εB ≡ |ρ/LB | � 1,

where LB ≡ |B/∇B|. More fundamentally, gyrokinetic theory requires the construction of

a gyrocenter coordinate system in which the particle’s gyromotion is decoupled from the

rest of the particle dynamics. The Vlasov-Maxwell equation system can then be derived in

this special coordinate system [21–26]. Guiding center coordinates are employed in the mag-

netostatic case, while gyrocenter coordinates are employed when there are electromagnetic

perturbations in the system. Modern gyrokinetic theory [9–13, 21–26] utilizing non-canonical

Hamiltonian and phase space Lie perturbation method [1–3] has been carefully established

over a number of years. It not only sets up a rigorous and systematic foundation for the

gyrokinetic framework, but also clarifies numerous confusing concepts and introduces much

more physics content into the theory. For example, gyrokinetic theory has been extended to

arbitrary frequency, arbitrary wavelength, electromagnetic perturbations in general geome-

tries [21–26].

One of the key components of modern gyrokinetic theory is the pullback transformation

of the distribution function. This is responsible for many important physics properties in

gyrokinetic theory. Famous examples include the polarization drift density in the gyrokinetic
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Poisson equation [4] and the polarization current in the gyrokinetic Ampere’s law which

accounts for the compressional Alfvén wave [23]. In this paper, a systematic treatment of

this subject will be presented together with a brief summary of key results from applications

of the uniform framework developed.

In Sec. II, the general theory of coordinate transformations and their pullback transforma-

tions in phase space are developed. In Sec. III, we investigate the physics of guiding center

pullback transformation. The gyrocenter pullback transformation is studied in Sec. IV.

II. COORDINATE TRANSFORMATIONS AND THEIR PULLBACK TRANS-

FORMATIONS IN PHASE SPACE

A. Fabric Phase Space Coordinate System

Physics is geometric and independent of coordinates, even though it can be more effi-

ciently described with the help of coordinates. All possible choices of coordinate systems

should be equivalent in terms of analyzing the physics of interest. If two coordinate systems

are connected through a transformation, then the physics content is invariant with respect to

the transformation. However, the mathematical involvement of different coordinate systems

is indeed different when describing the same physics. For a given physics problem, the natu-

ral first step is to find the most efficient coordinate system. This can usually be constructed

by imposing the desired mathematical structures. More often than not, it is constructed by

perturbations around an obvious choice of coordinate system through a near identity coor-

dinate transformation. In this sense, perturbation methods in physics are really about the

quest of useful coordinates. In the present analysis, we will focus on the coordinate transfor-

mations in the 6D phase space (or the 8D extended phase space) for a single nonrelativistic

classical particle. A coordinate transformation for the phase space P of dimension 6 can be

locally represented by a map between two subsets of the R6 space, T : x 7−→ X = T (x).

In the present study, we assume a coordinate transformation can be represented by a single
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map almost everywhere. The subset of coordinates which can not be covered by the single

map has zero measure and does not contribute to the moment integrals.

Kinetic theory deals with particle distribution function f, which is a function defined on

the phase space P , f : P → R. In addition, kinetic theory in its common form implicitly

makes use the fact that the phase space is the cotangent space (cotangent bundle) of a

configuration space (manifold) M, P = T ∗M. We call a coordinate system (x,v) a fiber

coordinate system if x is the coordinate for M , and v is the coordinate for the cotangent fiber

T ∗
xM at x. A fiber coordinate system for the cotangent bundle of the laboratory configuration

space will be referred to as the laboratory phase space coordinate system. The familiar

moment integrals are actually fiber integrals of moment functions q : P → R performed on

the cotangent fiber T ∗
xM at each x. In the laboratory phase space coordinate system (x,v),

the moment integral of a moment function q(x,v) has the form

q(x) =

∫
T ∗

xM

q(x,v)f(x,v)d3v . (1)

The moment integrals yield results which are functions on the laboratory configuration space

M. The moment integrals themselves are independent of the coordinate systems used for the

cotangent fiber T ∗
xM at each x. In other words, q(x) is invariant under a fiber coordinate

transformation, i.e., a coordinate transformation that transforms only the fiber coordinate

v. Let ϕx : v → V be a fiber coordinate transformation which in general depends on x, the

invariance of q(x) can be expressed as

q(x) =

∫
T ∗

xM

q(x,v)f(x,v)d3v =

∫
T ∗

xM

Q(x,V )F (x,V )d3V , (2)

where q(x,v)f(x,v)d3v and Q(x,V )F (x,V )d3V are the representations of the same 3-

forms in (x,v) and (x,V ) respectively. Here d3v and d3V can be viewed as the volume

forms of T ∗
xM at each x. For example, in a magnetized plasma, the well-known (v‖, µ, θ)

velocity coordinates, as well as the Cartesian velocity coordinates, can be used to calculate
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the same moment integrals,

q(x) =

∫
q(x, v1, v2, v3)f(x, v1, v2, v3)dv1 ∧ dv2 ∧ dv3 (3)

=

∫
B‖
m
Q(x, v‖, µ, φ)F (x, v‖, µ, φ)dv‖ ∧ dµ ∧ dθ .

In this example, the volume form dv1 ∧ dv2 ∧ dv3 is canonical whereas the volume form

(B‖/m)dv‖ ∧ dµ ∧ dθ is non-canonical. The most noticeable difference between them is that

the former is a constant and the latter depends x.

B. Non-fabric Phase Space Coordinate System

In gyrokinetic theory, however, useful coordinate systems are non-fabric. A non-fabric

coordinate system (X,V ) is a coordinate system where X is not necessarily the coordinates

for the configuration space M, and V is not necessarily the coordinates for the cotangent

fiber T ∗
xM at each x. A non-fabric coordinate transformation, by definition, transfers a fabric

coordinate system into a non-fabric one. In the context of gyrokinetic theory, (X,V ) can be

either guiding center coordinates or the gyrocenter coordinates, both of which are non-fabric.

