
PPPL-3456 PPPL-3456
UC-70

Numerical Study of Tilt Stability of Prolate Field-reversed Configurations

by

E. V. Belova, S. C. Jardin, H. Ji, M. Yamada, and R. Kulsrud

June 2000



PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

Availability

This report is posted on the U.S. Department of Energy’s Princeton
Plasma Physics Laboratory Publications and Reports web site in Calendar
Year 2000. The home page for PPPL Reports and Publications is:
http://www.pppl.gov/pub_report/

DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy
Office of Scientific and Technical Information
DOE Technical Information Services (DTIS)
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Telephone: 1-800-553-6847 or
(703) 605-6000

Fax: (703) 321-8547
Internet: http://www.ntis.gov/ordering.htm



NUMERICAL STUDY OF TILT STABILITY OF

PROLATE FIELD-REVERSED CONFIGURATIONS

E. V. Belova, S. C. Jardin, H. Ji, M. Yamada, R. Kulsrud

Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

Abstract

Global stability of the Field-Reversed Configuration (FRC) has been investigated nu-

merically using both 3D MHD and hybrid (fluid electron and δf particle ion) simulations.

The stabilizing effects of velocity shear and large ion orbits on the n = 1 internal tilt mode

in the prolate FRCs have been studied. Sheared rotation is found to reduce the growth

rate, however a large rotation rate with Mach number of M ∼> 1 is required in order for

significant reduction in the instability growth rate to occur. Kinetic effects associated with

large thermal ion orbits have been studied for different kinetic equilibria. Our simulations

show that there is a reduction in the tilt mode growth rate due to finite ion Larmor radius

(FLR) effects, but complete linear stability has not been found, even when the thermal ion

gyroradius is comparable to the distance between the field null and the separatrix. The in-

stability existing beyond the FLR theory threshold could be due to the resonant interaction

of the wave with ions whose Doppler shifted frequency matches the betatron frequency.

PACS numbers: 52.35.Py, 52.55.Hc, 52.65.Rr, 52.65.Kj
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I. INTRODUCTION

The Field-Reversed Configuration (FRC) is a compact toroid with negligible toroidal

field, in which plasma is confined by a poloidal magnetic field associated with toroidal dia-

magnetic current carried by the plasma. The FRC offers a unique fusion reactor potential

because of its compact and simple geometry, translation properties, and high plasma beta.

Although many MHD modes are predicted to be unstable, prolate FRCs have been produced

successfully by several formation techniques and show surprising macroscopic resilience1.

A substantial literature exists of FRC stability studies in both the MHD (ie, fluid) and

kinetic (ie, particle ion) descriptions2–9. The n = 1 tilt instability is thought to be the

most dangerous MHD instability because it is both strongly growing and a global mode

that is not readily stabilized when kinetic effects are included. This mode is internal to

the magnetic separatrix in the prolate FRC and thus cannot be effectively stabilized by

external means. MHD simulations show that the tilt mode growth rate is on the order of

the inverse Alfvén transit time and depends only weakly on the equilibrium profiles (within

a factor of two). Plasma rotation and the inclusion of the Hall term have been considered as

stabilizing mechanisms for this mode and were found to reduce the growth rate2. However a

change in the linear mode structure prevented the complete stabilization that was predicted

earlier based on a trial function dispersion analysis. In MHD calculations including the

effect of gyro-viscosity5, up to a factor of 3 reduction in growth rate has been found, but not

complete stability. It has also been found that there is no nonlinear saturation of the n = 1

tilt instability in the MHD description2,7.

The key parameters related to the finite Larmor radius (FLR) stability of the FRC are

s̄, which measures the number of thermal ion gyro-radii in the configuration and E, the

separatrix elongation. These are defined by

s̄ =
∫ Rs

R0

rdr

Rsρi

,

and E = Zs/Rs. Here R0 and Rs are the magnetic null and the separatrix radius at the

midplane, ρi is the local ion Larmor radius, and Zs is the separatrix half-length at r = 0.

The kinetic parameter s̄ indicates the importance of finite Larmor radius (FLR) effects,

which are strong for s̄ ∼ 1, while the s̄ � 1 (small Larmor radius) limit corresponds to the
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MHD regime. It has been found in a number of studies that the tilt mode growth rate is

reduced with increasing elongation (for a fixed separatrix radius). It is inversely proportional

to E for an equilibrium with an elliptic separatrix shape, but this dependence is weaker for

a racetrack separatrix shape3. Another useful stability parameter is the ratio s̄/E, which

arises from FLR theory4,10, according to which FLR effects are important when ω∗ ∼> γ.

Here ω∗ is the diamagnetic frequency, γ = CVA/Zs is the tilt mode growth rate in the MHD

approximation, VA is a characteristic Alfvén velocity, and C is a coefficient of the order of

unity. From these relations, an approximate condition for FLR effects to be important is:

s̄/E ∼< 0.2− 0.5.

Early linear kinetic calculations using a Vlasov-fluid trial function approach6 have found

a greatly reduced growth rate for s̄ ≈ 2 − 3 and even predicted complete stabilization at

s̄ ∼< 1.5 (E = 7.7). However, in a later spectral stability study with a more general set of

basis functions9, complete stabilization of the tilt mode has not been found, even for very

small values of s̄.

Kinetic calculations using the initial value particle simulation approach have been per-

formed for small elongation (E ≤ 2.5) and moderate kinetic regimes with 1.6 ≤ s̄ ≤ 12.

These were therefore in the parameter range (s̄/E ∼> 1) for which no significant stabilization

is predicted by the FLR theory. Simulation studies for equilibria with E = 2−2.5 and s̄ ∼> 2

have indeed found the tilt mode growth rate to be close to that predicted by MHD, and only

slightly affected by the s̄ value in this range11,12.

Several other effects have been identified in these simulation studies as possible stabiliz-

ing effects. It was found in one case that stability depends on the value of the plasma beta

at the magnetic separatrix11, βs. In another paper12, a spontaneously generated toroidal

magnetic field has been proposed as being a stabilizing factor. An earlier particle simulation

study13 considered the tilt stability for E = 1.5 and two values of s̄, 1.6 and 12, and found an

order of magnitude growth rate reduction in the first case. However, since their simulation

run time was several times shorter than an estimated growth time, this result may require

further verification. The effect of energetic ion beams on the tilting instability was studied

by Barnes and Milroy14 using a hybrid MHD/particle simulation, and was found to provide

significant stabilization of the tilt mode for a beam energy of about 40% of the total energy
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and beam density larger than 1.5% of the bulk density.

