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Abstract

The interaction between energetic electrons and a circularly polarized

laser pulse inside an ion channel is studied. Laser radiation can be reso-

nantly absorbed by electrons executing betatron oscillations in the ion chan-

nel and absorbing angular momentum from the laser. The absorbed angular

momentum manifests itself as a strong axial magnetic �eld (inverse Faraday

e�ect). The magnitude of this magnetic �eld is calculated and related to the

amount of the absorbed energy. Absorbed energy and generated magnetic

�eld are estimated for the small and large energy gain regimes. Qualitative

comparisons with recent experiments are also made.
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I. INTRODUCTION

The interaction between intense laser radiation and matter is known to pro-

duce a wealth of nonlinear e�ects. Those include fast electron and ion gener-

ation [1, 2, 3, 4, 5], indicating that ultra-strong electric �elds are produced in

the course of the laser-plasma interaction. An equally ubiquitous, although

less studied, e�ect accompanying laser-matter interaction is the generation of

ultra-strong magnetic �elds in the plasma [6, 7, 8, 9, 10]. Magnetic �elds can

have a signi�cant e�ect on the overall nonlinear plasma dynamics. Extremely

high (megagauss) magnetic �elds play an essential role in the particle trans-

port, propagation of laser pulses, laser beam self-focusing and penetration of

laser radiation into the overdense plasma.

There are several well-understood mechanisms of magnetic �eld genera-

tion (see, for example, Ref. [7] for a review). In many instances, magnetic

�eld is generated by a jet of fast electrons in the direction of laser propaga-

tion [6] or by the nonlinear current of the background plasma electrons [8, 11].

Electron currents producing the magnetic �eld can be viewed as generated

due to the momentum transfer from the laser pulse to the plasma electrons.

Laser photons carry momentum in the direction of their propagation regard-

less of their polarization. Therefore, the resulting magnetic �eld is azimuthal

(taking the direction of the laser propagation as a z-axis). In this paper we

consider a very di�erent, polarization-dependent method of generating the

axial magnetic �eld.

The generation of the axial magnetic �eld in the plasma by a circularly

(or elliptically) polarized laser is often referred to as the Inverse Faraday

E�ect (IFE). First theoretically described by Pitaevskii [12] and Steiger and

Woods [13], it results from the speci�cs of the electron motion in a circu-

larly polarized electromagnetic wave. During the interaction of the plasma

electrons with the circularly polarized laser pulse, electrons absorb not only

the laser energy but also the proportional amount of the total angular mo-

mentum of the laser pulse. This angular momentum transfer leads to the

electron rotation and generation of the axial magnetic �eld by the azimuthal

electron current. Naturally, IFE is impossible for a linearly polarized laser

pulse since it does not possess any angular momentum.

IFE has since been measured in several experiments [9, 14, 15]. The

conditions under which IFE is possible are still not fully explored. What is

theoretically known [16] is that there is no magnetic �eld generation during

2



the interaction of the inhomogeneous circularly polarized electromagnetic

waves with the homogeneous plasma. Magnetic �eld can be produced in the

presence the strong plasma inhomogeneity [17, 18, 19], either pre-formed or

developed self-consistently during the interaction.

Here we consider an alternative mechanism of magnetic �eld generation

which involves the resonant energy (and angular momentum) exchange be-

tween the laser and the plasma electrons. To our knowledge, this is the �rst

calculation, which explicitly relates the energy deposition by the laser pulse

to the magnitude of the magnetic �eld using a concrete example of the reso-

nance. The resonance occurs between the fast electrons, executing transverse

(betatron) oscillations in a fully or partially evacuated plasma channel, and

the electric �eld of the laser pulse. The betatron oscillations are caused by

the action of the electrostatic force of the channel ions and self-generated

magnetic �eld. This type of resonant interaction was recently suggested as a

mechanism for accelerating electrons to highly-relativistic energies [20, 21].

When a circularly polarized laser pulse is employed, its angular momentum

can be transferred to fast resonant electrons along with its energy. The re-

sulting electron beam spirals around the direction of the laser propagation,

generating the axial magnetic �eld [22]. In this paper we calculate the in-

tensity of magnetic �eld generated in relativistic laser channel taking into

account self-generated static �eld, which is an important extension of known

IFE theory [17, 18, 19]. Our calculation is also motivated by the recent exper-

iments at the Rutherford Appleton Laboratory (RAL) [15] which exhibited

very large (several megagauss) axial magnetic �elds during the propagation

of a sub-picosecond laser pulse in a tenuous plasma. The intriguing aspect of

the RAL experiment is that both fast electrons and the strong magnetic �eld

were measured in the same experiment. It should be noted that magnetic

�eld generation mechanism �rstly proposed in Ref. 22 and considered here

has been observed in recent numerical simulation [15].

The basic mechanism of the plasma channel formation is the ponderomo-

tive expulsion of the plasma electrons by the laser pulse. Channel formation

in underdense plasma has been con�rmed by both experiments [23, 24] and

Particle-In-Cell (PIC) simulations [25, 26, 27]. Assuming a circularly polar-

ized Gaussian laser pulse propagating along z axis with vector potential

A(r; t) = A0 exp
�
�r2=R2 � �22=T

2
�
[ex sin(�1) + ey cos(�1)] ; (1)

where �1 = !t� !z=vph, �2 = z=vgr � t, vph and vgr are the phase and group
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velocity of the pulse, respectively, the radial ponderomotive force acting on

a given is given by

Fpon = �
r

R2

e2A2
0 exp (�2r2=R2 � 2�22=T

2)

4mc2
: (2)

Here e and m are the charge and the rest mass of electron, c is the speed

of light,  =
q
1� v2=c2 is the relativistic gamma factor of the electron. As

plasma electrons are expelled by the ponderomotive force, the ion channel

forms along the z axis. The radius of the ion channel rch is estimated by bal-
ancing the ponderomotive force and the ion attracting force Fres = 4�e2nir,

where ni is the ion density:

e2A2
0 exp

�
�2r2

ch
=R2 � 2�22=T

2
�
' 16�nimc

2R2: (3)

It is seen from Eq. (2) that the ponderomotive force is reduced for hot

electrons with  � 1. They can then remain inside the channel and execute

betatron oscillations with frequency 
� as they propagate along z axis. Laser-
electron energy exchange occurs when the resonance condition between the

Doppler-upshifted betatron oscillation and laser �eld is satis�ed: 
�=(1 �
�z�ph) = !. If the laser pulse is circularly polarized, electrons can also

resonantly absorb a signi�cant amount of its angular momentum.

The main objective of the paper is to calculate energy and angular mo-

mentum exchange through this mechanism and obtain an estimate for the

generated magnetic �eld. It is a further object of the paper to describe for-

mally the electron dynamics. We do not address the question of how the

hot electrons got pre-accelerated to become resonant with the laser �eld. As

shown below, the required energy boost is very modest (several MeV), and

can be accomplished, for example, by the plasma waves [1].

Di�erent electron populations are likely to co-exist in the plasma [28].

Some electrons may leave from the side of the channel [20]. These electron

populations will not signi�cantly contribute to the magnetic �eld generation,

and will not be considered here. We focus on the other group of electrons

which have a modest energy, and are eventually overtaken by the laser pulse.

These electrons are left in the channel after the passage of the laser pulse,

participating in the magnetic �eld generation. Another group of electrons

may even overtake the laser pulse, generating magnetic �eld in front of the

laser. Regardless of whether the fast electrons are moving faster or slower
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than the laser pulse, the speeds of the electrons and the pulse are close to

the speed of light c. Since in most short-pulse experiments the length of the

plasma is at most 10� 20 times the laser pulse width [1], fast electrons are

likely to stay within a few pulse widths from the center of the laser pulse.