The construction of the guiding center coordinates and the gyrocenter coordinates will be

described in detail in Secs. III and IV. The discussion in this section applies to any general

non-fabric coordinate systems and non-fabric transformations.

No matter which non-fabric coordinate system is used, the moment integrals are still

defined on the cotangent fiber T ∗
xM at each x, and q(x) should be invariant under such a

general non-fabric coordinate transformation. For the new coordinate system (X,V ) to be

useful, it is necessary to know the construction of q(x) in it. To be specific, the scenario

studied in this paper is that the distribution function f(x,v) is known in the transformed

non-fabric coordinate system (X,V ) as F (X,V ), whereas q(x,v) as a physical quantity,

such as the position and the velocity, is only meaningfully defined in the laboratory phase

space coordinate system (x,v). Given q(x,v) and F (X,V ), there are two methods to cal-
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culate q(x). The first method is to pull back the distribution function F (X,V ) into f(x,v),

and the second method depends on the generalization of the concept of moment integrals.

The first method, where the distribution function F (X,V ) is pulled back into f(x,v),

can be written as

q(x) =

∫
T ∗

xM

q(x,v)ϕ∗ [F (X,V )] d3v , (4)

where

ϕ∗ [F (X,V )] = F (X(x,v),V (x,v)) = f(x,v) . (5)

In the second method, we consider the generalization of the usual moment integrals orig-

inally defined on the cotangent fiber T ∗
xM at each x to the moment integrals on a general

6D symplectic manifold P. This can be accomplished by two different approaches. The first

approach is to view T ∗
xM as an orientable 3-subset of P and q(x) as an integral of a moment

3-form λ over such an 3-subset,

q(x) =

∫
T ∗

xM

λ . (6)

In the laboratory phase space coordinates (x,v), the moment 3-form λ is defined as

λ = q(x,v)f(x,v)d3v , (7)

where d3v is the volume form for T ∗
xM at a fixed x. In a general non-fabric coordinate

system (X,V ) = ϕ(x, v), λ is pulled back from its form in (x,v),

Λ = ϕ−1∗λ = ϕ−1∗ [
q(x,v)f(x,v)d3v

]
=

[
ϕ−1∗q(x,v)

] [
ϕ−1∗f(x,v)

] [
ϕ−1∗d3v

]
, (8)

where

ϕ−1∗q(x,v) = Q(X,V ) ≡ q(x(X,V ),v(X,V )) , (9)

ϕ−1∗f(x,v) = F (X,V ) ≡ f(x(X,V ),v(X,V )) . (10)
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Here we have assumed that the transformation ϕ is a diffeomorphism (one-one onto and

smooth), and ϕ−1∗ is the pullback of ϕ−1, which maps any function on (x,v) into a func-

tion on (X,V ). Therefore, in a general non-fabric coordinate system (X,V ), q(x) can be

expressed as

q(x) =

∫
T ∗

xM

λ =

∫
T ∗

xM

ϕ−1∗λ =

∫
U={(X,V ) |x(X,V )=const.}

Λ (11)

=

∫
U={(X,V ) |x(X,V ) =const.}

[
ϕ−1∗q(x,v)

]
F (X,V )

[
ϕ−1∗d3v

]
.

If the coordinates v = (v1, v2, v3) for T ∗
xM is canonical,

d3v = dv1 ∧ dv2 ∧ dv3 , (12)

then

ϕ−1∗ [
d3v

]
= dv1(X,V ) ∧ dv2(X,V ) ∧ dv3(X,V ) . (13)

There are practical difficulties associated with using Eq. (11) to calculate q(x). First, the

pullback of the volume form ϕ−1∗d3v has 15 terms in general, because the dimension of a

general 3-form in the 6D phase space is 15. Second, the integration domain expressed in the

(X,V ) coordinate system is complicated.

To get around these difficulties, the concept of a moment integral can be generalized by

a different approach. Specifically, a moment integrals is generalized into a parameterized

integral of a moment 6-form λr in the 6D phase space

i(r) =

∫
λr , (14)

λr = i(r, z)f(z)d6z , (15)

where z = (x,v) is phase space coordinate, r is a set of independent parameters, i(r, z) is a

moment function of the phase space and the parameters r, and d6z is the Liouville volume
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from given by the symplectic structure ω in the phase space

d6z =
−1

6!
ω ∧ ω ∧ ω ∧ ω ∧ ω ∧ ω . (16)

In a canonical coordinate system

ω =
3∑

i=1

dxi ∧ dvi , (17)

d6z = dx1 ∧ dx2 ∧ dx3 ∧ dv1 ∧ dv2 ∧ dv3 .

Under a non-fabric coordinate transformation ϕ, i(r) is obtained through the pullback of

the r-parameterized 6-form λr ,

i(r) =

∫
ϕ−1∗λr =

∫
ϕ−1∗ [

i(r, z)f(z)d6z
]

(18)

=

∫
ϕ−1∗ [i(r, z)f(z)]d6Z ,

where d6Z is the Liouville volume form of (X,V )

d6Z = ϕ−1∗d6z.

If (x,v) = (x1, x2, x3, v1, v2, v3) is a canonical coordinate system, d6Z can be straightfor-

wardly expressed as

d6Z = ϕ−1∗d6z = dx1(X,V )∧dx2(X,V )∧dx3(X,V )∧dv1(X,V )∧dv2(X,V )∧dv3(X,V ) .

(19)

But in almost all the cases of practical interest, the Liouville volume form d6Z = ϕ−1∗d6z
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of (X,V ) is more conveniently calculated through the pull-back of the symplectic structure

d6Z =
−1

6!
Ω ∧ Ω ∧ Ω ∧ Ω ∧ Ω ∧ Ω ,

Ω = ϕ−1∗ω .