Experimentally, it seems clear that global stability to the n = 1 tilt has been achieved,

at least in some parameter regimes. Most FRC experiments have been performed with

relatively large elongation, E ∼ 5− 9, and small to moderate s̄ (s̄ ∼ 1− 8). In most cases,

FRCs with small s̄ values (s̄ ∼< 2) appear to be stable, and have been observed to persist

for over 100 Alfvén times15,16. Some n = 1 activity is often observed during or shortly after

the formation phase of a FRC, but the origin of this has not been positively identified. This

apparent stability is inconsistent with the MHD predictions and may indicate that kinetic

effects are important and account for the observed FRC stability. Some experimental studies

have reported a correlation between the appearance of tilt instabilities and a degradation of

confinement at larger values of s̄ and smaller elongation15 (s̄/E ∼ 1). This further supports

the FLR stabilization mechanism theory. The data from the Large-s Experiment (LSX), on

the other hand, seems to indicate no such correlation, and good confinement over a large

range of s̄ (1 ∼< s̄ ∼< 8) has been reported16,17. However, common to all the experimental

studies is the difficulty in FRC formation at large s̄. Although in some cases this was

attributed to formation inadequacies16, the possibility that it is related to a reduction in

stabilizing factors for the tilt instability at large s̄ can not be ruled out. We note finally that

there are experimental difficulties in detecting the tilt instability in the FRC, related to its

internal nature and its lack of a clear signature on the axial interferometry diagnostic. This

situation is in contrast to that of spheromak experiments, where the tilting modes have been

clearly observed in several devices18,19. These experiments have shown that the spheromak

tilt mode growth rate is reduced significantly when the plasma shape is oblate (E < 1), and

that it can be stabilized completely by close-fitting figure 8 coils20.

In the present paper, we attempt to unify and extend the previous simulation studies

by presenting the results of extensive and systematic studies of prolate FRC stability in

which we employ both 3D MHD and hybrid (fluid electron and particle ion) simulations. In

particular, the stabilizing effects of velocity shear and finite ion Larmor radius on the n = 1

tilt mode have been examined (this paper addresses only the prolate FRC for which the

elongation E > 1, the stability of the oblate FRC for which E ≤ 1 will be addressed in a

future publication). The new 3D nonlinear MHD/particle code developed for this stability
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study is described in the next section. In contrast to previous work, the δf method21 has

been used to reduce numerical noise in the particle simulations. Equations of the δf scheme

are presented and the solution of the equilibrium problem with kinetic ions and sheared

rotation is discussed. Results of the MHD simulations including sheared flows, are described

in Sec. III. In Sec. IV the hybrid simulations results are presented for different kinetic

equilibria. Conclusions and a discussion are given in Sec. V.

II. NUMERICAL SCHEME AND SIMULATION MODELS

In our FRC global stability code22 two different physical models have been implemented:

a 3D nonlinear one-fluid MHD model, and a 3D nonlinear hybrid scheme with particle ions

and fluid electrons.

A. MHD model

In the MHD version of the code, the nonlinear resistive one-fluid MHD equations are

advanced using a second order explicit time stepping scheme with forth-order accurate spatial

derivatives:

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂ρv

∂t
= −∇ · (ρvv)−∇p+ J×B/c + µ∆v, (2)

∂p1/γ/∂t+∇ · (vp1/γ) =
(γ − 1)

γ
p1/γ−1

[
ηJ2 + µ(∇× v)2 + µ(∇ · v)2

]
, (3)

∂A/∂t = −cE, (4)

E = −v×B/c+ ηJ. (5)

Here ρ and p are the plasma density and pressure, v is the fluid velocity, A is the vector

potential, B = ∇×A is the magnetic field, J = c/(4π)∇ × B is the total current, µ is an

artificial viscosity coefficient, and an adiabatic equation of state is used.

In the FRC stability studies, a cylindrical grid is employed and the finite difference

approximation is used in all three directions (r, φ, z). A fine resolution of (100×32×150) grid
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points has typically been used in our MHD runs. Periodic boundary conditions are applied

in both the toroidal and axial directions, while a perfectly conducting boundary is assumed

at the cylindrical wall r = Rc outside the separatrix and geometric boundary conditions are

implemented at r = 0. The cylinder length is taken to be large enough, so that periodic

boundary conditions in the axial direction have no effect on the stability. The conservative

form of the equations and the time-centered trapezoidal leap-frog scheme23 used for the

time evolution ensure very good energy conservation, with the change in the total energy

being less than 0.1% of the perturbation energy in the production runs. Hyperresistivity

in the induction equation and artificial viscosity in the momentum equation are added for

numerical stability in the nonlinear runs.

The vacuum region outside the separatrix is treated in the same way as the plasma

region, except that a small cutoff density (typically 0.05 to 0.1 fraction of the peak density)

is applied. The density is not allowed to become smaller than the cutoff value in order to

avoid the severe time step restrictions that the Courant condition would impose. In some

cases a nonuniform resistivity profile with resistivity inversely proportional to the plasma

density has been used, but the tilt mode stability was found to be insensitive to the resistivity

profile.

The linearized form of the MHD equations (1)-(5) has also been implemented as an

additional option, and this has been particularly useful for the linear stability studies of

n > 1 modes. The MHD version of the code has been benchmarked both by simulating

normal modes in a cylinder, and by reproducing the previous initial value MHD simulations

results2,24. Very good agreement with the spectral stability study results3 has been obtained

as well.

