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1. Introduction

The National Spherical Torus Experiment (NSTX) is a spherical tokamak with nominal plasma
major radius R0=0.85m, minor radius a=0.66m, and aspect ratio A> 1.28. Typical discharge
parameters are IP = 0.7-1.4 MA, Bt0 = 0.25-0.45 Tesla at R0, elongation = 1.7-2.2, triangularity
0.3-0.5, line-average electron density ne = 2-5×1019 m-3, Te(0)=0.5-1.5keV, and Ti(0) = 0.5-
2keV. The NSTX auxiliary heating systems can routinely deliver 4.5MW of 80keV deuterium
neutral beams and 3MW of 30MHz high-harmonic fast wave power. Kinetic profile diagnostics
presently include a 10 channel, 30Hz multi-pulse Thomson scattering system (MPTS), a 17
channel charge exchange recombination spectroscopy (CHERS) system, a 48 chord ultra-soft
X-ray (USXR) array, and a 15 chord bolometry array. Initial experiments utilizing auxiliary
heating on NSTX have focused on MHD stability limits, confinement trends, studying H-mode
characteristics, and performing initial power balance calculations.

2. Experimental Results

2.1. MHD Stability

The spherical tokamak (ST) is expected to be stable to pressure-driven instabilities at high
toroidal β = βt0 ≡ 2µ0〈p〉/Bt0

2. Access to highβ is achieved by operating at high normalized
current = IP/aBt0 and derives from the Troyon [1] relation for the no-wallβ-limit in tokamaks,
βmax ≤ CTIP/aBt0 where CT is a constant. Key issues for the ST include (a) the determination
of the maximum achievableβN ≡ β(%)a(m)Bt0(T)/IP(MA) and (b) the definitions ofβ and
βN (if any) which allow the Troyon relation to accurately apply to all tokamak aspect
ratios. EFIT [2, 3] analysis of nearly 900 NSTX discharges with IP > 0.5MA has been
performed using external magnetic measurements only. Good agreement is found between
EFIT and the measured diamagnetic flux, and the sawtooth inversion radius as determined
from USXR tomography is in good agreement with the q=1 radius as found by EFIT.
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Figure 1. (a) Vacuum-toroidal beta and (b)
volume-average beta versus I/aB for NSTX
discharges with IP > 500kA.

The EFIT total stored energy tends to be 15-20kJ
larger than the sum of thermal plus fast particle
stored energy based on measured Te, ne, and Ti

profiles and assuming classical confinement and
thermalization of NBI ions. This results in a 10-
15% uncertainty in the highest NSTXβ values.
Figure 1 shows NSTX EFITβ values at peak
stored energy plotted versus IP/aBt0. As seen in
Figure 1a, NSTX has achievedβN =2-4 over a
range of IP/aBt0 spanning 2-6. Thus far, the highest
βN values have been achieved at the lowest toroidal
field Bt0 = 3kG, although recently NSTX has
achievedβt0 = 20% at IP=1.2MA and Bt0 = 3.5kG.
Figure 1b, shows the same NSTX data using the
definition of β originally used by Troyon [1]. As
seen in the figure, using the volume average of
B2 leads toβ values roughly a factor of 2 lower
than the conventional tokamak definition. With this
definition ofβ, 〈βN〉 ≈ 2 appears to better describe
theβ-limit of present NSTX discharges. Profile optimization will likely be required to reach the
theoretical no-wall limit of〈βN〉 ≈ 3.

Figure 2. (a) Intermediate frequency (0-
150kHz) MHD activity for aβ=20% discharge
and (b) 0.2-2MHz MHD activity for lowerβ
discharges undergoing TF ramps.

At the β-limit for the discharges of Figure 1,
either rapidβ collapse orβ saturation is observed.
The highestβ shots in NSTX routinely suffer
rapid collapses, and inspection of the data in
Figure 1 reveals that these discharges typically
have q(0) at or below 1 at collapse. For such
discharges, ideal stability analysis shows that
internal pressure-driven kink modes with toroidal
mode numbers n=1-2 (sometimes higher) can
simultaneously become unstable. Figure 2a shows
the frequency and toroidal mode number spectrum
for a discharge with peakβ=20%. This discharge
suffers a rapidβ collapse at t=220ms and shows
a large n=1 (and smaller n=2) mode active at the
collapse. Prior to this collapse, several other mode
numbers are present throughout the discharge. As
seen in Figure 2a, a large 80kHz n=1 mode appears
shortly after beam turn-on. The mode frequency
scales roughly with the Alfven speed and is much
higher than the initial plasma rotation frequency.
Then, as q(0) approaches 1 near t=150ms, the n=1
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Figure 3. NSTX total energy confinement times compared to (a) ITER-89P and (b) 98pby2 scalings at
peak stored energy (triangles) and MHD-quiescent time (circles).