The paper is organized as follows. In Section II we describe the electron

dynamics in the ion channel in the absence of the laser pulse. By analogy

with the quantum mechanical description of a particle in a centrosymmetric

potential, we characterize the transverse electron motion using two principle

numbers: I (proportional to the total transverse energy) and L (proportional

to the z component of the angular momentum). We then calculate the mag-

netic �eld and ux produced by an ensemble of electrons with di�erent values

of L and I. In Section III we describe the coupling between the laser �eld and

electrons and derive a kinetic equation for the electron distribution function

f(I; L). Interaction with the laser pulse modi�es the electron distribution

function, resulting in the energy absorption Q and angular momentum ab-

sorption �L. The latter produces the magnetic ux � and the averaged over

the beam radius magnetic �eld Bind. In Section IV we calculate Q, �, and
Bind in the quasi-linear and strongly nonlinear regimes. The strongly non-

linear and quasi-linear regimes di�er from each other by, respectively, large

and small distortion of the distribution function. Section V concludes and

summarizes the obtained results, making connection with the experimental

observations.

II. ELECTRON DYNAMICS IN THE ION

CHANNEL

An electron in a partially evacuated ion channel, interacting with a laser

pulse, can be described by a relativistic Hamiltonian

H = c
q
mc2 + (p? + eA=c)2 + p2

z
+
m
2(x2 + y2)

2
; (4)

where 
2 = !2
pi
= 4�Ze2n2

i
=m. From here on we will use the dimensionless

units, normalizing the time to !�1, the length to c=!, the momentum to mc,

and the vector potential and energy to mc2. The last term in Hamiltonian

(4) describes the electrostatic potential of the channel ions. We assume that

the electrons are highly relativistic, p2
z
� 1 + (p? + eA)2. In the highly
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relativistic limit the Lorentz force of the self-generated magnetic �eld on the

electron is almost compensated by the force of the radial electric �eld of the

electron beam [29]. Therefore, only the restoring force of the ions is to remain

signi�cant.

For highly relativistic electrons the Hamiltonian (4) can then be expanded

as H � H0 +Hint, where H0 is the non-interactive Hamiltonian:

H0 = pz +
M2

2pz
+

p2?
2pz

+
�2(x2 + y2)

2
; (5)

and Hint = e(p?A)=pz describes the laser-electron interaction. Here � =


=!, and M =
q
m2 + e2A2=c4 is the renormalized electron mass in a circu-

larly polarized electromagnetic wave. Below, we perform a series of canonical

transformation which signi�cantly simplify the non-interactive Hamiltonian

H0.

A. Canonical transformations

Since the goal of this calculation is to demonstrate how the angular momen-

tum can be transferred from the laser pulse to the electrons, we proceed

by transforming the non-interactive Hamiltonian H0 to the form which ex-

plicitly contains the electron angular momentum. Introducing cylindrical

coordinates (pr, r; L, '), the Hamiltonian can be rewritten as

H0 = pz +
M2

2pz
+

p2
r

2pz
+

L2

2pzr2
+
�2r2

2
: (6)

The next step is to introduce the action-angle variables I = p2
r
=(2pz) +

L2=(2pzr
2) + �2r2=2 and � instead of (pr, r) variables. Here I plays the

role of the \principal quantum number", i. e. it is proportional to the total

transverse energy. Performing a canonical transformation with the generating

function

S1(I; r; L1; �; Pz; z) = Pzz + L'+
1

2

s�
�
q
Pzr2 � I

�2
+ L2

1 � I2

�
L1

2
arcsin

�
p
PzIr

2 � L2
1

r2�
p
Pz
q
I2 � L2

1

�
I

2
arcsin

I � r2�
p
Pzq

I2 � L2
1

; (7)
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we obtain the following relationships between the old variables (pz, z; pr, r;

L, ') and new variables (Pz, Z; I, �; L1, �L):

pz = Pz; (8)

L = L1;

r2 =
I

�
p
Pz

+

q
I2 � L2

1p
Pz�

sin(2�);

' = �L +
1

2
arcsin

�
p
PzIr

2 � L2
1

r2�
p
Pz
q
I2 � L2

1

;

z = Z �

q
I2 � L2

1

4Pz
cos(2�);

where I and L are proportional to the transverse electron energy and the

projection of the electron angular momentum on z axis, respectively. Note

that jLj � I, so L can be viewed as the projection of I on the z axis.
Since variables pz and L are not changed as a result of the transformation

we will use the old notation pz and L instead of Pz and L1. In the new

variables, the transverse momenta px and py are expressed as

px =
1

2

�q
�
p
pz(I � L) cos (� � �L)�

q
�
p
pz(I + L) sin (�L + �)

�
; (9)

py =
1

2

�q
�
p
pz(I + L) cos (�L + �)�

q
�
p
pz(I � L) sin (� � �L)

�
:

The non-interactive HamiltonianH0, expressed in the transformed variables,

is given by

H0 = pz +
M2

2pz
+

�I
p
pz
: (10)

Note that the longitudinal and transverse degrees of freedom are coupled

through the third term in the Eq. (10). The interaction Hamiltonian Hint

is expressed in terms of the new canonical variables in Section III. It is

also shown in that Section that the interaction term depends on the phase

angles � and �L only as a combination (�+ �L). This will motivate a further
simplifying canonical transformation which emphasizes that the changes in

L and I are related.
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B. Electron motion in the channel and magnetic �eld

generation

Without the interaction term, I, L, and �L are exact constants, and � changes

according to

� =
�
p
pz
t: (11)

For a vanishing angular momentum L = 0, Eq. (10) simpli�es to

px =
q
�
p
pzI cos (� + �=4) cos (�L + �=4)

py =
q
�
p
pzI cos (� + �=4) sin (�L + �=4): (12)

Therefore, electrons with L = 0 execute linear harmonic oscillations through

the origin. The constant angle �L de�nes the orientation of the oscillation

direction, and the linearly evolving according to Eq. (11) coordinate � marks
the oscillation phase. An example of such a trajectory, corresponding to

�L = ��=4, is shown in Fig. 1 as a straight horizontal line. If L is equal to I

or �I then the electron performs circular motion with radius r0 =
q
I=
p
pz�2.

In the general case (an arbitrary value of L) the electron trajectory is an

ellipse con�ned between the maximal radius,

rmax(I; L) =

r�
I +

p
I2 � L2

�
=
q
pz�2 (13)

and minimal radius

rmin(I; L) =

r�
I �

p
I2 � L2

�
=
q
pz�2: (14)

Examples of the linear, circular and elliptic orbits are shown in Fig. 1.

Let us consider a group of electrons which are uniformly distributed along

the z axis, have the same values of L = L0 and I = I0, and are evenly

distributed over the angles �L, �. It means that electrons uniformly cover

the area between the inner circle with radius rmax and the outer circle with

radius rmin. This group of electrons populate a family of identical elliptical

trajectories, each of which is tilted by its own angle �L. At any given moment

in time, electrons are executing their motion along the ellipses according to

their phase �.
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This distribution function f(I; L; �; �L) = Æ(I � I0)Æ(L� L0) can be pro-

jected onto the real space (r; ') by integrating over the phase angles. The

corresponding angle-averaged distribution function F (I; L; r) is obtained ac-

cording to

F (I; L; r) =
N

2�

Z 2�

0

Z 2�

0
d'd�

1

r
Æ(I � I0)Æ(L� L0) (15)

�Æ [r � r(I; L; �)] Æ ['� '(I; L; �)] ;

where N is the linear density of the electrons along the channel and the

electron trajectories is taken from Eqs. (8). Integrating over the angles can

be performed exactly, yielding

F (I; L; r) =
2N

�

Æ(I � I0)Æ(L� L0)q
[r2max(I; L)� r2] [r2 � r2min(I; L)]

; (16)

where rmin(I; L) < r < rmax(I; L). Considering a group of electrons with a

�xed I = I0 which are, in addition, uniformly distributed over the angular

momentum �I0 < L0 < I0, the electron distribution function (16) can be

integrated over L, L0 and I we obtain the electron density in the channel

n(r; ')I0 =

8<:
N(�

p
pz)

2�I0
; r2 � 2I0

�
p
pz
;

0; r2 > 2I0
�
p
pz
:

(17)

Equation (17) expresses the well-known fact [30] that a uniformly focused

beam with a �xed transverse energy (I0, in our case) has a uniform at-top

density distribution in the real space. Despite the singular nature of this, so

called, Kapchinskii-Vladimirskii (KV) distribution function, it can be used

for analytic estimates.