A 2D self-consistent equilibrium is found by solving a Grad-Shafranov equation which

includes equilibrium flows, and this is used as an initial condition for the 3D stability calcu-

lations. An MHD equilibrium with sheared flow is obtained assuming constant temperature,

T = p/ρ, in this case the pressure profile must be written as:

p(ψ, r) = p0g(ψ) exp

(
mir

2ω2(ψ)

2T

)
, (6)

where ω(ψ) is the angular velocity. The Grad-Shafranov equation for the poloidal magnetic

flux function becomes25
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r
∂

∂r

(
1

r

∂ψ

∂r

)
+
∂2ψ

∂z2
= −r2

[
p0
∂g

∂ψ
+ p0g

mir
2

T
ω
∂ω

∂ψ

]
exp

(
mir

2ω2

2T

)
. (7)

Here we have defined ψ by B = ∇φ × ∇ψ in the equilibrium. Eq. (7) is solved iteratively

using the alternating direction implicit method (ADI) and applying a global constraint (total

current, Iφ) at each iteration as discussed, for example, by Hewett and Spencer26. An

equilibrium solution is calculated in a cylinder with boundary conditions: ψ = 0 at r = 0,

ψ = ψw at r = Rc, and ∂ψ/∂z = 0 at z = ±Zc, where Rc and Zc are the cylinder radius and

half length respectively.

B. Hybrid model

A hybrid scheme with cold fluid electrons (pe = 0) and particle ions is used in the kinetic

simulations. The particle ion motion is described by the Lorenz force equations:

dx

dt
= v, (8)

dv

dt
=

e

mi
(E− ηJ + v×B/c), (9)

with the standard leapfrog scheme used for the time advance. The term −ηJ in Eq. (9)

represents the collisional drag on the ions, and it is needed for momentum conservation.

The electric field in the hybrid scheme is calculated from the electron momentum equation

neglecting the inertial term:

E = −ue ×B/c+ ηJ, (10)

where ue = −(J− Ji)/(ene) is the electron fluid velocity, Ji is the ion current, and quasineu-

trality is assumed (ne = ni). The magnetic field is calculated as in the MHD scheme, Eq. (4).

The fluid equations (4) and (10) are advanced on a finite-difference mesh in a cylindrical

coordinate system, while the particle advance and current and density accumulation are done

on a 3D Cartesian grid. Quadratic spline interpolation is used for mapping between the

cylindrical and the Cartesian meshes, while linear spline interpolation is used in the particle

loops (gather/scatter operations). Since the computational time required to advance the

particles greatly exceeds the time needed to advance the field equations, subcycling is used

to update the fields with small enough time step to avoid numerical instability at small s̄.
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The particle coordinates and weight factors are advanced with a larger time step, which is

limited by the ion cyclotron motion and is typically set to dt = 0.1/ωci.

The δf method21 is utilized to reduce numerical noise in the simulations. In the δf

scheme the equilibrium distribution function is assumed to be known analytically, so the zero-

order density ni0 and current Ji0 can be calculated. The perturbed part of the distribution

function is calculated along a set of characteristics (8), (9) by assigning a weight w ∼ δF to

each simulation particle. The particle weights are then used to calculate the perturbed ion

density δni and current δJi. Since the particle weight is no longer a constant of the motion

(as in the conventional particle simulation method), the evolution equation for the weight

has to be added to the equations of motion (8) and (9):

dw

dt
= −

(
F

P
− w

)
dF0

dt

1

F0
, (11)

where w = δF/P , F is the ion distribution function, and P is the distribution function of the

simulation (marker) particles. In the simulations δF can be approximated by the weighted

Klimontovich distribution

δF =
∑
m

wmδ(xm − x)δ(vm − v), (12)

and the perturbed ion density and current density are calculated as follows

δni(x) =
∑
m

wmS(xm − x), (13)

δJi(x) =
∑
m

wmvmS(xm − x), (14)

where S is the (linear) shape function. In all the calculations described in this work, the

simulation particles were initially loaded in phase space according to the physical distribution

function, F0, which corresponds to setting F/P = 1 in Eq. (11).

The equilibrium ion distribution function F0 is a function of the constants of motion,

which in the case of an azimuthally symmetric equilibrium, are the particle energy, ε =

miv
2/2 + eϕ, and the azimuthal angular momentum, pφ = mirvφ − eψ, where ψ = −rAφ is

the poloidal magnetic flux function, and ϕ is the equilibrium electrostatic potential. For F0 =

F0(ε, pφ) the time advancing of the particle weights requires calculation of time derivatives

of ε and pφ:

8



dε

dt
= ev · (δE− ηδJ) (15)

dpφ

dt
= er[(δEφ − ηδJφ) + v× δB · φ̂]. (16)

Two classes of kinetic equilibria were studied in the simulations presented here. The

first class has zero electron current and no electric field. All current is carried by the ions

and an exponential rigid-rotor distribution function is used:

F0 = F0(ε− Ωpφ) (17)

= n0(mi/2πTi)
3/2 exp(−ε/Ti + Ωpφ/Ti), (18)

where Ω is the constant angular rotation frequency, and Ti is the uniform ion temperature.

It can be shown that this distribution function corresponds to a local shifted Maxwellian

distribution with the ion density given by

ni(x) = n0 exp

(
mir

2Ω2

2Ti
− eψΩ

Ti

)
(19)

and mean ion velocity Vφ = rΩ. The force balance for this equilibrium can be written as:

−minirΩ
2r̂ = −Ti∇ni + Ji ×B.

For the exponential rigid-rotor distribution function (18), we were not able to find an equi-

librium with the separatrix elongation larger than E = 2, probably due to the exponential

dependence of plasma pressure on ψ. In the simulations with larger elongations, the second

class of the kinetic equilibria has been used. The second class of equilibrium distribution

functions is F0 = F0(ε), with Ji = 0 and all current is carried by the electrons. From the ion

momentum equation we have

0 = −Ti∇ni + eniE,

where E = J×B/(ene) is an equilibrium electric field.

Since in both cases the ion pressure is a scalar, Eq. (7) has been used to find an equi-

librium solution.