One major difference between a canonical volume form and a non-canonical one is that the

canonical volume form is a constant where the non-canonical volume form is generally a

function of the phase space through its dependence on field variables. For the case of the

gyrocenter coordinate system which will be discussed in Sec. IV, the volume form non-

trivially depends on the perturbed electromagnetic fields. The usual moment integrals are

special cases of the generalized moment integrals when

i(r, z) = δ(x− r)q(z)

That is

q(r) =

∫
T ∗

r M

q(r,v)f(r,v)dv =

∫
δ(x− r)q(x,v)f(x,v)d6z . (20)

From Eq. (18), the construction of q(r) using the distribution function in the non-fabric

coordinate system F (X,V ) is

q(r) =

∫
ϕ−1∗ [

δ(x− r)q(x,v)f(x,v)d6z
]

(21)

=

∫
ϕ−1∗ [δ(x − r)]ϕ−1∗ [q(x,v)]ϕ−1∗ [f(x,v)] d6Z

=

∫
δ(x(X,V ) − r)Q(X,V )F (X,V )d6Z,

Equation (4), (11), and (21) are equivalent and can be used interchangeably to simplify

the calculation. In practice, the pull-backs involved are often associated with coordinate per-

turbation transformations, and thus can be further simplified by the perturbation techniques

adopted. For example, in Eq. (21), the Liouville volume form d6Z = ϕ−1∗d6z of (X,V ) will
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assume the same functional form as d6z of (x,v) if ϕ−1∗ preserves the symplectic structure

of (x,v)

Ω(Z) = ϕ−1∗ω(z) = [ω(z)]z→Z .

Also, the term δ(x(X,V ) − r) can be Taylor expanded in terms of the small perturbation

parameter such that the integration in Eq. (21) can be carried out order by order. We will

give such examples in Secs. III and IV in the context of the gyrokinetic theory.

III. PULLBACK OF THE GUIDING CENTER COORDINATE TRANSFORMA-

TION

This section deals with the pull-back of the guiding center transformation, which is a

necessary theoretical construction for analyzing the gyrokinetic equilibrium. The goal of

the gyrokinetic equilibrium study is to understand magnetized plasmas in equilibrium using

the guiding center coordinates. The gyrokinetic equilibrium is of fundamental importance

for the widely adopted perturbative gyrokinetic particle simulation (δf method) [16–20],

where the equilibrium distribution function and the electromagnetic field are assumed to

be known. Gyrokinetic equilibria consistent with the well-studied fluid ones are obviously

necessary for the perturbative gyrokinetic particle simulations to be reliable. In particular,

recent numerical studies of equilibria with zonal flows [20] raise again the question of how

to describe the equilibrium flow from the gyrokinetic point of view. The essence of the

problem studied here is how to relate the measurable quantities in the laboratory frame to the

information in the guiding center coordinates . Given a distribution function F (X, V‖, µ) in

the guiding-center coordinates Z = (X, V‖, µ, ξ), how are the fluid density, flow, and current

calculated? Do the macroscopic field variables calculated from the gyrokinetic formalism

satisfy the fluid equations obtained by taking the moments of the Vlasov equation in the

laboratory phase space coordinates? The pullback formulas derived in Sec. II give answers

to these questions, when applied to the guiding center transformation.
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For the current purpose, it is only necessary to know the leading order expression for

the guiding center transformation G : z 7→ Z, which transforms the laboratory phase space

coordinates z = (x,v) into the guiding center coordinates Z = (X, V‖, µ, ξ),

X = x − ρ0 +O(ε), (22)

V‖ = v‖ +O(ε), (23)

µ = µ0 +O(ε), (24)

ξ = θ +O(ε), (25)

where (x, v‖, v⊥, θ) is the usual laboratory phase space coordinates. ρ0 and µ0, defined

in particle coordinates, are the usual gyroradius and magnetic moment. θ is chosen such

that v̂⊥ = −e/| e |(ex sin θ + ey cos θ). ex and ey are two perpendicular directions in the

configuration space, and (ex, ey, b) is a right-handed orthogonal frame. The guiding center

coordinate system in a static magnetic field is illustrated in Figure 1. For the guiding center

e
+

B

➤ ❍
X

θ

V

B

x

e

b

⊥

x

y

ρ0

FIG. 1: Guiding Center Coordinate System
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transformation G : z 7→ Z, Eq. (21) becomes

q(r) =

∫
q(r,v)f(r,v) d3v =

∫
q(z)f(z)δ(x− r) d6z (26)

=

∫
G−1∗[q(z)δ(x− r)]F (Z) d6Z =

∫
Q(Z)δ[X + ρ − r]F (Z) d6Z ,

where it is assumed that the guiding center transformation G is a diffeomorphism (one-one

onto and smooth), and

d6Z ≡ B∗
‖/md

3XdV‖dµdξ, (27)

B∗
‖ = b · B∗, B∗ = B +

cmV‖
e

∇× b . (28)

Q(Z) = G−1∗q(z), (29)

ρ = G−1∗ρ0. (30)

The physics encapsulated in the pull-back formula Eq.( 26) is illustratively shown in Figure

2. An observable q(r) at certain location r in the laboratory frame is the average of its mi-

croscopic counterpart expressed in the guiding center coordinates Q(Z) over nearby guiding

centers with X(Z) + ρ(Z) = r. In Figure 2, three examples of such guiding centers are

shown. For the number density in laboratory phase space coordinates, we use q(z) = 1 and

G−1∗1 = 1.

n(r) =

∫
δ(X + ρ − r)F (Z) d6Z =

∫
δ(X − r)F (Z) d6Z +O(ε2) (31)

= 2π

∫
F (Z)V‖B∗

‖/m dV‖dµ

∣∣∣∣
X 7−→r

+O(ε2),

where “ |X 7−→r” means replacing X by r.

For the fluid velocity in laboratory phase space coordinates u(r), we have q(z) = v = ẋ,
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r

1X

1ρ
2X

3X

3ρ

2ρ

B

FIG. 2: The physics of pullback formula.

