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Abstract

Recent observations of new fast ion beam driven instabilities in

MHz frequency range in National Spherical Torus experiments (NSTX)

are suggested to be Compressional Alfvén Eigenmodes (CAEs). A new

theory of CAEs applicable to low aspect ratio toroidal plasmas is de-

veloped based on the ballooning representation for the poloidal depen-

dence of the perturbed quantities. In agreement with observations, the

analytical theory predicts that CAEs are descrete modes with frequen-
cies correlated with the characteristic Alfvén velocity of the plasma.

Plasma equilibrium structure is essential to determine accurately the

dispersion of CAEs. The mode structure is localized in both the minor

radius and the poloidal directions on the low magnetic �eld side.

1 Introduction

Emissions in the ion cyclotron range of frequency driven by energetic parti-
cles have been observed in the past in tokamak experiments [1, 2, 3, 4]. It
is believed to be the thermonuclear cyclotron instability of Compressional

�This work supported by DoE contract No. DE�AC02�76�CHO�3073.
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Alfvén Eigenmodes (CAEs, also called fast Alfvén or magnetosonic eigen-
modes) driven by products of thermonuclear reactions. In these tokamak
experiments CAE instability has not produced signi�cant e�ects on thermal
plasma. One reason for the lack of CAEs e�ect on background ions is that
the free energy available to destabilize CAEs is low because the fraction of
energetic ions with velocity greater than the Alfvén velocity is very small in
these tokamak experiments. However, in low aspect ratio spherical tokamaks
(ST), such as National Spherical Torus experiment (NSTX) [5], the Alfvén
speed is low in comparison with the injection velocity (at Eb0 = 80keV )
of NBI ions, vA0=vb0 ' 1=4. The NSTX is a low aspect ratio toroidal de-
vice with the ratio of the geometrical center major radius to minor radius,
Rg0=a = 0:85m=0:65m. For NSTX the super-Alfvénic particle power avail-
able to sustain these modes is comparable with the total auxiliary heating
power, much larger than that of fusion product fast ions in conventional toka-
maks and thus much stronger CAE instabilities can be expected in NSTX.
This seems to be true for all ST devices including a projected reactor size
ST[6].

Recent NSTX observations of magnetic �uctuations measured by edge
Mirnov coils show a broad and complicated frequency spectrum of coherent
modes between 400kHz and up to 2:5MHz, with the fundamental cyclotron
frequency of background deuterium ions to be fcD = !cD=2� = 2:3MHz,
calculated at the vacuum magnetic �eld at the geometrical axis of NSTX
for Bg0 = 0:3T [7]. A very rich spectrum of modes are observed at the
same time during the NBI injection. The mode frequencies correlate with
the Alfvén velocity as the magnetic �eld and plasma density are varied. The
mode excitation is sensitive to NBI injection angle. Particle losses were not
seen during these instabilities.

There has been signi�cant progress in the theory of CAEs in recent years.
However, the majority of theoretial studies are based on the high aspect ratio
approximation for toroidal plasma equilibria. In such a case the solution
is weakly localized in poloidal direction (see Refs. [8][10][9] and references
therein), and the toroidicity is considered as a perturbation to the cylindrical
solution [11, 12]. Weak toroidicity theory predicts more poloidal localization
as the aspect ratio decreases. Typically the eigenmode is localized between
the turning points in the poloidal direction on the low �eld side of the plasma
cross section and localized radially near the plasma edge. In addition, the
ellipticity is also important in determining the VAE dispersion. Thus, a new
theory for CAE structure and dispersion is required for STs.
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Based on the measured �uctuation spectrum and their comparison with
the results of our CAE model we interpret the observed phenomena as CAEs
driven by energetic beam ions. Frequency spectrum of localized CAE solu-
tions are descrete. It is primarily determined by the Alfvén frequency at the
mode location and by the poloidal wavevector as !CAE = vAm=r, where m
is the poloidal mode quantum number and r is the minor radius.