III. MHD SIMULATIONS
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A. Profile effects

Numerous MHD calculations (both linearized and nonlinear) have shown the n = 1

tilt mode to be strongly unstable with growth rate on the order of the inverse Alfvén time

(without rotation)

γ = CVA/Zs = CVA/(RsE), (20)

and found no nonlinear stabilization2,7. Here VA is a characteristic Alfvén velocity, defined

by VA = B0/
√

4πρ0, where B0 is an external magnetic field at the midplane, ρ0 is the

plasma density at the magnetic null, and C is the coefficient of the order of unity. The

most detailed linear MHD stability analysis employing the spectral code by Iwasawa et al.3

considered the effects of elongation, current profile and the magnetic separatrix shape on

the n = 1 and n > 1 modes with both even and odd symmetry (symmetry is defined in

terms of vr symmetry relative to the midplane, z = 0). It was shown that the previously

believed inverse scaling of the tilt mode growth rate with elongation, Eq. (20), applies only

to the special case of the equilibrium with an elliptical separatrix and a flat current profile.

For a racetrack separatrix and large enough elongation (E ∼> 3), the tilt (odd) mode growth

rate has been found to be largely independent of E, and another n = 1 mode, with even

symmetry relative to the midplane, has been shown to be unstable with a growth rate close

to that of the tilt mode. This result can be easily understood, if one considers the linear

mode structures for the elliptical and racetrack equilibria.

Figure 1 shows velocity vector plots produced at the linear phase of the MHD simulations

with different separatrix shapes and initial perturbations of the odd and even symmetry.

In agreement with the results of Iwasawa et al.3, our simulations show that for a racetrack

equilibrium (Fig. 1b,c) the perturbation is localized near the end regions, where the curvature

is large, and the structure of the n = 1 even mode is very similar to that of the odd (tilt)

mode, except for the direction of the velocity vectors (Fig. 1c). The growth rates of these

two modes are nearly identical as well, and do not change significantly as the elongation

increases. This behavior implies that the perturbation growths at the two end regions of the

racetrack FRC decouple. In contrast, when the elliptic equilibrium is considered (Fig. 1a),

the perturbation is concentrated around the magnetic null point, and n = 1 even mode is

stable3.
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(a)
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(b)
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(c)

0.
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R

Z

  

Fig.1: Velocity vectors and the separatrix positions from MHD simulation

of the n = 1 tilt mode (E = 4); (a) elliptical separatrix, (b) racetrack

separatrix, and (c) n = 1 even mode with the racetrack separatrix.

Due to the different dependence on the elongation, the relatively long (E ∼> 4) con-

figurations with a racetrack separatrix shape generally are more unstable to tilting, than

the configurations with an elliptical separatrix. In terms of the growth rate, Eq. (20), the

numerical coefficient C is of the order 2.0-3.0 for the racetrack FRCs, and C ∼ 1 for the

elliptical equilibria. The nonlinear evolution of the tilt mode for both elliptical and racetrack

equilibria has been investigated in the simulations as well. Fig. 2 illustrates the constant

pressure contours on a 2D plane passing through the symmetry axis at 4 times during the

nonlinear growth of the n = 1 tilt mode in an elliptical equilibrium with E = 4. It is seen

that for most of the growth of the mode, the distortion is mostly internal to the separatrix.
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Only near the end, at t > 10tA, does significant distortion to the equilibrium occurs, where

tA = Rc/VA is the characteristic Alfvén time. At t > 12tA, when the tilting motion has

“wrapped around” the ends, an axial force imbalance occurs and the two ends repel one

another, destroying the configuration.

t=0

t=10

t=12

t=14

  

Fig.2: The pressure contours in the poloidal plane at t = 0, 10tA, 12tA,

and 14tA for the case of E = 4, elliptic separatrix.

No nonlinear stabilization has been found in either the racetrack or the elliptical con-

figuration. However the nonlinear behavior was somewhat different due to differences in

the linear mode structures. For the racetrack equilibrium, the perturbation grows near

low-density end regions of the FRC during the linear phase. When the velocity amplitude

becomes large enough (δVz ∼ 0.1 − 0.3VA), the perturbation propagates from the end re-

gion to the midplane, pushing along a more dense plasma around the magnetic null. This
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contrasts with the tilt evolution in the elliptical configuration, where most of the plasma

inside the separatrix is involved in the tilt motion during the linear growth. As a result, the

nonlinear phase of the instability for the racetrack equilibrium is longer than that for the

elliptical equilibrium.

B. Sheared rotation effects

Previous calculations2,7 have shown that the tilt instability can be significantly sup-

pressed by plasma toroidal rotation if the rotational Mach number is greater than about 2.0,

M = ωRs/VA ∼> 2. When a large external mirror field is applied in addition2, the growth

rate can be strongly reduced by rotation with Mach number M ∼> 1.0. Although plasma

spin up in the toroidal direction has been observed in experiments, such large rotation rates

are considered unrealistic. Significant velocity shear, however, is likely to exist in the FRCs,

and it has been numerically shown to have a stabilizing effect on the tilt mode2. For these

reasons, we have investigated the possibility of tilt mode stabilization at smaller rotation

rates (M < 1) due to velocity shear.

The effect of sheared rotation on the n = 1 tilt instability was studied by performing

MHD simulations with different rotation profiles, separatrix elongations and Mach numbers

Ms = Vs/VA, where Vs = ωRs is the rotational velocity at the separatrix at the midplane.

Sheared rotation is found to be a more effective stabilizing mechanism for a rotation profile

which is peaked near the separatrix and with the angular velocity decreasing to zero at

the magnetic null and near the radial wall (Fig. 3). Since the mechanisms leading to FRC

rotation are thought to be the loss of particles with a preferential angular momentum or to

be end-shorting of the open field lines1, it is reasonable to expect a large rotational velocity

near the edge region.

The simulations were done for the pressure profile given by (Ms = 0):

p(x) = 0.5p0(tanh(ax+ b) + 1), x = ψ/ψ0, (21)

where ψ0 is the value of the flux at the magnetic null point (ψ0 < 0), a = 1.5 and b = −1.0

are the pressure profile parameters, x > 0 inside the separatrix and x < 0 outside. The

angular velocity profile was taken to be:

ω(x) = ω0 [3(1− x)(1 + tanh(2x)) + 0.5(x− x1)(1− tanh(2x))] , (22)
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where x1 = ψw/ψ0, ψw is the flux at the wall, and vφ = rω.