G−1∗v = Ẋ + ρ̇(X) +O(ε2), and

u(r) =

∫
(Ẋ + ρ̇)δ(X + ρ − r)F (Z) d6Z +O(ε2) (32)

=

∫
[V‖b + VE×B + Vd]δ(X − r)F (Z) d6Z

+

∫
ρ̇δ(X + ρ − r)F (Z) d6Z +O(ε2).

The first term can be reduced to

∫
[V‖b + VE×B + Vd]δ(X − r)F (Z) d6Z =[

nU‖b +
c

B
nE × b +

c

eB
b × (W⊥

∇B
B

+W‖b · ∇b)

]∣∣∣∣
X 7−→r

+O(ε2),
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where

U‖ ≡ 2π

n

∫
V‖B

∗
‖/mF (Z) dV‖dµ. (33)

W⊥ ≡ 2π

∫
BµF (Z)B∗

‖/m dV‖dµ, (34)

W‖ ≡ 2π

∫
mV 2

‖ F (Z)B∗
‖/m dV‖dµ. (35)

The second term is the diamagnetic flow, which can be simplified in terms of W⊥.

∫
ρ̇δ(X + ρ − r)F (Z) d6Z =

∫
ρ̇ρ · ∇δ(X − r)F (Z) d6Z +O(ε2) (36)

= −
∫

∇ · [ρρ̇B∗
‖/mF (Z)]δ(X − r) dV‖dµdξ +O(ε2)

= −c
e
∇× (b

W⊥
B

)

∣∣∣∣
X 7−→r

+O(ε2).

In Eq. (36), the following equations are used:

ρ̇ = {ρ, H} =

√
2µB

m
eξ +O(ε), (37)

(

∫
ρ̇ρ dξ)ij =

2πµc

e
εijb +O(ε). (38)

Here, εijb is the Kronecker symbol, and the subscript b represents the dimension parallel to

B.

Overall,

n(r)u(r) = [nU‖b +
cb

eB
× (W⊥∇B +W‖b · ∇b) (39)

+
cn

B
E × b +

c

e
∇× (

W⊥
B

b)]

∣∣∣∣
X 7−→r

+O(ε2).

It can be shown that the n(r) and n(r)u(r) derived above satisfy the usual fluid equations

derived from the Vlasov equation in the laboratory phase space coordinate system by taking
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the velocity moments [25]. As an example, the equilibrium force balance equation can be

recovered here. First, it is shown that

W⊥(r) = 2π

∫
BµF (Z)B∗

‖/m dV‖dµ

∣∣∣∣
X 7−→r

(40)

=

∫
1

2
mv2

⊥f d
3v +O(ε) = p⊥(r) +O(ε),

W‖((r) = 2π

∫
mV 2

‖ F (Z)B∗
‖/m dV‖dµ

∣∣∣∣
X 7−→r

(41)

=

[
mnU2

‖ + 2π

∫
m(V‖ − U‖)

2F (Z)B∗
‖/m dV‖dµ

]∣∣∣∣
X 7−→r

= mnu2
‖(r) + p‖(r) +O(ε).

From Equation (39),

nu⊥ = { cb
eB

× (W⊥∇B +W‖b · ∇b) (42)

+
cn

B
E × b +

c

q
[∇× (

W⊥
B

b)]⊥}
∣∣∣∣
X 7−→r

+O(ε2)

=
c

e
{−∇p⊥ × b

B
+ p⊥[

b×∇B
B2

− (∇× b

B
)⊥] + p‖

(∇× b)⊥
B

+mnu2
‖
(∇× b)⊥

B
} + n

E × b

B
c+O(ε2)

Using

(u · ∇u) × b = −u2
‖(∇× b)⊥ +O(ε2), (43)

b ×∇B
B2

− (∇× b

B
)⊥ = −(∇× b)⊥

B
, (44)
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then leads to the result,

nu⊥ = − c

eB
[mnu · ∇u × b + ∇⊥p⊥ × b − (p‖ − p⊥)(∇× b)⊥ − enE × b] +O(ε2), (45)

In a neutral plasma

j⊥ =
∑

s

(enu)s =
c

B
[b×∇

∑
s

p⊥ + (
∑

s

p‖ −
∑

s

p⊥)(∇× b)⊥], (46)

This is the transverse equilibrium force balance equation. In particular, when the distribution

function F is isotropic,
∑

s p‖ =
∑

s p⊥ =
∑

s p, the familiar fluid result, j⊥ = c/Bb×∇∑
s p,

is recovered.

In the above derivation, the pullback formula has been used in the form of Eq. (21). The

pullback formula in the form of Eq. (4) can be used to obtain the same results.

IV. PULLBACK OF THE GYROCENTER CENTER COORDINATE TRANS-

FORMATION

When time-dependent electromagnetic perturbations are introduced into a magnetized

plasma, the guiding center coordinates used in Sec. III to study the gyrokinetic equilibrium

will cease to be the “good” coordinate system where the gyromotion is decoupled from

the rest of particle dynamics. To preserve the desirable decoupling of the gyromotion, a

symplectic gyrocenter transformation can be constructed using a Lie perturbation method

Gy : Z = (X, U, µ, ξ) 7−→ Z̄ = (X̄, Ū , µ̄, ξ̄) . (47)

Due to the symplectic nature of the gyrocenter transformation, particle dynamics in the

gyrocenter coordinates are exactly the same as those in the guiding center coordinates except

for a perturbation in the Hamiltonian. Since two consecutive coordinate transformations are
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involved, two pull-back transformations are needed to relate the distribution function in

the gyrocenter coordinates FGy to the macroscopic physical quantities in the laboratory

coordinates q(r). In the guiding center coordinate Z = (X, U, µ, ξ),

q(r) =

∫
[G−1∗q](Z)F (Z)δ(G−1X − r) d6Z. (48)

Replacing F (Z) by its pull-back from the gyrocenter coordinate, we get,

q(r) =

∫
[G−1∗q](Z)[Gy∗FGy](Z)δ(G−1X − r) d6Z. (49)

In the above equations, d6Z is understood to be (B∗
‖/m) d3XdUdµdξ. Gy∗ is the pull-back

transformation of the gyrocenter transformation, which transforms the distribution function

in the gyrocenter coordinates into that in the guiding center coordinates. G−1 is the inverse

of G that transforms the laboratory phase space coordinate system into the guiding center

coordinates. It is assumed that the guiding center transformation G and the gyrocenter

transformation Gy are bijective and smooth. Note that in Eq. (49), Eq. (4) is used for the

pull-back of the gyrocenter transformation Gy and Eq. (21) for the pullback of the guiding

center transformation G.