2 High frequency mode observations in NSTX
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Figure 1: Time evolution of X-ray signal (a) and magnetic spectrum of high

frequency modes (b) and one time slice of the spectrum taken at t = 0:21sec (c)

in NSTX shot #103418. NBI injection starts at t = 0:15sec

Coherent high frequency modes have been observed in NSTX with both
high bandwidth magnetic pick-up coils and with re�ectometers[7]. The range
of operational parameters for the experiments discussed here are: toroidal
current Ip = 0:7 � 1MA, toroidal �eld Bg0 = 3:0 � 4:5kG, central elec-
tron density ne0 = 1 � 5 � 1019m�3, central electron temperature of up to
Te0 = 1keV . The plasmas are heated with a deuterium neutral beam injec-
tion (NBI) with power of Pb = 1:5 � 3MW . The data shown in Figure 1
reveal several common features of these modes. The modes appear about
�t = 1� 50msec after the start of neutral beam injection. In this example
the mode frequencies decrease with time and the mode activities are termi-
nated by the sawtooth crash. As shown in Fig. 1(c) the mode frequencies
are approximately evenly spaced up to at least 2:5MHz (the full bandwidth
of the system). The mode frequency spacing in this example is nearly uni-
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form at about �f ' 120kHz and the spectral peaks appear in two bands
spanning 0:7� 1:2MHz and 1:5� 2:2MHz. These two bands are apparent
in amplitude, and there are subtle variations in the similar spacing of the
frequency peaks in each band. This suggests that these are distinct bands,
e.g., with the frequency separation at 1.53 MHz. Each peak in Fig. 1(c)
also consists of a bunch of subpeaks if shown with higher resolution. Such
satellite subpeaks are separated by � 20kHz from each other. Detailed mea-
surements of the mode structure have not yet been done. However, initial
data from the re�ectometer, which measures the displacement of constant
density contours, showed that the modes also produce density �uctuations in
the plasma. The characteristic amplitude of the density oscillations deducted
from the re�ectometer measurements is about Æne=ne � 1� 3� 10�4.

Typically the bunches of frequency subpeaks follow the trend of vA �
B=
p
ne , when the density and/or magnetic �eld were changed during the

shot, where ne is the characteristic electron density. Another common feature
of these instabilities is the cuto� at low frequency, i.e. at f = 500� 700kHz.
More �ner structure of the spectrum also shows that all unstable modes
are bursting and damped simultaneously on a very short time scale. This
behavior resembles the �shbone instability, except that in this case all modes
behave similarly. The instability is very sensitive to the distribution function
of NBI ion, which is determined by the injection angle and injection energy
of NBI ions. However, it was observed that the frequency of high frequency
unstable modes does not change due to the change in the NBI injection angle.
One can conclude that CAEs are cavity modes determined by the thermal
plasma properties. Typical magnitude of the perturbed magnetic �eld is
small with ÆBk=B � 2� 10�4[7].

3 Strong toroidicity theory for CAEs in NSTX.

Estimates show [13] that the weak toroidicity theory fails to resolve with good
accuracy the measured frequency spectra in NSTX experiments. The weak
toroidicity theory [8] predicts that CAEs are discrete eigenmodes and that for
stronger toroidicity eigenmodes become more localized in poloidal angle near
the equatorial plane on the Low Field Side (LFS). Thus, the previous theory
that treats toroidicity perturbatively becomes unvalid for large toroidicity
such as in STs. This was also supported by our preliminary improved theory.
Thus, we present in this secsion a new strong toroidicity theory for CAEs
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and provide the CAE eigenmode structure and dispersion.

3.1 Equation for Compressional Alfvén Eigenmode.

We employ the cold plasma wave equation for the perturbed electric �eld
in an inhomogeneous, magnetized plasma in toroidal geometry. The per-
turbed electric �eld satis�es Faraday's and Ampere's laws which reduce to
the following equation:

r�r�E =
!2

c2
"̂ �E; (1)

where "̂ is the dielectric permiability tensor. We also assume vanishing par-
allel electric �eld, and the vector E has two components perpendicular to the
equilibrium magnetic �eld, and E(t) � exp(�i!t). By neglecting the back-
ground ion and electron kinetic e�ects the cold plasma permeability tensor
has the following tensor elements in the direction perpendicular to the mag-
netic �eld only

"̂11 = "̂22 =
X
i

!2
pi

!2
ci � !2

; (2)

"̂12 = �"̂21 = i
X
i

!