Jφ

0 10 20 30 40
0.0

0.1

R

(c) ω(ψ)

0.00

0.01

0.02

0 2 4-2
ψ/|ψ |0

(d)

P (a)

R

0.0

0.1

0.2

0 10 20 30 40

Vφ (b)

R

0.0

1.0

0.5

0 10 20 30 40

   

Fig.3: The equilibrium profiles for MHD simulations with sheared rotation:

the radial profiles of (a) plasma pressure, (b) toroidal velocity and (c) cur-

rent at the midplane, and (d) angular rotation velocity versus normalized

flux for the equilibrium with E = 2.7 and Ms = Vs/VA = 0.8.

An example of the equilibrium profiles from the MHD simulations with sheared flow is

shown in Fig. 3 for a hollow current profile, E = 2.7 and Ms = 0.8. Shown are the radial

profiles of the normalized plasma pressure, current, and toroidal velocity at the midplane

(z = 0), and angular velocity as a function of flux. Here the pressure is normalized to

the external magnetic field pressure, B2
0/8π, velocity is normalized to VA, and length is

normalized to VA/ωci, where ωci is the ion cyclotron frequency in the external field.

A tilt-like initial velocity perturbation of 0.01VA was applied at the beginning of the
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simulation, and the growth rate was calculated from the time evolution of the n = 1 compo-

nent of kinetic energy. A grid of (100×32×150) grid points was used in all sheared rotation

calculations. The equilibrium parameters and the calculated tilt mode growth rates from

the simulations with different elongation are summarized in Table I, where γ0 = VA/Zs.

In Fig. 4, we illustrate the change in the linear mode structure due to shear flow as

compared to the non-rotating case. This is shown for both the equilibria with elliptical

(E = 2.7) and racetrack separatrix shape (E = 6.4). The linear mode structure is seen to

change in a such way that the perturbation localizes in a region of smaller velocity shear. In

the presence of sheared rotation, the tilt mode was observed to rotate with a real frequency

comparable to the average rotation frequency. No indication of nonlinear stabilization in the

presence of large velocity shear has been found.

In simulations with larger elongation (smaller γ0), the stabilizing effect of the sheared

rotation was stronger. In particular, for E = 6.4 and Ms = 0.68 the growth rate was

reduced by a factor of 3 compared to the case without rotation. Our simulations show that,

in general, a shearing rate ∆ω = ω(0) − ω(1) ∼> γ0 is required in order for considerable

reduction in the instability growth rate to occur. This means that even in the presence of

velocity shear, a large rotation rate, Ms ∼ 1, is still needed to significantly suppress the tilt

instability in the MHD regime. It possible, however, that the combination of another effect

(FLR, for example) that reduces the growth rate together with velocity shear could lead to

complete stabilization of the tilt mode at a more reasonable toroidal velocity.

TABLE I. Parameters for sheared rotation simulations

run E Ms γ/γ0 = γZs/VA

R1 2.4 0.0 1.32

R2 2.7 0.63 0.89

R3 2.7 0.8 0.54

R4 5.6 0.0 2.7

R5 6.4 0.68 0.9
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Fig.4: Poloidal mode structure (a) without rotation, E = 2.4, (b) for

Ms = 0.8 and E = 2.7, (c) without rotation, E = 5.6, (d) for Ms = 0.68

and E = 6.4.

IV. HYBRID SIMULATION RESULTS

We have performed quasi-neutral hybrid simulations of the n = 1 tilt mode to study

how the kinetic effects associated with large thermal ion orbits can modify the MHD predic-

tions. Both linearized and fully nonlinear hybrid models have been implemented in our code.

The linearized simulations provide a more accurate result for the instability growth rate and

allow simulations of modes other than the most unstable one (with different n). In addition,

a smaller number of simulation particles and field substeps are required for numerical con-

vergence and stability. The nonlinear version of the hybrid scheme is described in Section
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II. In the linearized version, the particle trajectories are calculated in the equilibrium field,

the nonlinear term proportional to w is dropped on the right hand side of the equation for

particle weight, Eq. (11), and a linearized form of the Ohm’s law, Eq. (10), is used.

The vacuum region is treated in a way similar to that for the MHD simulations. The

simulation particles are initially loaded by inverting the 2D ion density profile given by

Eq. (19) (for the exponential rigid rotor distribution) or by ni = pi/Ti (for a Maxwellian

distribution), with a negligible density in the vacuum region and near the radial wall. The

value of the ion density actually used in the 3D stability calculations is taken to be the

maximum of that calculated and a cutoff density, normally chosen to be nc =10% of the

peak density. In some cases this method turned out to be numerically unstable. In these

cases the simulation particles were loaded with a density value that corresponds to adding

an offset value of nc to the equilibrium density. At constant temperature, this corresponds

to adding a small constant pressure to the equilibrium pressure profile and does not change

the equilibrium equation. In both cases the convergence of the results with respect to the

value of the cutoff density has been checked. The conservation of the total energy and the

number of particles27 δN/N = (
∑

m wm)/N has been monitored in the nonlinear δf runs as

an accuracy check and for debugging purposes.

A. Test cases

Several tests have been done to benchmark our hybrid version of the code. First, the

simulations of the tilt mode in FRC with elongation E = 3.9 have been performed using both

the nonlinear δf scheme and the full f particle simulations in order to verify the δf scheme.

The Maxwellian distribution function was used for ions (F0 = F0(ε)), and a relatively large

s̄ (s̄ = 7.4), MHD-like regime was considered, so that comparison could be made with MHD

results as well. Fig. 5 shows the energy plots from these three different simulation runs:

MHD, hybrid δf and hybrid full f simulations. The same equilibrium profiles were used

in all three cases. A (100 × 32 × 150) cylindrical grid was used in the MHD simulations,

(50× 32× 60) cylindrical grid for fields and (51× 51× 60) Cartesian grid for particles were

used in the hybrid simulations. The number of the simulation particles was 1,000,000 and

2,000,000 in the δf and full f runs respectively.
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Fig.5: The temporal evolution in the n = 1 component of kinetic energy

from MHD, δf hybrid and full f hybrid simulations all done for the same

equilibrium profiles with E = 3.9 and s̄ = 7.4.

Note that in Fig. 5, the squares of the amplitude of the n = 1 Fourier component of V

integrated over the r−z volume and normalized to the equilibrium magnetic field energy are

plotted, where V is the fluid velocity for MHD simulation, V = Vi is the ion fluid velocity

for hybrid runs. The time is normalized to the Alfvén time, which is defined as the ratio of

the cylinder radius to the characteristic Alfvén speed, tA = Rc/VA.