The pull-back transformation from the gyrocenter coordinates to the guiding center coor-

dinates is easily obtained from the expression for G given by Ref. [11, 12, 21–23]. Since the

focus of this paper is not the symplectic gyrocenter coordinate transformation, the expres-

sion for the pullback transformation is displayed in terms of the perturbed fields (A1, φ1)

without derivation,

Gy∗F = F + LGF = F − b

B
× (A1 +

c

e
∇S) · ∇F (50)

+
e

mc
b · (A1 +

c

e
∇S)

∂F

∂U
+

e

mc
[
e

c
A1 · ∂ρ

∂ξ
+
∂S

∂ξ
]
∂F

∂µ
+O(εB),
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where the gauge function S satisfies

{S,H0} = Ω
∂S

∂ξ̄
+
∂S

∂t
+
∂S

∂X̄
· {X̄, H0} +

∂S

∂Ū
{Ū , H0} (51)

= eφ̃1(X̄ + ρ, t) − e

c
˜̄V · A1(X̄ + ρ, t) .

Here, φ̃1(X̄ + ρ, t) and ˜̄V · A1(X̄ + ρ, t) are the gyrophase dependent parts of φ1(X̄ + ρ, t)

and V̄ · A1(X̄ + ρ, t) respectively,

φ̃1(X̄ + ρ, t) = φ1(X̄ + ρ, t)− 〈φ1(X̄ + ρ, t)〉 (52)

˜̄V ·A1(X̄ + ρ0, t) = V̄ · A1(X̄ + ρ, t) − 〈V̄ · A1(X̄ + ρ, t)〉, (53)

and H0 is the unperturbed Hamiltonian

H0 =
mŪ2

2
+ µ̄B.

In the coordinates (X̄, Ū , µ̄, ξ̄), the linear gyrokinetic equation is,

∂f

∂t
+(Ūb+vd)·∇f− 1

m
b·∇H0

∂f

∂Ū
=

c

eB
b·(∇F0×∇H1)− 1

m
b·(∇F0

∂H1

∂Ū
−∇H1

∂F0

∂Ū
) , (54)

where

F = F0 + f, (55)

H1 = 〈eφ1(X̄ + ρ, t) − e

c
V · A1(X̄ + ρ, t)〉 . (56)

The importance of the pull-back formula in Eq. (49) is demonstrated in the following non-

trivial examples.

In the following equations, A and φ will be used to represent the perturbed field. The

subscript “1” will be dropped. Unless clarity requires the use of the barred notation, the
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bars for the gyrocenter coordinates will also be dropped.

A. Gyrokinetic Shear Alfvén Wave

For shear Alfvén physics,

A = A‖b. (57)

The special form of Equation (51) for shear Alfvén modes is

Ω
∂S

∂ξ
=
e

Ω
[φ̃(X + ρ, t) − 1

c
ŨA‖(X + ρ, t)] ≈ e

Ω
ρ0 · [∇φ(X, t)− 1

c
U∇A‖(X, t)]. (58)

Using Eq. (50), we get the pull-back transformation for shear Alfvén modes,

Gy∗F = F +
e

mc
A‖(X + ρ, t)

∂F

∂U
+
e

B
[φ̃(X + ρ, t) − 1

c
ŨA‖(X + ρ, t)]

∂F

∂µ
. (59)

The perturbed density, perturbed flow, and perturbed current can be derived from the

general form of Eq. (49).

n1(r) =

{∫
[Gy∗(F0 + f)](Z)δ(X + ρ − r) d6Z

}
1

(60)

=

∫
f(Z)δ(X − r)d6Z +

∫
[δ(X + ρ − r) − δ(X − r)]f(Z) d6Z

+

∫
δ(X + ρ − r){ e

mc
A‖(X + ρ, t)

∂F0

∂U

+
e

B
[φ̃(X + ρ, t) − 1

c
ŨA‖(X + ρ, t)]

∂F0

∂µ
} d6Z.

With regard to the physical meaning of this equation, the perturbed density in laboratory

coordinates consists of three parts corresponding to the three integrals on the right hand side

of the equation. The first integral is the (usual) perturbed density in gyrocenter coordinates,

the second integral is the guiding center correction, and the third integral is the gyrocenter
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correction. After some lengthy algebra,

n1(r, t) =

∫
J0f(r, U, µ, t) d3v +

e

m
∇⊥

n0

Ω2
∇φ(r, t) +

3

4

ev2
tn0

mΩ4
∇4

⊥φ(r, t), (61)

where d3v = 2π(B/m)dUdµ, J0 = J0(v⊥∇⊥/iΩ) is the 0th order Bessel function of the first

kind, and only terms up to O(v4
⊥∇4

⊥/Ω
4) for the LGF0 part of the pull-back transformation

Gy∗ have been retained. For the perturbed parallel flow,

n0u‖1(r) =

{∫
U [Gy∗(F0 + f)](Z)δ(X + ρ − r) d6Z

}
1

(62)

=

∫
Uf(Z)δ(X − r)d6Z +

∫
U [δ(X + ρ − r) − δ(X − r)]f(Z) d6Z

+

∫
Uδ(X + ρ − r){ e

mc
A‖(X + ρ, t)

∂F0

∂U

+
e

B
[φ̃(X + ρ, t) − 1

c
ŨA‖(X + ρ, t)]

∂F0

∂µ
} d6Z.