Using Eq. (16) and integrating over I and L the expression for the az-

imuthal (') component of the electron current density in the channel can be

derived:

j' =
eNL0

�2rpz

1q
[r2max(I0; L0)� r2] [r2 � r2min(I0; L0)]

: (18)

Note that the magnitude and the sign of the current depends on L0. Clearly,

there is no azimuthal current for L0 = 0 because all electrons are executing

purely radial oscillations.
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The axial component of static magnetic �eld can be found from Ampere's

law r�B = 4�j:

Bz(r) = sign (L0)
2eN


c

s
mc

pz

�

8>>><>>>:
1; 0 < r < rmin;�
1� 2

�
arcsin

I0r
2�
p
pz�L2

0

�
p
pzr

2

p
I2
0
�L2

0

�
; rmin � r � rmax;

0; r > rmax:

(19)

In writing Eq. () we used the convention sign(x) = 0 for x = 0. This depen-

dence of the magnetic �eld on the radius r arises because the azimuthal cur-

rent ows within a cylindrical shell located between r = rmin and r = rmax.

Magnetic �eld is uniform inside this \solenoid" if r < rmin and gradually falls

o� to zero when r is outside of rmax. The thickness of the current shell can

vary between zero for jL0j = I0 and rmax for L0 = 0.

For future convenience, we also calculate the total magnetic ux � pro-

duced by the current shell,

� =

Z Z
B � ds =

2�eNL0

pz
: (20)

and the axial magnetic �eld hBi in the ion channel

hBi =
�

�r2max

=
2eN


c

s
mc

pz

L0

I0 +
q
I20 � L2

0

: (21)

It is reasonable to assume that, in the absence of the laser-electron interac-

tion, the electron distribution function f depends only on I, i. e. f � f(I).
Since an equal number of electrons possess positive and negative angular

momenta L, the magnetic �eld produced by such a beam is equal to zero.

Interaction with the laser pulse can distort the distribution function and

produce a large magnetic �eld.

III. INTERACTION BETWEEN ELECTRONS

AND LASER FIELD

The previously introduced interaction Hamiltonian Hint = e(p?A)=pz de-

scribes the laser-electron interaction. For a Gaussian laser pulse given by
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Eq. (1), using the Bessel function identities

exp (iy sin x) =
+1X

n=�1
Jn (y) exp (inx) ; (22)

exp (�y sin x) =
+1X

m=�1
Im (y) exp [im (x + �=2)]

and Eqs. (8), (10), Hint can be expressed as

Hint = a0 exp

 
�
�22
T 2

�
I

�
p
pzR2

!
+1X

m;n=�1
Jn

 p
I2 � L2

4pz

!
(23)

� Im

 p
I2 � L2

R2�
p
pz

!
exp [i�(m + n) + im�=2]

�

8<:
vuut�(I + L)

2p
3=2
z

sin [�1 � �L � �] +

vuut�(I � L)

2p
3=2
z

cos [�1 � �L + �]

9=; ;

where a0 = eA0=(mc
2) is the normalized amplitude of the laser pulse, Jn(x)

and Im(x) are the Bessel function and the modi�ed Bessel function, respec-

tively.

Bessel functions Jm originate from expanding the harmonic part of the

vector potential ~A (sin �1 and cos �1 terms), while the modi�ed In Bessel

functions originate from expanding the exp (�r2=R2) term. We will not

expand the term exp (��22=T 2) because the pulse length is much longer than

the amplitude of the electron betatron oscillation in the channel Tvgr �q
(I2 � L2) =pz and harmonic part of this term will be small.

The betatron acceleration of the electron in the ion channel implies that

the amplitude of transverse oscillation is less than the radius of the laser

channel. Then I0
�p

I2�L2

R2�
p
pz

�
' 1 and In6=0

�p
I2�L2

R2�
p
pz

�
' 0. Also, we assume that

the argument
p
I2�L2

4pz
is small, i. e. that the oscillation amplitude in z direction

is smaller than c=!. (This oscillation is caused by the relativistic coupling

between the transverse and longitudinal degrees of freedom.) Using these

assumptions, we can only retain the interaction term near the fundamental

resonance (m = 0, n = 0) and assume J0
�p

I2�L2

4pz

�
' 1, Jm6=0

�p
I2�L2

4pz

�
' 0.

Isolating the single most important resonance is a standard approximation

technique in the nonlinear dynamics [31]. In our case, the resonance condition

ensures that �1 � �L � � = 0.
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Under this approximation, in the close vicinity of the resonance, the total

Hamiltonian is given by

H = pz +
M2

2pz
+

�I
p
pz

+ a0 exp

 
�
�22
T 2

!vuut�(I + L)

2p
3=2
z

sin [�1 � �L � �] ; (24)

where a0 = eA0=(mc
2). It follows from the Hamiltonian (24) that

�
@H

@�L
= �

@H

@�
= �vph

@H

@z
=
�
L=

�
I= vph

�
pz=

�
w; (25)

where w = +�2r2=2 is the total electron energy in the channel. The equation
�
w= vph

�
pz follows from the fact that w + vphpz = const is the integral of the

motion de�ned by the initial Hamiltonian (4) (see also Ref. [20]).

Eq. (25) is the consequence of the energy-momentum conservation law for

the resonant wave-particle interaction. It can be derived using the following

simple reasoning. As a result of the interaction, an electron may absorb n

circularly-polarized photons. The energy gain in this case is �w = n�h!,
gain in longitudinal momentum is �pz = n�hkz = �w=vph and the gain in

angular momentum is �L = n�h. Therefore �w=�L =
�
L =

�
= !. The

transverse energy increment �w? is related to the total energy change �w
through 
�=!. Since the betatron frequency is 
� = 
=

p
pz ' 
=

p
, the

above relationship is consistent with Eq. (25).

For simplicity we will derive the Hamiltonian (24) with assumption vph =
vgr = c. More general case vph 6= vgr 6= c is considered in Appendix. Wave-

particle interaction destroys the constancy of the three actions pz, I, and L.
But, according to Eq. (25), the changes in these actions are identical because

the interaction Hamiltonian depends on a single variable 	 = �1 � �L � �.

Therefore, through an appropriate choice of the new action-angle variables,

one can express the Hamiltonian as a function of a single action variable p

its conjugate angle variable 	. The canonical transformation is given by the

generating function S1:

S1(p; z; C1; �L; C2; �) = C1� + (2C2 � C1) �L + p (�L + � � �1) : (26)

The old (pz, I, L) and new (p, C1, C2) actions are related according to

pz = p; I = C1 + p; L = 2C2 � C1 + p: (27)
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The new actions C1 and C2 are the constants of motion. For example, an

electron propagating straight along the channel with a vanishing transverse

energy has (in the absence of the laser) C1 = C2 = �p.
Using inequalities p2

z
� 1 + (p? + eA)2, � � 1 and I > L we have the

following inequalities for p, C1 and C2: p
3=2=� > C1 � C2. It follow from our

assumptions that p = pz '  and �p ' �w if vph ' c.

In the new action-angle variables, the Hamiltonian (24) simpli�es to

H =
M2

2p
+
�(p + C1)p

p
+ a0 exp

 
�
t2

d2

!s
� (p+ C2)

p3=2
sin	; (28)

where d = 2�
�
M2p�2 + 2�p�1=2 + 2�C1p

�3=2
��1

= 2�p2=(M2 + hp2?i) is the
laser pulse duration in the coordinate system of the electron and � = T!.
Alternatively, d is the time over which the laser pulse and the electron overlap.