There is very good agreement in the linear growth rate and the mode structure in the

δf and full f simulation runs. The growth rate from hybrid simulations is slightly smaller

than that from MHD run due to kinetic effects. Similar nonlinear evolution was observed in

the both hybrid runs as well. However, the numerical noise level in the full f simulation was

rather high, and no growth of the tilt mode could be seen in the energy plot until t > 8tA

because of the numerical noise.

As another test, a δf 2D hybrid simulation of the n = 2 rotational mode was done
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for equilibrium profiles used in a previous work28. In agreement with the previous results,

the growth of the dominant n = 2 mode was observed for the equilibrium with 60% of

field reversal, separatrix beta βs = 0.5 and the rotational parameter28 α = 1 (no electron

rotation).

The accuracy of the particle pushing and the interpolation schemes was checked by

following the unperturbed particle orbits in the equilibrium field for a representative FRC

equilibrium with E = 3.9 and s̄ = 1.9. The conservation of the particle energy, ε = mv2/2+

eφ, and the toroidal angular momentum, pφ = mrvφ − eψ/c, was monitored for several

particle trajectories for long times. Fig. 6a shows a typical particle orbit projected on the

poloidal plane, and Figs. 6b,c show the variation of the particle energy and the angular

momentum along this orbit.
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Fig.6: Poloidal projection of the typical equilibrium orbit (a); time vari-

ation of (b) particle total energy; (c) toroidal angular momentum; (d)

magnetic moment along this orbit.
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The relative amplitudes of the fluctuation in ε and pφ are ∼ 10% and ∼ 4% respectively

without any secular changes. Also shown on Fig. 6d is a variation of the magnetic moment,

µ, calculated in the rotating frame with zero equilibrium electric field. It is seen that the

magnetic moment is not conserved along this trajectory, and it undergoes large changes when

the particle passes through the large curvature regions.

B. Linear stability of the n = 1 tilt mode

A number of hybrid simulation runs have been done starting from different kinetic

equilibria in order to investigate the dependence of the growth rate of the tilt instability on

the kinetic parameter s̄, the elongation and the shape of the separatrix. The equilibrium

parameters and the linear growth rates from some of these simulations are listed in Table II,

where the notation is as follows: xs is the ratio of the separatrix radius to the cylinder radius,

βs and Ms are the plasma beta and rotational Mach number respectively calculated at the

separatrix at the midplane, γmhd is the growth rate calculated in the MHD simulations for

the same equilibria, and γ0 = VA/Zs. The Mach number is calculated as Ms = Vi/VA, where

Vi is the ion fluid velocity.

TABLE II. Parameters for hybrid simulations

run E xs βs Ms shape s̄ γmhd/γ0 γ/γ0

RH1 2.0 0.76 0.19 0.09 elliptic 9.2 1.5 1.4

RH2 1.7 0.78 0.17 0.55 elliptic 1.5 1.5 0.98

RH3 3.9 0.71 0.30 0.0 elliptic 7.4 1.8 1.6

RH4 3.9 0.71 0.30 0.0 elliptic 1.9 1.8 0.73

RH5 3.9 0.71 0.30 0.0 elliptic 0.9 1.8 0.34

RH6 4.1 0.76 0.15 0.0 racetrack 1.4 2.2 0.97

RH7 7.2 0.64 0.33 0.0 racetrack 6.2 2.54 2.01

RH8 7.2 0.64 0.33 0.0 racetrack 0.8 2.54 0.34
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The first two runs in the Table II, RH1 and RH2, were done for equilibria with no electric

field and the exponential rigid-rotor distribution function, Eq. (18), was used for the ions.

These equilibria have a relatively small elongation, E ∼ 2, peaked current profile and an

elliptic separatrix shape. Note that for the exponential rigid-rotor equilibria, a small value

of s̄ corresponds to a large rotation Mach number, which can have an additional stabilizing

effect.

In the rest of the runs, the Maxwellian distribution function F0 = F0(ε) was used for

the ions with Ji = 0 and all the current was carried by the electrons. The simulations with

elongation E ∼ 4, were done for equilibria with both elliptic and racetrack separatrix shapes

in order to investigate the effectiveness of the FLR stabilization for different configuration

shapes and eigenmode structures. In the simulations RH3-RH5 the pressure profile was

taken to be24

p(ψ) = p0



K0 + x− d/2x2, x > 0

K0 exp(x/K0), x ≤ 0
(23)

where x = ψ/ψ0 (x > 0 inside the separatrix), ψ0 is the value of the flux at the magnetic

null point, K0 is a numerical parameter proportional to the value of the plasma beta at

separatrix, and d is the profile hollowness parameter. Simulations were carried out for

βs=0.3, and d = −0.5. In the simulations with the racetrack separatrix, RH6-RH8, the

ion pressure profile was as in Eq. (21) with the numerical parameters equal to a = 1.7 and

b = −1.0 for the RH6 equilibrium, and a = 1.2 and b = −0.5 in the runs with E = 7.2.

The initial n = 1 perturbation in the axial component of the ion fluid velocity (∼ 0.01VA)

was applied at t = 0 by assigning a finite weight w ∼ vz to the particles inside the separatrix.

The linear growth rate was calculated from the time evolution of the amplitude of the

n = 1 component of electron velocity, |Ve1|2, integrated over r − z volume. The linear

stability results for two family of equilibria with E ≈ 2 and E = 7.2 are summarized in

Fig. 7, where the growth rate is shown for different values of 1/s̄. The growth rates are

normalized to the corresponding MHD growth rates. Notice that γ is only slightly reduced

for s̄ ≥ 1.5 (1/s̄ ≤ 0.66) in the simulations with small elongation E ∼ 2, in agreement with

previous results11,12. These simulations (E ≈ 2) were performed for the exponential rigid-

rotor ion distribution function, as RH1 and RH2 runs, and the ion rotation Mach number
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was M ≤ 0.55 for s̄ ≥ 1.5. Since previous MHD simulations have shown that a stabilizing

influence of rigid rotation should be felt at a much larger rotation rate2, the reduction in

the growth rate seen in Fig. 7 is mostly due to FLR effects. The simulations with larger

elongations were performed for Maxwellian ion distribution function with zero ion rotation.