mode disappears and n=2 and 3 modes appear at completely different frequencies. If these
modes are Toroidal Alfven Eigenmodes (TAEs), continuum damping of the original n=1 mode
by the presence of the 1/1 surface may explain this phenomena. Later, as q(0) drops below 1,
the n=1 (and higher) mode reappears and persists until the collapse. Not every NBI discharge
has activity in this frequency range, and those that do have only minor fast ion losses when the
modes are active. The highestβP (≈ 0.4-0.5) discharges in NSTX typically have higher q(0)
and more frequently exhibitβ saturation. Such discharges tend to have n>1 activity dominant
during saturation. Neoclassical tearing modes are a very plausible cause of such saturation and
are under active study.

Higher frequency NBI-driven MHD modes with f = 0.5-2MHz have also been observed
in NSTX. Figure 2b shows the frequency spectra for two discharges - one with a toroidal field
(TF) ramp-up, the second with a TF ramp-down. As seen in the figure, the mode frequency is
observed to scale as the Alfven speed which indicates that the modes are plasma eigenmodes
rather than energetic particle modes [4]. These modes exhibit most of the properties of
Compressional Alfven Eigenmodes (CAE) [5] which can be be excited through a Doppler-
shifted perpendicular resonance with NBI fast ions at frequencies well below the ion cyclotron
frequency where ion cyclotron and ion and electron Landau damping are weak. These modes
cause no apparent fast ion loss, and in some circumstances are active when the lower-frequency
TAE-like modes described above are also present.

2.2. Confinement

The achievement of highβ in NSTX has been greatly facilitated by good energy confinement
even in non H-mode discharges. Figure 3a compares the total (thermal+beam) energy
confinement times of select NSTX discharges to the ITER-89P L-mode scaling. As seen in
the figure, H-factors relative to 89P are in the range of 1-2 and increase as the confinement
time increases. As expected, the highest confinement is achieved when MHD is not active
(circles) or is weak. Figure 3b plots NSTX confinement against the 98pby2 H-mode scaling,
and as seen in this figure, this scaling better matches NSTX for both H-mode and non H-mode
discharges. Confinement times for two discharges with clear H-mode signatures are also plotted
in the figure (green diamonds) and have H≈1.25 relative to 98pby2. The spontaneous low-to-



high (L-H) confinement mode transitions have only been observed in lower-single-null divertor
discharges for PNBI > 850kW and Bt0=0.45 Tesla. The H-mode phase varies from 0.5-65ms in
duration and is typically terminated by peripheral MHD in the form of cold m/n=2/1 islands.
The observation of clear H-mode transitions and profiles suggests that other high-confinement
plasmas in NSTX are not transition-less H-modes. High-temperature bake-out of all NSTX
graphite and control system upgrades are expected to further improve confinement in NSTX
and hopefully allow easier access to H-mode.
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Figure 4. (a) Electron (blue) and ion
temperature profiles and (b) safety factor
(blue) and carbon rotation frequency profiles
(÷10kHz) for shot 104001 near t=290ms.

Initial analysis of CHERS profiles obtained
during NBI power step-ups shows that the Ti

profiles can be broader and hotter than the Te

profiles. Figure 4a shows the ion (black) and
electron (blue) temperatures for shot 104001 near
t=290ms. This discharge has IP=1MA, Bt0=4.5kG,
and achievesβ=9% and a peak stored energy
of 150kJ. Figure 4b shows that central rotation
frequencies can approach 30kHz (200km/s) and
outboard plasma edge rotation velocities are also
quite high (40-50km/s). Flat spots in the angular
rotation profile appear to be correlated with MHD
activity near mode-rational surfaces, particularly
near q=2. As seen in Figure 4a, the central ion
temperature is≈ 2keV and significantly exceeds
the electron temperature over most of the profile.
The central electron density at t=297ms is 4.3×1019

m-3 and is sufficiently high that strong electron-ion
thermal coupling is expected. In fact, this coupling
is computed (by TRANSP) to transfer 1.2MW from ions to electrons out of a total heating
power of 1.75MW (1.5MW NBI). This results in a negative computed ion thermal conduction.
Possible explanations of this situation include missing neoclassical corrections to the ion-
electron coupling and anomalous ion heating [6]. Future experiments will attempt to better
understand which plasma regimes exhibit this unusual behavior.
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