Again, the algebra here is straightforward but involved. The final result is:

n0u‖1(r, t) =

∫
J0Uf(r, U, µ, t) d3v +

∫
e

mc
〈UA‖(r + ρ0)〉∂F0

∂U
2π
B

m
dµdU +

en0v
2
t

2mcΩ2
∇2

⊥A‖,

(63)

where the first integral on the right hand side is the (usual) perturbed parallel flow of

the gyrocenter, and the second integral and the third term are the gyrocenter correction

generated by the pull-back transformation.

From Eq. (61), the quasi-neutrality condition is

∑
j

e

[∫
J0fd

3v +
e

m
∇⊥

n0

Ω2
∇⊥φ+

3e

4m

v2
t

Ω2

n0

Ω2
∇4

⊥φ
]

= 0. (64)
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From Eq. (63), the parallel Ampere’s law is

[∇×∇× A]‖ =
4π

c

∑
j

e

∫
(UJ0f +

∂F0

∂U

e

mc
〈UA‖〉)d3v +

4π

c

e2n0v
2
t

2mcΩ2
∇2

⊥A‖. (65)

In Eqs. (64) and (65) , the spatial variable is the laboratory coordinate r. However r is a

dummy variable. What matters is the functional forms. We can replace r by the spatial

coordinate of the gyrocenter coordinates Z. Equations (64) and (65) will be referred to as the

gyrokinetic quasineutrality condition and the gyrokinetic parallel Ampere’s law, respectively.

As a simple application of these results, we derive the local dispersion relation in an

unsheared slab geometry with B0 = B(x)ez and n0 = n0(x). For local perturbations

(φ, ψ‖) ∼ e i(kyy + k‖z) , (66)

where ψ‖ is defined through

A‖ =
c

iω
(∇ψ‖)‖. (67)

The solution of the gyrokinetic equation, Eq. (54), for shear Alfvén waves in slab geometry

is:

f = − e

T
F0(φ− k‖U

ω
ψ‖) +

e

T

ω − ω∗
ω − k‖U

F0(φ− k‖U
ω
ψ‖), (68)

where ω∗ is the diamagnetic drift frequency defined by

ω∗j ≡ (
cTky

LneB
)j, Ln ≡ (

d lnn

dx
)−1, (69)

and the temperature gradient has been neglected. Substituting f into the quasineutrality
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condition, we have,

−
∑

j

e2

m
∇⊥

n0

Ω2
∇⊥φ = −

∑
j

e2n0

T
[1 + ζZ(ζ)](φ− ψ‖) (70)

+
∑

j

e2n0

T
ζZ(ζ)

ω∗
ω

(φ− ψ‖) −
∑

j

e2n0

T

ω∗
ω
ψ‖.

Z(ζ) is the plasma dispersion function and ζ ≡ ω

k‖vth
. Straightforward algebra shows that

the parallel Ampere’s law reduces to

k2
‖ψ‖ =

ω2

v2
A

φ , (71)

or in terms of ωA ≡ k‖vA,

ψ‖ =
ω2

ω2
A

φ . (72)

Inserting this polarization property into the quasineutrality condition, we obtain the

desired dispersion relation,

∑
j

e2n0

mΩ2
k2

y = −
∑

j

e2n0

T
[1 + ζZ(ζ)](1 − ω2

ω2
A

) (73)

+
∑

j

e2n0

T
ζZ(ζ)

ω∗
ω

(1 − ω2

ω2
A

) −
∑

j

e2n0

T

ω∗
ω

ω2

ω2
A

. (74)

It contains a large number of interesting physics effects for various parametric regimes. Some,

which are relevant to tokamak plasmas, will be highlighted in the following discussion.

The fluid results are generally recovered from kinetic theory by ignoring the kinetic reso-

nances and assuming the so-called “hot electron, cold ion expansion”, that is,

ζe =
ω

vthek‖
� 1, (75)

ζi =
ω

vthik‖
� 1. (76)
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Using the Taylor expansion and the asymptotic form for Z(ζ), gives:

n0mic
2

B2
k2

y = [−e
2ne0

Te
+
e2

ini0

Ti
(
vthik‖
ω

)2](1 − ω2

ω2
A

) (77)

− e2
in0i

Ti

ω∗i

ω
(1 − ω2

ω2
A

) − [
e2n2

e0

Te

ω∗e

ω
+
e2

in
2
i0

Ti

ω∗i

ω
]
ω2

ω2
A

(78)

=
e2ne

Te
[−1 +

ejTe

|e|Ti
(
vthik‖
ω

)2 +
ω∗e

ω
][1 − ω2

ω2
A

]. (79)

Note the following relationship between ω∗j and ω∗e has been used,

ω∗j = −|e|Tj

ejTe
ω∗e. (80)

This then leads to the familiar fluid result [27]:

eic
2
s

|e|Ω2
i

k2
⊥ = [

eic
2
s

|e|ω2
k2
‖ − 1 +

ω∗e

ω
][1 − ω2

ω2
A

], (81)

where

c2s ≡ Te

mi
. (82)

It is commonly believed that when the plasma β (ratio of plasma to magnetic pressure)

approaches zero, the magnetic perturbations are not important. However, it is not a correct

conclusion that, when β goes to zero, there are no magnetic perturbations. Very obvious

examples are the well-known shear Alfvén wave and the compressional Alfvén wave in a ho-

mogeneous magnetized plasma. Even in a zero β magnetized plasma, the shear Alfvén wave

and the compressional Alfvén wave are both mathematically and physically well-defined.

The physical mechanism driving these two waves is the balance between plasma kinetic en-

ergy and the restoring force due to the bending or compression of the equilibrium magnetic

field. Mathematically, they are characterized by the dispersion relations ω2 = k2
‖v

2
A and

ω2 = k2v2
A respectively. Their existence is independent of the plasma β.