For the configurations with E = 7.2, there is a significant reduction in the tilt instability

growth rate at small values of s̄ (s̄ ∼ 1), however, no absolute stabilization has been found

for s̄/E values as small as 0.1.
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Fig.7: Variation of the normalized growth rate of the n = 1 tilt instability

with 1/s̄ parameter. The points obtained in the linearized hybrid simula-

tions for two different elongations, E ≈ 2 and E = 7.2, are indicated.

The previous kinetic calculations by Barnes et al.6 based on a Vlasov-fluid dispersion

functional approach and trial functions found a strong reduction in the tilt mode growth rate

for s̄ ∼ 2 and complete stabilization at s̄ ∼< 1.5 for an equilibrium with elliptical separatrix

and E = 7.7. Our simulations with different separatrix shapes (see Table II) show that

there is no dramatic difference in the FLR stabilization between the equilibria with different
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separatrix shapes. In particular, at s̄ = 1.4 and E ≈ 4 the growth rate was reduced by a

factor of 2.3 in the simulations with the racetrack separatrix, and a factor of 3 reduction was

obtained for the elliptic equilibrium. The difference between our results and the dispersion

analysis results6, therefore, must be due to the deviation of the true kinetic eigenfunction

from the assumed MHD-like trial function6 in the strongly kinetic regime (small s̄).

Our simulations demonstrate that the linear structure of the tilt mode changes as the

value of s̄ is reduced. Figs. 8 and 9 show poloidal and toroidal mode structures from the

hybrid simulations with different values of s̄, along with the corresponding MHD eigenmode.

These simulations were performed for equilibria with elongation E = 3.9 and with elliptical

separatrix shape. Shown are vector plots of the poloidal component (Fig. 8) and contour

plots at the midplane (Fig. 9) of the axial component of the ion fluid velocity (for the hybrid

runs) and fluid velocity (for the MHD run).

(a)

(b)

(c)
R

Z

  

Fig.8: Vector plots of poloidal component (r − z plane) of the ion fluid

velocity: (a) from the MHD simulation, (b) and (c) from the hybrid sim-

ulations with s̄ = 7.4 and s̄ = 0.9, E = 3.9.

23



For the larger value of s̄ (s̄ = 7.4, Fig. 8b), both the growth rate and the eigenfunction

are close to that of the MHD result (Fig. 8a). The mode structure is seen to change in the

kinetic regime with s̄ = 0.9. In particular, the perturbation becomes more localized near

the magnetic null point (Fig. 8c), the mode rotates (ωr 6= 0), and it has a more complicated

toroidal structure (Fig. 9c).

MHD s=7.4
_

s=0.9
_

   

Fig.9: Contour plots of the axial component (at the midplane) of the ion

fluid velocity: (a) from the MHD simulation, (b) and (c) from the hybrid

simulations with s̄ = 7.4 and s̄ = 0.9, same simulations as on Fig.8.

The kinetic results presented in Table II and in Fig. 7 have been obtained with the

linearized hybrid simulations. In these runs, a (60×32×80) cylindrical grid for the fields and a

(51×51×80) Cartesian grid for the particles were used, and the number of simulation particles

was between 0.25 · 106 and 0.5 · 106. The particle time step was set by dt = 0.1/ωci, and 1 to

16 field substeps per particle step were done, depending on the value of s̄. The convergence

of the results with respect to the time step, grid size, the number of the simulation particles

and the value of the cutoff density, nc, has been verified in the simulations. For the set of

parameters used in the simulations, the tilting instability growth rate was affected mostly

by the value of nc. Namely, the value of γ was increased by several percent as nc/n0 was

reduced from 0.1 to 0.05. No significant difference in the growth rate value or the linear

mode structure has been found in the simulation runs performed with better resolution or

smaller time step. The results obtained for the tilt mode from the linearized simulations in
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this study (with E > 1) were also not sensitive to the value or the profile of the resistivity.

V. DISCUSSIONS AND CONCLUSIONS

Both MHD and hybrid simulations were performed in order to study the n = 1 tilting

instability in prolate FRCs. Profile effects, sheared rotation, and kinetic effects on the tilt

mode stability were considered.

Our MHD simulations show that the dependence of the tilt mode growth rate on elon-

gation for a racetrack equilibrium is different from the previously believed inverse scaling.

This result is in agreement with a recent spectral stability study3. It has also been shown

that for a racetrack separatrix shape and large enough elongation (E ∼> 3), the tilt mode

is localized near the FRC end regions, where the curvature is large, and the perturbation

growths in the two end regions decouple from one another. As a result, the growth rate is

nearly independent of E, and another mode with even symmetry relative to the midplane,

appears and is unstable with its growth rate close to that of the tilt mode. This contrasts

sharply with the usually assumed “rigid tilt” model, in which the (stabilizing) inertial term

increases with the elongation, and reduces the growth rate.

This result is important both when comparing theoretical and experimental stability,

and also when assessing the effect of different stabilizing factors. The weaker dependence

of the MHD growth rate on elongation implies a change in the previously assumed stable

parameter regimes4,8. In particular, we agree with other recent work10 that claims that the

previously proposed stability scaling with s̄/E is not valid. The breakdown of this scaling

has important implications for estimating when FLR effects might lead to tilt stabilization.

The possibility of tilt mode stabilization by sheared flows has been investigated in the

MHD simulations as well. The sheared toroidal rotation is found to reduce the growth rate

of the tilt mode, however a large rotation rate, ∆V ∼ VA, is still required to significantly

affect the mode growth, and complete stabilization has not been found. It is possible that a

combination of some other stabilizing effect (FLR, for example) and velocity shear will lead

to tilt mode stability at realistic rotation rates, but this has not been demonstrated.