!ci

!2
pi

!2
ci � !2

: (3)

This is valid for oscillation frequency ! below the lower hybrid frequency.
Here !ci and !pi are the ion cyclotron and ion plasma frequencies, respec-
tively. Note that the dielectric tensor in Eq.(3) is rotationally invariant,
which means that it can be used for any orthogonal coordinates perpendic-
ular to the equilibrium magnetic �eld vector B.

We wlll employ the Lagrange approach to �nd the solution of Eq.(3).
Multiplying Eq.(1) by E� and integrating over the plasma volume we obtain
the Lagrangian functional ÆL =

R
Ld3r; where the Lagrangian density is

L = �jr � Ej2 + !2

c2
E
� � "̂ �E = �k2k (jE2j2 + E2

1)� (e2rE1)
2

+!2

c2
["̂11 (E

2
1 + jE2j2) + "̂12E1 (E2 � E�

2)] :
(4)

Here we have chosen a local orthogonal system with the second component
of the electric �eld along the direction of the wavevector e2 � rE=jrEj;
E2 = rE2=2jrEj, where E is the absolute valute of the electric �eld. The
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�rst component E1 is perpendicular to B and e2, and we de�ne the operator
kk = br lnE where b is the unit magnetic �eld vector. We also assume that
E1 is purely real and E2 is purely imaginary (see below and Ref.[14]). Taking
the variation of the Lagrangian functional with respect to the amplitude of
second component of the electric �eld, we arrive at the equation determining
the polarization of the compressional branch

E2 =
"̂12!

2=c2

�k2k + "̂11!2=c2
E1 � H

F
E1: (5)

Note that by choosing this polarization we consider only the compressional
Alfvén mode branch and do not consider the shear Alfvén branch. From
Eq.(4) one can obtain the Lagrangian functional to determine the CAE eigen-
mode structure

ÆL =
R h� (r?E1)

2 + (F +H2=F )E2
1

i
d3r =

=
R h� (rE1)

2 +
�
!2

c2
"̂11 +H2=F

�
E2
1

i
d3r:

(6)

3.2 Eigenmode structure and dispersion.

In our previous theory we have neglected the contribution of k2k � k2? in the
mode structure [13]. However, for particle-wave interactions it is important
to consider �nite parallel wavevector, and we employ a WKB-ballooning
representation for the poloidal angle dependence:

E = e�i!t+inq��in'
1X

j=�1
Ê(r; � + 2�j)ei2�nqjr=

q
g11
p
g + c:c:; (7)

where the envelope function Ê(r; x2) is nonperiodic and is required to be
vanishing as x2 ! �1. Here we droped the subscripts for the electric
�eld components, since all perturbed components are expected to be similar
in their dependence on the spatial coordinates. Note that instead of the
toroidal variable in Eq.(7) needs to be chosen in such a way that the magnetic
�eld lines are straight. However one can show that this introduces a small
correction to the dispersion hereafter if q > 1 at the mode location.

That the e�ective potential in Eq.(6) has a minimum near x2 = � = 0 and
at some r = r0, which de�nes the mode localization. We de�ne a curvilinear
coordinate system as x1 = r, x2 = � + 2�j, and x3 = '. Metrics of such a
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system is given by

g11 = ��2 sin2 x2 + cos2 x2; g22 = (x1)
�2 �

sin2 x2 + ��2 cos2 x2
�
;

g12 = g21 = � (1� ��2) sinx2 cos x2; g = �2 (x1)
2
R2;

(8)
where we retain �nite ellipticity and the rest of the elements are g13 = g31 =
g23 = g32 = 0. We then rewrite Lagrangian functional, Eq.(6), as