The resonance condition is given by

�
	=

@H0

@p
= �

M2

2p2
+

�

2
p
p
�

�C1

2p3=2
= 0: (29)

Hot electrons which interact with the laser pulse most strongly are charac-

terized by the action variables p and C1 satisfying Eq. (29). From Eq. (27)

and virial theorem we can obtain an identity

�(p0 + C1)
p
p0 = �I0

p
p0 = p2?;0=2 + �2r20=2 � p2?;0; (30)

where p?;0 is the transverse momentum at the initial moment of time and

r0 is the initial radius of the electron location. This identity can be used

to express C1 and substitute it into the resonance condition (29). We now

assume, for a moment, that an electron with the initial longitudinal energy p0
and transverse momentum p?;0 is resonant with the laser immediately upon

entering the channel, i. e. pres = p0 and p?;res = p?;0, where the resonance
energy is de�ned as in dimensional variables

res = pres=(mc) =

 
M2c2 + p2?;0
2�m2c2

!2=3

: (31)

Using the fact that the betatron frequency is 
� = 
=
p
 and expansion

mc2 ' pzc+M
2c3=(2pz)+p

2
?;0c=(2pz) follows from Eq. (5), the condition (31)

13



for betatron resonance can be rewritten in more familiar form [20]


� = !

�
1�

vz

c

�
: (32)

In the limitM = m and p?;0 = 0 the expression for resonant electron energy

coincides with one calculated in in the limit vph = c. This expression is also

similar to one known in the theory of ion channel laser [29, 32] in the theory

of free electron lasers (FELs) [33, 34]. In FEL the electrons transversely

oscillate in undulator instead of the betatron oscillation in ion channel. The

wavelength of the radiation emitted in forward direction in FEL is given

[33, 34]

� =
�u

22

�
1 + a2

w

�
; (33)

where �u is the undulator wavelength and aw = eB0�u=(2�mc
2) is the un-

dulator parameter. If we take into account that p? = mcaw in FEL, M = 1

and � = �u=
�p

�
�
= 
=! then we obtain Eq. (31).

IV. LASER ENERGY ABSORPTION AND

MAGNETIC FIELD GENERATION

In this Section we consider how the electron distribution function evolves

under the inuence of the laser pulse, resulting in the absorption of the laser

energy and angular momentum. There are some indications from numeri-

cal simulations and experiments [20, 35] that some of electrons gain a little

amount of the laser energy and some of the them gain a large one. Therefore

two regimes can be envisioned: quasi-linear and strongly-nonlinear. In the

quasi-linear regime, the energy change of the electron w� much smaller than

its initial energy w0. Another important feature of the quasi-linear regime

is that the beam velocity always remains smaller than the group velocity of

the laser pulse and the electrons quickly pass the pulse. Moreover, the laser

pulse is assumed to be suÆciently short, so that the electron has enough time

to slip through the pulse while remaining in the channel. This requires that

cT < �Lch=
p
p, where Lch is the length of the channel.

In the strongly-nonlinear regime, strong modi�cation of the structure of

electron orbits in phase space leads to the particle trapping and subsequent

14



absorption of laser energy and angular momentum. As a result, the energy

exchange between the electrons and the laser can be comparable or even

exceed the initial electron energy. In this regime the beam velocity is close

to the group velocity of the laser pulse and the electrons slowly pass the pulse

so that the time of ight of an electron through the pulse is greater than the

period of the nonlinear oscillation in the laser �eld:

Tvgr

jvz � vgrj
> ttrap; (34)

where ttrap is the characteristic period of trapped oscillations in the phase

space.

A. Quasi-linear regime

In the quasi-linear regime, the energy absorbed by the hot electrons can be

obtained using the perturbation theory. In analyzing this regime, we employ

Madey's theorem [36], originally developed by John Madey for the analysis

of FELs. Subsequently, Madey's theorem was generalized and applied to

arbitrary Hamiltonian systems [37].

It follows from Eqs. (25), (27) the change in w is proportional to the

change in p (Moreover in our case vph = c �w = �p). So to calculate

change in electron energy we can calculate �p. Formally, the last term in

the Hamiltonian (28) is responsible for the wave-particle energy exchange.

To zeroth order, there is no energy exchange:

p(0) = p0 = const; 	(0) (p0; t;	0) =
@H0

@p0
t +	0: (35)

To �rst order, there is no overall energy exchange since equal numbers of elec-

trons gain and lose energy. Individual particles gain/lose energy according

to

�w(1) = p� = p(1) � p0 =
Z @H�

h
p0;	

(0) (p0; t;	0) ; t
i

@	
dt; (36)

where H� � Hint is the last term in the RHS of Eq. (28). Integrating Eq. (36)

over t yields

p�(p0) =
p
��a0d sin	0

s
p0 + C2

p3=2
exp [��	(p0)] ; (37)
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where

�	(p0) =
d2

4

 
@H0

@p0

!2

=
�2

4

�2
�
C1 +

M2

2�
p
p0
� p0

�2
�
M2p

�1=2
0 + 2�p0 + 2�C1

�2 : (38)

Not surprisingly, resonant electrons interact strongest with the laser be-

cause �	 vanishes at resonance; laser-particle energy exchange is exponen-

tially diminished for non-resonant electrons. Because of the sinusoidal de-

pendence of p� on the phase 	0, the energy exchange p�(p0) vanishes after
averaging over the electron phases. The second order calculation is needed to

�nd the change in w. One straightforward approach to deriving the phase-

averaged energy increment �w to second-order in the laser �eld a0 is to use
Madey's theorem [36]. According to this theorem, the second order change

in w is given by

�w = �p =
D
p(2) � p0

E���
	0

=
1

2

@

@p0

D
p2�(p0)

E���
p1=const; C2=const

: (39)

Expressing C1 and C2 as function of I0 and L0 with help of Eq. (27), we can

express the Madey's theorem (39) using more physically transparent actions

I0 = (p0; I0; L0):

�p =
1

2
bG Dp2�(I0)E ; (40)

where D
p2�(I0)

E
= (I0 + L0)D (p0; I0) ; (41)

D (p0; I0) =
��2a20 exp [��	(p0; I0)]�

M2p
�1=2
0 + 2�I0

�2 ;

�	(p0; I0) =
�2

4

�2
�
I0 +

M2

�
p
p0
� 2p0

�2
�
M2p

�1=2
0 + 2�I0

�2 ;

bG �
 

@

@p0
+

@

@I0
+

@

@L0

!
:

The absorbed energy per electron Q can be calculated by averaging �p

over the initial electron distribution function F (I0),

Q =

Z
�pF (I0)dI0 = �

1

2

Z D
p2�(I0)

E bGF (I0)dI0: (42)
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The obtained expression is similar to the one for the rate of Landau damping

[38]

�L �
Z
Pk

 
k
@f

@v

!
; (43)

where Pk is the power of Cerenkov emission. In our case hp2�(I0)i is the power
of \betatron" emission.

To calculate the absorbed energy, we consider a cold electron beam with

the distribution function

F (pz; p?; r) = Æ (pz � pb) Æ [H? (pz; p?; r)�W?] ; (44)

where H? = �I=
p
p ' p2?=p is the normalized transverse energy, and for

simplicity we assume that W? �M=p. Note that W? is proportional to the

normalized electron emittance. The distribution function, expressed using

the action variables, is given by

F (I0) = Æ (p0 � pb) Æ

 
�I0p
p0
�W?

!
�
p
p0
: (45)

Assuming that electrons are uniformly distributed over the angular momen-

tum L, integration of Eq. (42) over p0, I0 yields

Q =
�

4
p
pbW?

Z p
pW?=�

�ppW?=�
bG*p2�

 
pb;

p
pbW?
�

; L0

!+
dL0: (46)

For long laser pulse (� = !T � 1)

bG Dp2�(I0)E ' � D
p2�(I0)

E bG�	(p0; I0)���
p0=pb

: (47)

Then Eq. (46) takes the form

Q ' �2D
 
pb;

p
pbW?
�

! bG�	 pb; ppbW?
�

!
: (48)

Introducing X = �
p
pb=W?, we can rewrite Eq. (48) in the form

Q '
�e2A2

0

2pbc
�2X2 (1� 2X) (X � 1) exp [��	(X; �)] ; (49)

�	(X; �) = �2 (1� 2X)
2
:
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The dependence of Q onX is shown on Fig. 2 and it is similar to one for small

signal gain in FELs [34]. Spontaneous betatron emission is maximized for

X = 1=2. According to Eq. (31) and consistently with our earlier assumption
of W? �M=p, X = 1=2 corresponds to the exact wave-particle resonance.