This fact can also be verified from the dispersion relation, Eq. (70). When ωA � ω∗e,
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there exists a solution in the range of ωA. For this range of ω, the dispersion relation is

reduced to
n0mic

2

B2
k2

y = −
∑

j

e2n0

T
[1 + ζZ(ζ)](1 − ω2

ω2
A

). (83)

Under normal condition, term
n0mic

2

B2
k2

y is smaller by O(ρ2
sk

2
⊥), compared with the other

terms. To the leading order,

ω2 = ω2
A. (84)

The fact that there are no assumptions about ζe and ζi needed here to obtain this shear Alfvén

wave is consistent with the basic physical picture of the shear Alfvén wave. The statement

that when the plasma β is small, magnetic perturbations are not important is always relevant

only for a special class of electrostatic modes. In particular, for the electrostatic drift waves,

magnetic perturbations are decoupled from these electrostatic perturbations when β is small.

This is evident from the fact that

ω∗e

ωA
→ 0 as β → 0. (85)

It is also evident from the polarization property ψ‖ =
ω

ωA
φ. For the electrostatic drift wave,

ω ∼ ω∗e,

ψ‖ =
ω∗e

ωA
φ→ 0 as β → 0. (86)

For the shear Alfvén branch, ω ∼ ωA,

ψ‖ ∼ φ independent of β. (87)

The above facts also lead to a ”βcritical” where there is strong coupling between the elec-

trostatic drift branch and the electromagnetic shear Alfvén branch. The criteria is ω∗e ∼ ωA.

In tokamak geometry, it is [27], √
βcritical ∼ r

R0

r

ρs
. (88)
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For standard tokamak parameters, βcritical is not a very small number. However, ωA is

geometry dependent in complex geometries. It can be reduced to be as small as ω∗e even at

low β. Another interesting limit is where k‖ approaches zero around mode rational surfaces,

so that ωA could be much smaller than its normal characteristic value. In both cases, there

would be strong coupling between the shear Alfvén branch and the drift branch.

B. Compressional Alfvén Wave

In this subsection, the simplest example of the compressional Alfvén wave in a homoge-

neous magnetized plasma is used to demonstrate the essence of the pull-back formula in the

perpendicular direction. B0 is assumed to be in the ez direction, and for simplicity, we let

k = kyey. The MHD results for the compressional Alfvén wave indicate that the magnetic

perturbation is in the parallel direction, the electrical perturbation and current perturbation

are in the ex direction, and the plasma displacement is in the ey direction. From the kinetic

point of view, we can choose

φ = 0 and A = Axex. (89)

The gyrokinetic equation is:
∂f

∂t
+ Ub · ∇f = 0. (90)

Assuming Ax, f ∝ e ikyy − iωt , then leads to f = 0.

Interesting physics is found in the gyrocenter pull-back transformation. In order to obtain

the necessary pull-back transformation to O(ε2ω), where εω ≡ ω/Ω � 1, we need to solve for

∂S/∂ξ from Eq. (51). Let

S = S(0) + εωS
(1) + ε2ωS

(2) +O(ε3ω), (91)
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To the 3rd order, the solution for S is

Ω
∂S

∂ξ
≈ Ω

∂S(0) + S(1) + S(2)

∂ξ
+O(ε3ω) (92)

=e(φ̃− 1

c
Ṽ · A) − e

Ω

∂

∂t

∫
(φ̃− 1

c
Ṽ · A) dξ (93)

+
e

Ω2

∂2

∂t2

∫ ∫
(φ̃− 1

c
Ṽ · A) dξdξ +O(ε3ω). (94)

From the general form of the gyrocenter pull-back transformation we have:

[Gy∗(F0 + f)]1 = f +
e

mc

∂F0

∂µ
{−ev

2
⊥

Ω2c
B‖ (95)

− e

Ω2

∂

∂t

∫
(φ̃− 1

c
Ṽ · A) dξ +

e

Ω3

∂

∂t2

∫ ∫
(φ̃− 1

c
Ṽ ·A) dξdξ}. (96)

In above derivation, we have used the following expressions for the gyro-average:

H1 = 〈eφ(X + ρ, t) − e

c
V · A(X + ρ, t)〉 (97)

≈ e[φ(X, t)− 1

c
UA‖(X, t) +

v2
⊥
cΩ
B‖(X, t)], (98)

The perpendicular Ampere’s law is needed to complete this system of equations. For this

purpose, it is necessary to obtain the perturbed perpendicular current.

n0u⊥ =

{∫
V⊥[Gy∗(F0 + f)](Z)δ(X + ρ − r) d6Z

}
1

(99)

=

∫
V⊥δ(X + ρ − r)f(Z) d6Z +

∫
V⊥δ(X + ρ − r)

e

mc

∂F0

∂µ
{−ev

2
⊥

Ω2c
B‖

− e

Ω2

∂

∂t

∫
(φ̃− 1

c
Ṽ · A) dξ +

e

Ω3

∂

∂t2

∫ ∫
(φ̃− 1

c
Ṽ · A) dξdξ} d6Z.

FLR effects are ignored here, and use the following expression for the particle perpendicular

velocity

V⊥ = −V⊥[sin(ξ)ex + cos(ξ)ey], (100)
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is utilized. Finally, the perturbed perpendicular flow is

n0u⊥ =

∫
V⊥δ(X − r)

e

mc

∂F0

∂µ
{ e

Ω2

∂

∂t

∫
1

c
V⊥ ·A⊥ dξ (101)

− e

Ω3

∂2

∂t2

∫ ∫
1

c
V⊥ · A⊥ dξdξ} d6Z (102)

=
−iωn0e

2B

m2c2Ω2
Axey +

ω2n0e
2B

m2c2Ω3
Axex =

n0c

B2
E × B +

n0mc
2

eB2

∂E⊥
∂t

. (103)

It is obvious that the E ×B flow does not contribute to the perpendicular current, which is

generated by the ion polarization drift,

j =
∑

j

(en0u⊥)j ≈ n0mic

B2
ω2Axex. (104)

The perpendicular Ampere’s law (∇×∇× A)⊥ = 4π/c j⊥ gives:

k2
yAx =

4πn0mi

B2
ω2Ax, or ω2 = k2

yv
2
A. (105)

This is the compressional Alfvén wave. The key element in this gyrokinetic description

of the compressional Alfvén wave is the perturbed perpendicular current. To O(εω), the

perpendicular flow is the E × B flow, which gives no current. Therefore, it is necessary to

go to O(ε2ω). The current to this order is the current generated by the polarization drift in

the perturbed electromagnetic field.