ÆL =
R (�

Ê � Ê
@ ln(g11pg)
2@ lnx1

+ @Ê
@ lnx1

�2
+

g22(x1)
2

g11

�
�Ê @ ln(g11pg)

2@x2
+ @Ê

@x2

�2

+ 2g
12x1

g11

�
�Ê @ ln(g11pg)

2@ ln x1
+ @Ê

@ lnx1

��
�Ê @ ln(g11pg)

2@x2
+ @Ê

@x2

�

+ (nx1)
2
�
(q0x2)2 + g22

g11
(q)2 + g33

g11
+ g12

g11
2qq0x2 + V (x1;x2)

g11(nx1)2

�
Ê2

�
dx1dx2;

(9)
where V (x1; x2) = (x1)

2
�
!2

c2
"̂11 +H2=F

�
, and the integration in x2 is to be

taken from �1 to 1. Note that the function V is periodic in poloidal
angle, so that the solution is expected to have a wave-like bahavior near its
minima at x2 = 2�j, and to decay exponentially from these wave-like regions.
For small to medium n such a decaying behavior is important especially for
the problem of CAE damping. Assuming that the coupling between j and
j + 1 domains is small we will use a perturbation theory by introducing the
coupling parameter � � 1:

3.2.1 CAEs Localized on LFS with j = 0:

First, we assume that the zeroth order CAE solution is localized at x2 = 0
and the j = 1 domain is not coupled to the j = �1 domain. In this case we
are looking for solutions in the form

Ê ' Ê0 = e0�m(
p
2x2=�)�s(

p
2(r � r0)=�); (10)

where �s(x) = e�x
2=2Hs(x)=

q
n!2s

p
� and Hs are the s�th order Chebyshev-

Hermit functions and polynomials. Substituting this into Eq.(9), expanding
coe�cients near � = 0 and r = r0, and integrating, we can make variations
of the Lagrangian functional to obtain the required parameters �; � and the
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CAE dispersion. The functional in this case is

ÆL0=e0 = n2
h
q2(r0)
�2

+
R2

0
+4r2

0

4R2

00

i
+ V00 +

h
n2D +

�
@2V
2@r2

�
00

i
�2

2

�
s+ 1

2

�
+ s2+s+3=2

2

+
(2s+1)r2

0

�2 + (n2T + V00�)
�2

2

�
m+ 1

2

�
+ �4�1

�4
m2+m+3=2

2
+ 2m+1

�2�2 � R2

0

4R2

00

(11)
where T and D are given in the appendix, � =

�
@2V=@ (x2)

2
=2V

�
00
+1���2,

double zero subscript refers to the function evaluated at x2 = 0 and r = r0.
Further analytical progress can be achieved with the assumption of n � 1.
Also, we assume the following form for the safety factor q = q0(1��r2=a2)��,
where � = 1�(q0=qa)

1=�, and qa is the safety factor at the plasma edge. Note
that the magnetic shear in this case is s � rq0=q = 2��r20=(a

2� �r2). To the
lowest order in 1=nq the variation of the Lagrangian functional Eq.(11) with
the respect to r0 gives

r20
a2

=
� + 1 + � (2�0 + 1)�

q
[� + 1 + � (2�0 � 1)]2 + 8��0 (� � 1)

2�(1 + � + 2�0)
; (12)

where we �0 = �n2q2(r0)= (n
2q2(r0) + (�2 � 1) (m2 +m+ 3=2) =2�2 + (2m+ 1) =�2).

For zero shear case, � = 0, or for m > nq(r0) it reduces to r20=a
2 = 1=(1+�).

The variation with respect to �2 yields

�2 = 2=�
�
n2T + V00�

�1=2
: (13)

From this equation we conclude that approximately �2 = O
�
(r0k?)

�1�. The
condition for the poloidally localized CAE solution is n2T � V00� > 0. The
same procedure gives the following expression for the radial width

�2 = 2r0=

 
n2D +

 
@2V

2@r2

!
00

!1=2

; (14)

and �2 = O (r0=k?). Comparing the last two equations one can conclude
that the potential well for the eigenmode is shallow in poloidal direction and
deep in radial. This implies that for the observed modes in NSTX we can
consider m� s.