Note that the total energy gain (loss) by the electron ensemble vanishes

for X = 1=2. This phenomenon, which is the direct consequence of Madey's

theorem, is well-know in the context of free-electron lasers: to achieve a

small-signal gain, the electron energy w has to be higher that the resonant

energy wres, calculated for given radiation frequency and magnetic undula-

tor parameters [33]. The exact amount of the required for the peak gain

energy excess wpeak�wres depends on the undulator length: the longer is the

undulator, the smaller is the di�erence wpeak � wres.

The total duration of the electron-laser interaction is limited by either the

length of the plasma channel, or by the pulse duration (whichever is shorter).

We assume that the laser pulse duration in the reference frame of the hot

electron beam d � !L=c, where L is the length of the channel. Assuming

� � 1, we �nd that X ' 1=2 + 1=
�
2
p
2�
�
maximizes the electron energy

gain, while X ' 1=2�1=
�
2
p
2�
�
maximizes the small-signal gain of the laser

pulse. The maximum of the absorbed energy as a function of the normalized

pulse duration � = !T � 1 is

Q '
�e2A2

0

16pbc

�
p
2
exp

�
�
1

2

�
: (50)

Note that for the resonant electrons � � 2�Nosc, where Nosc is the number

of betatron oscillations executed by an electron while it stays inside the laser

pulse.

Given the perturbed distribution function F (p; I; L), the average mag-

netic �eld hBi can be computed according to Eq. (21):

Bind =

Z
hB(I)iF (I)dI =

Z
2eN�L

I +
p
I2 � L2

F (I)
p
p
dI: (51)

The perturbed distribution function F (p; I; L) can be obtained from the un-

perturbed distribution function F (I0) by integration along the appropriate

characteristics:

�p = �I = �L; (52)
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where Eq. (52) follows from Eq. (25). Instead of doing this, we use the

fact that, initially, there is no magnetic �eld because electrons are uniformly

distributed in L. Therefore, the induced quasi-static �eld can be calculated

as

Bind =

Z
hB(I)iF (I)dI =

Z
hB [I(I0)])iF (I0) dI0; (53)

where I(I0) is the set of perturbed action variables of the electron which

starts out with the set of unperturbed action variables I0.

In the quasi-linear absorption regime, B [I(I0)] can be Taylor expanded:

B [I(I0)] = B (I0) + �p bGB (I0) +
hp2�i
2

bG2B (I0) ; (54)

where we performed the averaging over 	0. Using generalized Madey's the-

orem (39), we can reduce Eq. (54) to a more convenient form

B [I(I0)] = B (I0) +
1

2
bG hDp2� (I0)E bGB (I0)

i
: (55)

Integrating Eq. (53) by parts yields

Bind = �
Z hp2� (I0)i bGB (I0)

2
bGF (I0) dI0: (56)

Equation (56) for the magnetic �eld bears some similarity with Eq. (42)

for the absorbed energy, except for an additional factor bGB (I0):

bGB (I0) =
2eN

I0 +
q
I20 � L2

0

�
p
p0

 
�
L0

2p0
+

s
I0 � L0

I0 + L0

!
: (57)

The �eld strength of the generated B-�eld is calculated by integrating Eq. (56)

by parts and assuming an electron distribution function given by Eq. (45):

Bind =

Z
F (I0)

2
bG hDp2� (I0)E bGB (I0)

i
dI0: (58)

After straightforward but cumbersome algebra, we obtain

Bind '
�
1�

�

4

�
(2�X)

2eN


c




!

mc2

W?

Q

pbc
; (59)
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where Q is the absorbed energy per electron given by Eq. (49).

Introducing the average electron beam density nb in the channel according

to

nb '
N

�r2max

'
1

2�

N!


c2

r
pz

mc

mc2

!I0
'

1

2�

N
2

c2
mc2

W?
; (60)

Eq. (59) can be recast in a more intuitive form

!ce

!
'
�
1�

�

4

�
(2�X)

!2
be

!2

 
Q

pbc

!
; (61)

where !2
be
= 4�e2nb=m, and !ce = eBind=mc is the nonrelativistic electron

cyclotron frequency. Assuming that !2
be
' �
2, where � = ne=ni is the

degree of electron evacuation in the channel, we rewrite Eq. (61) as

!ce

!
'
�
1�

�

4

�
(2�X)��2

 
Q

bmc2

!
; (62)

where relativistic gamma-factor of the electron, b, is used instead of pb
because in approximation  ' p = p2

z
� 1 + (p? + eA)2. Note that bmc

2

in Eq. (62) is the initial electron energy. Equation (62) loses validity when

Qb becomes comparable to bmc
2. Therefore, the largest reliable value of the

magnetic �eld which can be deduced from the quasi-linear theory is of the

order of Bind=B! � �2, where B! = mc!=e. For a 1�m laser pulse B! �
100 MG. Therefore, for a tenuous plasma with density 2� 1019cm�3 (which
corresponds to the plasma density measured in the RAL experiment [15]), the

predicted magnetic �eld is at most 0:5 MG. Since this prediction is almost an

order of magnitude below the recently measured magnetic �eld strength [15],

and since the energy transferred to the electrons can be much higher than

their initial energy [21], the strongly nonlinear calculation is well motivated.

B. Strongly nonlinear regime

The perturbative treatment of the previous section is not applicable in the

strongly nonlinear regime, where the electron energy change can be very

signi�cant, and electrons can even become trapped in the laser �eld. Under

condition (34), the variation of the laser wave amplitude, seen by an electron

executing a nonlinear oscillation, is small. Therefore, adiabatic theory is

adequate for describing the electron motion.
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The adiabatic invariant of the electron motion can still be broken if the

electron orbit in the phase space crosses a separatrix at a particular value of

the system parameter [39, 40, 41, 42, 43, 44]. At this moment the electron

becomes trapped by the wave, or conversely becomes free after being trapped.

The breaking of the adiabatic invariant leads to the absorption of the wave

energy. Incidentally, the Hamiltonian (28) is somewhat similar to the one

describing the nonlinear electron motion in a strong plasma wave [39, 40, 41],

or close to the cyclotron resonance [42, 43, 44]. Below, we demonstrate that

the crossing separatrix by electron also occurs in our system.

Assuming that the absorbed energy in this regime is much larger than

initial energy, we neglect the C2 in the Hamiltonian given by Eq. (28), and

consider a simpli�ed Hamiltonian

H '
M2

2p
+
�(p + C1)p

p
+ a(t)

p
�p�1=4 cos	; (63)

where a(t) = a0 exp (�t2=d2). It follows from Eq. (27) that condition C2 = 0

implies that I > L > 0. The equations of motion in the (p; 	) plane are

given by

dp

dt
= a(t)

p
�p�1=4 sin	; (64)

d	

dt
=

 
�
M2

2p2
+

�

2
p
p
�

�C1

2p3=2

!
�
a(t)

p
�

4p5=4
cos	: (65)

The bracketed term in the RHS of Eq. (65) is equal to the detuning from

the betatron resonance. It vanishes when p = pres, where pres is de�ned by

Eq. (29). When p < pres, the bracketed term is negative. The 	-dependent

term in the RHS of Eq. (65) is the so called inertial bunching, well known

in the theory of the Cyclotron Autoresonant Maser (CARM) [45, 47, 46].

In the context of the ion-channel laser, this term was identi�ed by Whittum

[29, 32] as the \debunching" term.