C. Bernstein Wave

In this subsection, the Bernstein wave and is recovered, and the application of the pull-

back transformations to high frequency modes is demonstrated. We consider an electrostatic

wave propagating in a homogeneous magnetized plasma with ω ∼ Ω. Let B0 = Bez and
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k = kex. The solution for the linear gyrokinetic equation is degenerate because k‖ = 0,

f = − e

T
F0

−k‖U
ω − k‖U

φ = 0. (106)

As in the case of compressional Alfvén wave, f , the gyrophase independent part of the

distribution function, does not play any role, and the only physics content is found in the

pull-back of the perturbed density, which requires expressing the gauge function S in terms

of the perturbed fields. The equation for S is

{S,H0} = Ω
∂S

∂ξ
+
∂S

∂t
= eφ̃(X + ρ) = e[ e ρ · ∇ − J0(

ρ · ∇
i

)]φ. (107)

That is,
∂S

∂ξ
− iω̄S =

e

Ω
[ e iρk cos ξ − J0(ρk)]φ, (108)

where ω̄ =
ω

Ω
. Using the identity

eλ cos ξ =

∞∑
n=−∞

In(λ) e inξ , (109)

we solve for S,

S =
e

Ωiω̄
J0φ+

e

Ω

∞∑
n=−∞

In(iρk)

i(n− ω̄)
e inξ φ. (110)

Only ∂S/∂ξ is needed in the pull-back transformation,

∂S

∂ξ
=
e

Ω

∞∑
n=−∞

nIn(iρk)

(n− ω̄)
e inξ φ (111)
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The density response comes only from the pull-back transformation since f = 0.

n1 =

∫
J0f d

3v +

∫
δ(X + ρ − r)

e

mc

∂S

∂ξ

∂F0

∂µ
d6Z (112)

=

∫
[ e ρ·∇ δ(X − r)]

−e
T
F0

∞∑
n=−∞

nIn(iρk)

(n− ω̄)
e inξ φ d6Z. (113)

Using the facts that

∫
[ e ρ·∇ δ(X − r)]Q d6Z =

∫
δ(X − r) e−ρ·∇ Q d6Z, (114)

and ∫ 2π

0

e i(m + n)ξ dξ = δm,−n2π, (115)

we have

n1 =
2π

(2πT/m)3/2

∫ −n0eφ

T
exp(−v

2
‖ + v2

⊥
2T/m

)

∞∑
n=−∞

nI−n(−iρk)In(iρk)

(n− ω̄)
v⊥dv‖dv⊥. (116)

The following properties of the Bessel functions are needed to finish the integral:

In(x) = i−nJn(ix), (117)

J−n(x) = (−1)nJn(x) = Jn(−x), (118)∫ ∞

0

t e−pt2 J2
n(at) dt =

1

2p
e−a2/2p In(

a2

2p
). (119)

Carrying out the algebra, we obtain

n1 = n0
eφ

T

∞∑
n=1

2n2

(
ω

Ω
)2 − n2

exp(− k2T

Ω2m
)In(

k2T

Ω2m
). (120)
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Finally, the Poisson equation −∇2φ =
∑

j 4π(en1)j gives the dispersion relation,

1 =
∑

j

4πn0e
2

Tk2

∞∑
n=1

2n2

(
ω

Ω
)2 − n2

exp(− k2T

Ω2m
)In(

k2T

Ω2m
). (121)

This is the Bernstein wave.

V. CONCLUSIONS

The pullback transformations of the phase space coordinate system transformations have

been studied here in the context of gyrokinetic theory. The necessity of such a study arises

from the existence of three different coordinate systems in the gyrokinetic theory. The fa-

miliar gyrocenter coordinate system, where the gyromotion is decoupled from the rest of

particle’s dynamics, is non-canonical and non-fabric. On the other hand, Maxwell’s equa-

tions, which are needed to complete a kinetic system, are first only defined in the fabric

laboratory phase space coordinate system. The pullback transformations are needed to con-

nect the distribution functions in the gyrocenter coordinates and Maxwell’s equations in

the laboratory phase space coordinates. In order to gain a systematic understanding of

the mathematical construction and physical implications of the pullback transformations,

we have adopted a geometric (coordinate independent) viewpoint for the moment integrals

originally defined in the laboratory phase space coordinate system. The moment integrals

in kinetic theories are geometrically interpreted as integrals of 3-forms over a 3-subset of the

phase-space. Therefore, they are independent of the coordinate system used for the phase

space. Starting from their representations in the laboratory phase space coordinate systems,

we can ”pullback” the distribution functions or the moment forms to express the moment

integrals in an arbitrary new coordinate system, which can be non-canonical and non-fabric.

This general construction has been applied to the pullbacks of the guiding center trans-

formation and the gyrocenter transformation. It has been demonstrated that the systematic
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treatment of the moment integrals provided by the pullback transformation is an essential

component of the gyrokinetic theory itself. Without such a systematic treatment, the gy-

rokinetic theory is incomplete and many important physics features, such as the gyrokinetic

equilibrium and the compressional Alfven wave, can not be readily recovered. Illustrative

examples have been discussed in Sec. III and Sec. IV.
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