The dispersion of CAEs can be obtained by varying the Lagrangian with
the respect to e0:

�V00 ' n2
h
q2(r0)
�2

+
R2

0
+4r2

0

4R2

00

i
+ s2+s+3=2

2
+

(4s+2)r2
0

�2 + �4�1
�4

m2+m+3=2
2

+ 4m+2
�2�2

(15)
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In the limit of ! � !ci and ! � !ci as V ' �r2!2=v2A: Let us assume
that the total magnetic �eld can be approximated as B = B0R0=R. Such
a magnetic �eld is formed in low to medium beta plasmas (�' < 20%) in
ST devices. Note that the e�ect of local diamagnetic magnetic well leads
to a new type of CAEs and was considered in Ref.[15]. Thus, we obtain
� = ��+�+1���2. Using Eq.(13) to the lowest order in m we obtain from
Eq.(15)

�2 ' �2
� (m+ 1=2)

=

0
@1 +

vuut���1
"
�� � +

(�� ��1)2

2
+

n2

(m + 1=2)2

 
q2 � �2T

�

!#1
A :

(16)
The equation for the radial width can be modi�ed to the form

�2 ' 2r0

 
n2D +

 
4

��4�2
� n2T

�

! 
@2V

2V @r2

!
00

!�1=2
; (17)

which together with Eqs.(15,16) determines the CAE dispersion relation.
Our choice of ballooning representation, Eq.(7), implies an estimate for

parallel wavevector k2k ' 4m=(qR�)2. To derive analytical forms of the
CAE dispersion we consider two cases m < nq(r0) and m ' nq(r0). In the

�rst case k ' (nq=r�)0, and thus kk=k? ' (r0=R00)
5=4�

q
m=nq(r0)=q(r0).

For the second case one obtains kk=k? ' (r0=R00)
5=4�=q(r0). Note that the

required large parallel wavevector for the observed sub-cyclotron instability
should be relevant to the second case. Approximately in that case kk=k? '
(r0=R00)

5=4 ' 1=3.
First we consider the case with m < nq(r0) with small kk. Since the

Doppler shift to the cyclotron resonance is proportional to kk we expect that
the CAE instability with such wavenumbers will be unstable at eigenfre-
quencies near the fast ion cyclotron frequency harmonics. Finally varying
the Lagrangian functional with respect to the perturbed amplitude we ob-
tain the CAE dispersion relation, which determines the CAE eigenfreqiency
at given quantum numbers m; s; and n,

!2
0msn =

v2
A0

n2

r2
0

�h
q2

�2
+

R2

0
+4r2

0

4R2

00

i
+
h
D +

�
q2

�2
@2V
2V @r2

�
00

i1=2 r0(2s+1)
n

+ s2+s+3=2
2n2

+
�
T � q2�

�2

�1=2
2m+1
kn

+ �4�1
�4

m2+m+3=2
2n2

�
:

(18)

9



Note that the condition for the poloidally localized CAE solution in this case
is T � q2�

�2
> 0.

More relevant for the observed sub-ion cyclotron frequency CAEs is the
case with m > nq(r0). To calculate the mode localization we assume � >
1���2, which is valid esspecially in the localization region on the LFS of the
plasma with �nite triangularity. The variation of the Lagrangian functional
with respect to the variable �, or Eq.(16), gives �2 = 1= (�0 � �0) (m+1=2)
to the lowest order in m, and

!2
0msn ' v2

A00

r2
0

n
4(m+1=2)2

�2
(�0 � �0) +

�4�1
�4

m2+m+3=2
2

+ 2(2s+1)(2m+1)
�

q
(�0��0)(1+�)

2�
+ n2

h
q2(r0)
�2

+
R2

0
+4r2

0

4R2

00

i�
:

(19)

where �0 = B2
�=2B

2
' at r = r0: The variation of the Lagrangian functional

with respect to � results in �2=r20 = �
q
2�=(1 + �) (�0 � �0)=(2m + 1) and

a correction to the mode eigenfrequency in Eq.(19).