A somewhat similar system of equations was previously derived by Tsakiris

et. al. [28], and used for calculating the electron energy gain. Linearly po-

larized laser pulse was assumed in Ref. [28]. Our calculation di�ers from

Ref. [28] in two respects. First, it assumes a circularly polarized laser pulse

since the focus of our calculation is the magnetic �eld generation via the IFE.
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Second, by preserving the Hamiltonian nature of the equations of motion, we

retained the inertial bunching term which was omitted in Ref. [28].

There are several �xed points in the phase space: an elliptic �xed point

at 	 = �, and a pair of �xed (elliptic and hyperbolic) points at 	 = 0

(see Fig. 2). Contrary to the nonlinear electron dynamics near the cyclotron

resonance [42, 43, 44] in our case no bifurcation of phase space happens and

all �xed points exist at an arbitrary value of a like in the problem of electron

trapping in plasma wave [39, 40, 41]. For constant laser amplitude a, the

Hamiltonian is a constant of motion, and the electron orbits are given by the

H = const curves in the (p; 	) phase space.

A particle passing through the laser pulse experiences the slowly changing

with time laser amplitude. The Hamiltonian is then no longer a constant of

motion. Under the adiabatic condition (34), electron transitions from one

curve to another are governed by the conservation of the adiabatic invariant

J =

I
pd	; (66)

where the integral is taken over one complete period of motion in phase

space. If electron is not trapped, J is the area under a curve of constant

H; for trapped electrons J is the area enclosed by one of the closed contours

surrounding the elliptic �xed point. In the limit a �! 0, J is proportional to

the electron energy. Therefore, the conservation of J must be broken for an

electron in order to gain energy as it passes through separatrix (i. e. through

the laser pulse.)

The mechanism of the electron heating in the nonlinear regime is schemat-

ically demonstrated by Fig. 3, where we present sequence of phase space

snapshots of the dynamical system governed by the Hamiltonian 28 with pa-

rameters p0 = 3:9, p?;0 = 2, C2 = 0, and � = 0:1. The relation between p?;0
and C1 is p

2
?;0 = � (C1 + p0) =

p
p0 and follows from Eqs. (27) and (30). A

similar sequence of phase space snapshots (albeit for a very di�erent phys-

ical system) was produced by Nevins et. al. [42] to illustrate the nonlinear

regime of the cyclotron heating. The initial particle distribution of cold elec-

tron beam is shown as a thick line in Fig. 3(a). For simplicity, we assumed

fast electrons (p� p?; 1 + a2) which are still moving slower than laser pulse

(vz < vgr) (see Fig. 4). Such electrons can be, for example, pre-accelerated by
the plasma wave excited in the front of the laser pulse. If the pre-acceleration

takes place where the amplitude of the laser pulse is relatively small, then
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the electrons are not initially trapped. Another plausible scenario (which is

outside of the scope of this work but can be described in our model) can be

envisioned: electrons can be accelerated by the plasma wave behind the laser

pulse and gain signi�cant energy to overtake the pulse. An additional (and

the most signi�cant) energy gain will then occur during the electron passage

through the pulse.

As the electrons move into the center of the laser pulse, the �eld strength

parameter a increases, and the region of trapped orbits about the elliptic �xed

point expands. As the trapped region expands, the phase volume ows from

the region of open orbits below the separatrix, through the hyperbolic �xed

points, and into the trapped region. If the wave amplitude is suÆciently

large, all of the phase volume below separatrix is pulled into the trapped

region [see Fig. 3(b)]. For the present simulation parameters, trapping occurs

for atr = 0:7. Below we derive a qualitative criterion for the onset of trapping.

As electrons move out of the pulse, a decreases and the trapped region

collapses. The phase volume is expelled through the hyperbolic �xed point

into both the regions above and below the separatrix. Therefore, electrons

are pushed back into the passing region, but roughly half of them are expelled

above the separatrix [39, 42, 44]. Those electrons that are pulled out into the

trapped region from below the separatrix and end up above the separatrix

gain energy and angular momentum.

Since p '  in our model we will use the kinetic energy of the electron,

 instead of the longitudinal momentum of the electron, p. In Figs. 5(a),(b)

we show a typical trajectory of an electron which crossed the separatrix

twice without the net energy gain. Our numerical simulation con�rms that

the fraction of such electrons is about 1=2. A phase-space trajectory of

another electron, which also crossed the separatrix twice, but absorbed some

net energy, is shown in Figs. 5(c),(d). Numerical simulation indicates that

approximately half of the electrons do not change energy and return to 0,
another half of the electrons reach the �nal energy f , and a small fraction

of the electrons have the �nal value of energy between 0 and f . The last

portion appears because the adiabaticity condition is not strictly ful�lled

[jvz � vgrj ttrap=(Tvgr) 6= 0].

To estimate the energy gain in nonlinear regime, we should use the fact

that adiabatic invariant J is conserved before the separatrix crossing. Unfor-

tunately the Hamiltonian (63) is too complex to provide analytical calcula-

tion of J and we will use the fact (following from numerical simulations) that
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the Hamiltonian does not change essentially during interaction (see Fig. 6).

Before electron enters the pulse (a ' 0), its Hamiltonian is equal to

H(t = �1) = H0 =
1

20
+
�(0 + C1)p

0
'

1 + p2?;0
20

: (67)

After electron passing the laser pulse a is again equal to 0. The equation

H(t = +1) = H(p; a = 0) ' H0 has two solutions, 0 and f , where

f '
p4?;0
�220

: (68)

To derive this expression we assume that p2?;0 � 1 and use the fact that

f � 0. Note that, contrary to the quasi - linear regime of the energy

absorption when �p = �w, in strongly nonlinear regime f � 0 and �p =
�w ' . For the parameters of the numerical simulations presented in

Figs. 5,6 (0 = 5:9, p?;0 = 2, � = 0:12), Eq. (68) predicts f ' 25, in fairly

good agreement with the numerical result f ' 24. Hence, the averaged

energy gain is

h�i =
f + 0

2
'

p4?;0
2�220

: (69)

Electron trapping occurs when the initially injected particles cross the

separatrix. Using the conservation of the adiabatic invariant J(H; a) =

J(H0; 0) = const we can express H as function of a: H = H (H0; a). This

function is not valid at the moment when the particle orbit cross the sepa-

ratrix in the phase space and the adiabatic invariant becomes broken. Sepa-

ratrix is a characterized by the certain value of the Hamiltonian Hsep. Sepa-

ratrix crossing occurs at a = atr when the given electron orbit starting with

parameters H0 and a = 0 at t = �1 in the phase space becomes the separa-

trix. The value of atr, at which the separatrix crossing (or particle trapping)

occurs, can be estimated from the equation H (H0; a = atr) ' Hsep. Elec-

trons are trapped in the wave if the peak laser amplitude a0 satis�es

a0 > atr (0; p?;0; a0) : (70)

The range of parameters 0, p
2
?;0, a0 for which electrons can be

accelerated in the strongly nonlinear regime can be obtained from the

f (0; p?;0) > 0 (71)
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and Eq. (70).

Using expression (69) for mean energy gain, the absorbed energy can be

obtained for electrons with distribution function F (0; p?;0)

Q =

Z Z
Sres

d0dp?;0�(0; p?;0)F (0; p?;0); (72)

where Sres is the domain of 0, p?;0 at which strongly nonlinear acceleration

regime occurs. For cold electron beam with distribution function (44), where

pb and W? belong to the resonance domain Sres, we obtain

Q '
W 2
?

2�2
=W?

W?
mc2

!2

2
2
: (73)

In the nonlinear absorption regime, electrons gain large amounts of energy

and angular momentum after interaction with laser pulse (� > 0 ' pb,

�I > I0 and �L > L0). So in strongly nonlinear regime all resonant electrons

after interaction with laser pulse have I ' L ' �I and perform circular

motion with r =

r
�I=

�
�
p
�

�
. Then, the generated magnetic �eld in this

regime is

Bind ' 2eN�
Z
Sres

F0 (I0)q
� (I0)

dI0; (74)

where integration in this expression is taken over the resonance particle Sres
Eq. (70).

Using the electron distribution function given by Eq. (44) yields

Bind '
2
p
2eN�2

W?
=

2eN�
p
Q

=
2eN


c

mc2
p
Q
: (75)

Since If ' f we can present Eq. (60) in the form

hnbi '
Z

N

�r2max

F0 (I0) dI0 '
N�

2�
p
Q

=
N!


c2

s
mc2

Q
: (76)

Thus, the axial magnetic �eld generated in the strongly nonlinear regime can

be rewritten in the form

!ce

!
'
h!2

be
i

!2
' ��2: (77)
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Equation (77), derived for the strongly nonlinear regime, yields no sur-

prises or new results beyond what one could expect from pushing Eq. (62)

to its applicability limit. For the parameters of the recent experiment at

RAL [15], the peak magnetic �eld can be estimated as less than 1 MG. This

estimate is almost three times smaller that the experimentally measured �eld.

Interestingly, Eq. (77) indicates that the magnetic �eld does not depend

on the actual amount of energy (or angular momentum) gained by the elec-

trons. This result can be understood as follows: Since magnetic �eld is

determined by the azimuthal electron current j�, and j� = �enbv�, what
ultimately matters for B-�eld generation is the azimuthal electron velocity

v�. But the increase �v� = �p�=p, where �p� is the electron momentum

increment. Therefore, as electrons gain angular momentum, they also gain

energy, increasing p. Thus, the angular momentum increase is o�set by the

relativistic increase of the electron mass. This mass increase is, ultimately,

responsible for the weakness of the magnetic �eld predicted by Eq. (77).

To explain the experimental result, one may have to include collective

e�ects which could lead to the angular momentum re-distribution between

the highly relativistic and non-relativistic electrons. Also, fast electrons pro-

duced by the laser trapping can excite plasma waves. These plasma waves,

supported by the ambient plasma (in and outside of the ion channel), can

signi�cantly slow down fast electrons. The longitudinal electric �eld of the

plasma wave does not change the angular momentum of the electrons. Its

role is to remove a signi�cant fraction of the total energy imparted by the

laser. As a result, fast particles can absorb signi�cant amount of energy (and

angular momentum) from the laser without becoming very heavy. For exam-

ple, to explain the experimentally observed magnetic �eld 2:5 MG requires

that hot electrons loose about 2=3 of the energy gained from the laser to

plasma wave generation. Also numerical simulations show [48] that the high-

est electron density is outside the channel an near the channel border since

the electric �eld of the channel ions attracts the electrons outside the channel

too. The number of these electrons substantially exceeds the electrons in the

channel. These electron can also perform circular motion around the channel

and generate ultrahigh intensity magnetic �eld.
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V. DISCUSSION AND CONCLUSION

In this paper we have analyzed the dynamics of the wave-particle interaction

in an ion channel, with the emphasis on the magnetic �eld generation, or

IFE. For the �rst time, to our knowledge, a simple and intuitive physical

picture of the axial magnetic �eld generation through the angular momentum

transfer from the laser pulse to the hot electrons is developed. Since the

angular momentum absorption requires the resonant photon absorption, we

identi�ed one possible mechanism as the betatron resonance between the hot

electrons in the partially-evacuated ion channel and the co-propagating laser

pulse. This resonance has been recently identi�ed [20, 21, 28] as the cause

of the signi�cant electron energy gain directly from the laser pulse. Here,

we point out that if the laser pulse is circularly polarized, then another by

product of such a resonant wave-particle interaction is the axial magnetic

�eld generation (also known as IFE).

We calculated the magnitude of the magnetic �eld in two regimes: quasi-

linear and strongly nonlinear. The quasi-linear regime requires the presence

of the large population of hot resonant electrons, while the strongly nonlin-

ear regime is valid for a broad range of electron energies. The generalized

Madey's theorem was used to calculate the electron energy gain and magnetic

�eld generation in the quasi-linear regime. In the strongly nonlinear regime,

we related the net electron energy gain to the structural transition of the res-

onance electron orbits in the phase space as result of the separatrix crossing

during the adiabatic change of the laser �eld strength. For both regimes the

absorbed angular momentum is proportional to the absorbed energy that is

the manifestation of the resonance nature of the radiation energy absorption

phenomenon [49].

While calculations were performed for the circularly polarized laser pulse,

all the results pertaining to the energy transfer are also valid for the linearly

polarized wave. In this regard, our work extends the earlier simulations [20,

21] and theoretical calculations [28] which predicted a signi�cant electron

energy gain. By using the Hamiltonian approach from the start, we were able

to retain some of the physics [e. g., force bunching term in Eq. (65)] which

was neglected in Ref. [28]. Use of the adiabatic approximation also enabled

us to treat the strong electron acceleration observed in these simulations

when the electrons overtake the laser pulse since all phenomena like electron

trapping in laser wave and separatrix crossing in the phase space occur in
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this case too.

One of the motivations for this work was to interpret the recent experi-

mental measurements [15] of the IFE during relativistic laser-plasma inter-

actions. While we were able to explain the e�ect qualitatively as being due

to the resonant absorption of the laser angular momentum by the plasma

electrons, our estimates of the magnetic �eld strength are lower than the ex-

perimentally measured. We speculate that this discrepancy is due to the fact

that the model used in this paper is not fully self-consistent. For example, it

neglects the laser depletion by the hot electrons. All interactions of the hot

electrons with the background plasma are also neglected. Such interactions

include, for example, acceleration or deceleration of the hot electrons by the

plasma waves supported by the background plasma.

Our theory would have predicted a much larger magnetic �eld if hot

electrons were continuously slowed down by their interaction with the sur-

rounding plasma. For example, one could envision the energy loss associated

with the generation of the plasma waves by the fast electrons. Including

this e�ect would have brought the estimates into better agreement with the

experimental data. Moreover, to estimate the energy gain and magnetic �eld

strength, we used a very simple distribution function. Further investigations

will include the more realistic electron distribution functions, as well as the

more self-consistent analysis of the interaction between fast electrons and the

ambient plasma.
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APPENDIX: BETATRON RESONANCE IN

THE CASE vph 6= c

In general case p2
ph
6=1 the Hamiltonian (28) have an additional term

H = �
p

2p2
ph

+
M2

2p
+
�(p + C1)p

p
+ A0 exp

 
�
t2

d2

!s
� (p+ C2)

p3=2
sin	; (A1)

where d = 2�
�
M2p�2 � p�2

ph
+ 2�p�1=2 + 2�C1p

�3=2
��1

.

The resonance condition is

�
	=

@H0

@p
= �

1

2p2
ph

�
M2

2p2
+

�

2
p
p
�

�C1

2p3=2
= 0: (A2)

The resonance condition can be rewritten as follows

@H0

@p
=

1

2p3=2

 p
p

2p2
ph

� �

! 
C1 +

M2

�
p
p
� p

!
� R; (A3)

where 2R = p�2
ph
+C1p

�1+M2p�3=2��1. To derive the condition when we can

neglect term R in Eq. () we introduce the e�ective neutralization factor in the

channel, f = ne=ni, then !
2
be
' f�2 and p�2

ph
' f�2. Then R can be neglected

if fp; ��1g � jp? +Aj. At the resonance pres = p0 and p?;res = p?;0 and the

resonance energy is

ras ' pres = 4�2p4
ph
;

res ' pres =

�
M

2+p2
?;0

2�

�2=3
:

(A4)

In the limitM = 1 and p?;0 = 0 the expression for resonance electron energy

coincides with ones calculated in [20] (see Fig. 4 therein).

References

[1] A. Modena, A. E. Dangor, Z. Najmudin, C. E. Clayton, K. Marsh,

C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh,

Nature 377, 606 (1995).

29



[2] A. Ting, C. I. Moore, K. Krushelnick, C. Manka, E. Esarey, P. Sprangle,

R. Hubbard, H. R. Burris, R. Fischer, and M. Baine, Phys. Plasmas 4,

1889 (1997).