3.2.2 CAEs Propagating to j = �1:
To the zeroth order in � at each domain j the solutions are alike with the
poloidal and radial mode structure described in the previous section. This
can be vari�ed by making corresponding variations of the Lagrangian. When
the coupling is introduced the solution of the CAE should be

Ê =
1X

j=�1
ej�m

�p
2
�
x2 + 2�j

�
=�
�
�s(
p
2(r � r0)=�): (20)

Substituting this form into the Eq.(9) we obtain a coupled system for the
amplitudes ej:

ÆL = e2�1
h
Æ (!2

msn) + (nx1q0)2 (2�)2
i
+ e20Æ (!

2
msn)

+ e21
h
Æ (!2

msn) + (nx1q0)2 (2�)2
i
+ (e�1e0 + e1e0)

h
Æ (!2

msn) + (nx1q0)2 (�)2 �
i
;

(21)
where the coupling parameter is � = e�2�

2=�2

�Lm(4�
2=�2)=

p
2; Lm is mth

order Laguerre polynomial, Æ (!2
msn) is the correction to the eigenfrequency.

Making variations in ej we obtain three coupled equations, which give e�1 =
e1 = �e0�=8 and Æ (!2

msn) = ��=8. In large m limit � ! 0. Figure 2 shows
the � dependence on m, which shows that the coupling is weak. However

10



0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20

η

m

Figure 2: Coupling parameter � dependence on poloidal quantum wave num-
ber m.

the presence of j = �1 harmonics may be noticeable near � = �. The
eigenfrequency correction maybe neglected, since Æ (!2

msn) = O (!2
0m

�2) �
!2
0.

3.3 Estimates for observed spectra in NSTX.

Because accurate identi�cation of CAE mode numbers has not been done
experimentally yet, we will make an approximate comparison of the analytical
CAE eigenfrequencies with the measured values. One of the explanation for
the observed spectra of CAEs is given as follows. Di�erent frequency peaks
in each frequency band correspond to di�erent m's and are separated in
frequency by (see Eq.(19))

�fm ' 2vA
2��r

p
�0 � �0:

The large frequency separation �f � 1MHz seen between two bands of
spectra peaks corresponds to a di�erent radial wave numbers s, so that the
frequencies are separated by

�fs ' �fm�

vuut (1 + �i)

2�i (�0 � �0)
:
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For NSTX shot #103701 we use the following plasma parameters Br=r0 =
0:27T; r = 0:5m, �i = 0:5; elongation � = 1:6, ne = 2� 1013cm�3. Also, the
numerical equilibrium of this shot gives �0 = 1=8, with �0 = r0=(R0 + r0) =
0:3. We readily obtain �fm = 150kHz, and �fs = 0:7MHz: For #103431
with parameters Br=r0 = 0:32T; ne = 4 � 1013cm�3, we obtain �fm =
125kHz, �fs = 0:7MHz: These results provide a reasonable quantitative
agreement with the observed CAE spectra. Instability study should be done
to understand the CAE excitation in ST.

4 Summary

A new theory of CAEs in axisymmetric low aspect ratio toroidal plasmas is
developed and applied to interprete observations of new sub-ion cyclotron
high frequency modes observed in NSTX. Based on the comparison between
the observed magnetic �uctuation spectrum and the CAE theory we conclude
that the observed modes in the frequency range from f = 0:5MHz to f =
2:5MHz are CAEs driven by fast super-Alfvénic NBI ions. A new �nite
aspect ratio CAE theory gives good agreement in frequency spacings between
the m and m + 1 peaks as well as between the s and s + 1 CAE bands in
the observed frequency spectrum. However, the stability study of CAEs
due to fast beam ions is yet to be performed. We note that the balooning
formalism employed here to resolve CAE eigenstructure can also employed
to develop the instability theory because the ballooning formalism provides
the expression of the parallel wavevector as a function in the real space.

A Coe�cients T and D.

Straightforwadly one obtains the coe�cients for the CAE problem from the
Lagrangian Eq.(11):
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