[3] R. Wagner, S.-Y. Chen, A. Maksimchuk, and D. Umstadter,

Phys. Rev. Lett. 78, 3125 (1997).

[4] K. Krushelnick, E. L. Clark, Z. Najmudin, M. Salvati, M. I. K. San-

tala, M. Tatarakis, A. E. Dangor, V. Malka, D. Neely, R. Allott, and

C. Danson, Phys. Rev. Lett. 83, 737 (1999).

[5] A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, and V. Yu. Bychenkov,

Phys. Rev. Lett. 84, 4108 (2000).

[6] M. Borghesi, A. J. MacKinnon, A. R. Bell, R. Gailard, and O. Willi,

Phys. Rev. Lett. 81, 112 (1998).

[7] J. A. Stamper, Laser and Part. Beams, 9, 841 (1991).

[8] R. N. Sudan, Phys. Rev. Lett. 20, 3075 (1993).

[9] Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Spitalnik,

and b. Arad, \Measurements of Inverse Faraday E�ect and Absorption

of Circularly Polarized Laser Light in Plasmas", Phys. Rev. Lett. 78,

1707 (1997).

[10] S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon,

Phys. Rev. Lett. 69, 1383 (1992); R. J. Mason and M. Tabak,

Phys. Rev. Lett. 80, 524 (1998).

[11] L. M. Gorbunov, P. Mora, and T. M. Antonsen, Phys. Plasmas 4, 4358

(1997).

[12] L. P. Pitaevskii, Sov. Phys. JETP 12, 1008 (1961).

[13] A. D. Steiger and C. H. Woods, Phys. Rev. A 5, 1467 (1972).

[14] T. Lehner, Europhys. Lett. 50, 480 (2000).

[15] Z. Najmudin, M. Tatarakis, A. Pukhov, E. L. Clark, R. J. Clarke,

A. E. Dangor, J. Faure, V. Malka, D. Neely, M. I. K. Santala, and

K. Krushelnick, Phys. Rev. Lett. 87, 215004 (2001).

30



[16] A. Sh. Abdullaev and A. A. Frolov, Sov. Phys. JETP 54, 493 (1981).

[17] Z. H. Sheng and J. Meyer-ter-Vehn, Phys. Rev. E 54, 1833 (1996).

[18] L. M. Gorbunov, P. Mora and T. M. Antonsen, Jr., Phys. Rev. Lett. 76,

2495 (1996).

[19] V. I. Berezhiani, S. M. Mahajan and N. L. Shatashvili, Phys. Rev. E

55, 995 (1997).

[20] A. Pukhov, Z. M. Sheng and J. Meyer-ter-Vehn, Phys. Plasmas, 6, 2847

(1999).

[21] C. Gahn, G. Tsakiris, A. Pukhov, et al., Phys. Rev. Lett. 83, 4772

(1999).

[22] I. Yu. Kostyukov, G. Shvets, N. J. Fisch, J. M. Rax, Laser Part. Beams

19, 133 (2001); ibid, Bull. Am. Phys. Soc. 47, 39 (2000)

[23] M. H. Key, M. D. Cable, T. E. Cowan, et. al. Phys. Plasmas, 5, 1966

(1998).

[24] K. B. Wharton, C. Brown, B. A. Hammel, S. Hatchett, M. H. Key, et

al., Phys. Rev. Lett. 81, 822 (1998).

[25] A. Pukhov and J. Meyer-ter-Vehn, Phys. Rev. Lett. 79, 2686 (1997).

[26] A. Pukhov and J. Meyer-ter-Vehn, Phys. Rev. Lett. 76, 3975 (1997).

[27] A. Pukhov and J. Meyer-ter-Vehn, Phys. Plasmas, 5, 1880 (1998).

[28] G. D. Tsakiris, C. Gahn, V. K. Tripathi, Phys. Plasmas, 7, 3017 (2000).

[29] D. H. Whittum, Theory of the Ion-Channel Laser, Ph. D. Thesis,

September 1990 (unpublished).

[30] R. C. Davidson, Physics of Nonneutral PLasmas (Addison-Wesley, Red-

wood City, California, 1990).

[31] A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion

(Springer-Verlag, New York, 1983).

31



[32] D. H. Whittum, A. M. Sessler, and J. M. Dawson, Phys. Rev. Lett. 64,

2511 (1990).

[33] W. B. Colson, J. C. Gallardo, and P. M. Bosco, Phys. Rev. A 34, 4875

(1986).

[34] G. Dattoli, L. Giannessi, A. Renieri, A. Torre, in Progress in Optics

XXXI, ed. by E. Wolf, p. 321 (Elsevier Science Publishers B.P., London,

1993).

[35] V. Malka, J. Faure, J. P. Marques et al., Phys. Plasmas 8, 2605 (2001)

[36] J. M. J. Madey, Nuovo Cimento B 50, 64 (1979).

[37] G. M. Fraiman and I. Yu. Kostyukov, Phys. Plasmas 2, 923 (1995).

[38] V. V. Zhelezniakov, Radiation in Astrophysical Plasmas (Astrophysics

and Space Science Library), V. 204 (Kluwer Academic Pub, Boston,

1996).

[39] R. Aamodt, E. Jaeger, Phys. Fluids, 17, 1386 (1974).

[40] R. Best, Physics, 40, 182 (1968).

[41] A. S. Bakai and Yu. P. Stepanovskii, Adiabatic Invariants (Naukova

Dumka, Kiev, 1981)

[42] W. M. Nevins, T. D. Rognlien and B. J. Cohen, Phys. Rev. Lett. 59,

60 (1987).

[43] E. V. Suvorov and M. D. Tokman, Fiz. Plazmy, 14, 950 (1988).

[44] I. A. Kotel'nikov and G. V. Stupakov, Phys. Fluids B, 2, 882 (1990).

[45] K. R. Chu and J. L. Hirsh�eld, Phys. Fluids, 21, 461 (1978).

[46] C. Chen and J. S. Wurtele, Phys. Rev. A 40, 489 (1989).

[47] K. R. Chen, J. M. Dawson, A. T. Lin, and T. Katsouleas, Phys. Fluids

B 3, 1270 (1990).

32



[48] M. Borghesi, A. J. Macckinnon, L. Barringer, et al., Phys. Rev. Lett.

78, 879 (1997).

[49] N. J. Fisch and J. M. Rax, Phys. Rev. Lett. 69, 612 (1992).

33



FIG. 1. Transversal dynamics of an electron in ion channel without in-

teraction with laser pulse. Straight line 1 is the electron trajectory without

angular momentum (L = 0). Circumference 2 is the electron trajectory with

maximal or minimal angular momentum (L = I or L = �I). Curve 3 is the
electron trajectory with (L = I=2).

FIG. 2. The dependence of Q on X for linear absorption regime at � = 5.

FIG. 3. A sequence of snapshots of phase space of the electron moving

across the laser pulse illustrating the heating in the strongly nonlinear regime.

The thin lines are surfaces of constant Hamiltonian. The particles are indi-

cate by the heavy lines. They are �rst pulled through the hyperbolic �xed

point from below separatrix [(a)-(c)]. Half of the particles are expelled above

separatrix [(d)-(e)]. Parameters are � = 0:1, A0 = 1:5, p0 = 3:9, p?;0 = 2,

C2 = 0.

FIG. 4. Schematic of the electron acceleration in the frame of the laser

pulse. Electron �rst is pre-accelerated in the front of laser pulse but have

velocity less than group velocity of laser pulse. In the frame of laser pulse

the electron moves across the laser pulse. (The electron is overtaken by the

laser pulse in laboratory frame).

FIG. 5. Typical electron trajectory of an electrons moving across the

laser pulse in the strongly nonlinear regime without energy gain (a, b) and

with energy gain (c, d). Parameters are � = 0:12, A0 = 3, p0 = 5:9, p?;0 = 2,

C2 = 0.

FIG. 6. The dynamics of the Hamiltonian during the interaction of an

electron with laser pulse with energy gain (a) and without energy (b). Pa-

rameters are the same as for Fig. 5.
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