Our MHD simulations have shown no indication of nonlinear saturation for all separatrix

shapes and pressure profiles considered. This is consistent with previous calculations2. The
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mode structure is calculated to be primarily internal far into the nonlinear regime, making it

difficult to detect experimentally. The mode finally destroys the configuration by wrapping

around at the ends to create an axial force imbalance, causing the FRC to break apart. We

note here that in the MHD regime the n > 1 modes have growth rates larger than that of

the n = 1 mode, and may destroy the configuration before the n = 1 tilt could grow to a

noticeable amplitude. This would further hamper experimental detection of an unstable tilt

mode.

Since most of the FRC experiments to date have been in the kinetic regime, with the

ion Larmor radius comparable to that of the separatrix radius (small to moderate value of

the kinetic parameter s̄), kinetic effects are considered to be a major factor in the observed

FRC stability. We have performed 3D hybrid simulations in order to study the thermal ion

kinetic effects on the tilt mode in the prolate FRC. We have included ion kinetic effects

self-consistently, and studied the stability of several experimentally realistic equilibria (with

large E). This paper concentrates on the linear stability of the n = 1 tilt mode in the kinetic

regime with zero velocity shear, and the results of the nonlinear hybrid simulations will be

presented elsewhere. The δf method21 has been used to greatly reduce simulation noise and

computational requirements, and has been found particularly useful in the linear stability

study.

Our hybrid simulations show that for large s̄ (s̄ ∼ 5 − 10) the growth rate and the

linear mode structure of the kinetic tilt mode are very close to that predicted by MHD.

However, as the value of s̄ is decreased to s̄ ∼ 1 − 2 the growth rate is reduced, and this

reduction is stronger for configurations with larger elongation (E ∼> 4). In particular, an

order of magnitude reduction in γ has been obtained in the simulations with E = 7.2 and

s̄ = 0.8. It also has been shown that the linear mode structure of the tilt mode changes from

that predicted by MHD in the small s̄, kinetic regime. No strong dependence of the kinetic

stabilization on the separatrix shape has been found, and similar results have been obtained

in the simulations with elliptical and racetrack equilibria for E ∼ 4. Several simulation runs

have been performed with different kinetic equilibrium profiles. In all cases with E ∼> 4,

considerable reduction in the tilt growth rate was obtained for s̄ ∼< 2. However, no absolute

stabilization of the tilt instability has been found even for very small values of s̄.
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Our results are different from those of previous kinetic calculations based on a Vlasov-

fluid dispersion functional and trial function approach6. In these studies, a much stronger

reduction in the growth rate (factor of 10-15) was obtained for s̄ ∼< 3 and complete tilt

mode stabilization was found for s̄ ∼< 1.5 (E = 7.7). The difference between our results and

the dispersion analysis results can be explained by the deviation of the true self-consistent

kinetic eigenfunction from the assumed MHD-like trial function used by Barnes et al.6, in

the strongly kinetic regime.

The non-ideal MHD and kinetic effects included in our hybrid model are: two-fluid

effects (Hall term in the Ohm’s law), finite ion Larmor radius effects, and ion resonant

effects. The inclusion of the Hall term results in the magnetic field being frozen into the

electron fluid, and causes the ion perpendicular motion to be different from that of the

electrons. Due to the finite size of the Larmor orbits, the ions drift in the gyro-averaged

field, and therefore FLR also produces ion motion relative to the electrons. This causes the

tilt mode to rotate and have a non-zero real frequency, comparable to the ion diamagnetic

frequency.

Several previous studies have considered the Hall term and FLR effects in the two-fluid

and in the small ion Larmor radius (gyroviscous effect) approximations2,4,5,8. The physical

mechanisms for the FLR and the Hall term stabilization are similar and have been identified

as the phase shift between the electron and ion displacements, which results in the magnetic

and fluid perturbation being out of phase, and leads to mode suppression4. Although the

earlier semi-analytic estimates4 gave optimistic results indicating stabilization of the tilt

mode at small s̄, the later more self-consistent calculations found that the stabilizing effect

was not as strong as expected2,5, mostly due to the change in the linear mode structure at

small s̄. Our results agree with these calculations in that, although we have found that the

n = 1 tilt instability linear growth rate is reduced by kinetic effects, this reduction (by a

factor of 3-5) is not strong enough to explain the stability observed in the FRC experiments

for over 100 Alfvén times.

Note that the fluid models are valid only in the moderate to large s̄ limit. The important

effect missing from these models is the wave-particle resonant interaction, which can be

important in the strongly kinetic FRCs. In addition, at small values of s̄, most of the ions
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execute very complex motion with a large fraction of their orbits being stochastic, and their

magnetic moment not conserved. This makes the perturbative treatment of FLR effects

difficult and inaccurate. An advantage of the initial value particle simulations is that all

the relevant kinetic effects are included in a self-consistent and non-perturbative way. In

particular, the resonant effects and the stochastic ion orbits can be an important factor in

maintaining instability in the large Larmor radius cases29,30. It has been known for some time

that the Vlasov-fluid plasma has the same marginal stability condition as the MHD model,

and therefore, that FLR effects cannot totally stabilize, but can only reduce growth rates of

unstable modes30,31. The residual instability is due to the resonant-particle destabilization

of FLR-stabilized MHD modes. In the case of the energetic ion rings, for example, it was

shown that a low-frequency instability can exist as a hydromagnetic non-resonant mode in

the MHD unstable limit. Two waves with opposite signs for their real frequency are present

in MHD stable configurations. The wave propagating in the direction of the toroidal current

(the negative energy wave) is destabilized via the inverse Landau damping mechanism. It

is possible that a similar resonant instability, driven by the interaction of the wave with the

ions for which Doppler shifted frequency matches the betatron frequency ω − nΩ = ±ωβ, is

present in the more general case in the other field-reversed configurations, and is responsible

for the finite growth rate obtained in the very small s̄ cases in our study.

Finally, our simulations indicate that the apparent FRC stability observed in the exper-

iments cannot be explained within linear theory in the hybrid model. This model assumes

cold fluid electrons and fully kinetic ions. Missing from this model are effects such as finite

electron pressure, collisions, ion sheared rotation, and non-fluid behavior of the electrons

trapped near the magnetic x-points and executing fast curvature drift motion. It is possible

that these effects can have an additional stabilizing influence. Another possibility is that

the nonlinear behavior of the tilt mode in the kinetic regime is different from that of the

MHD prediction. Preliminary results of our nonlinear hybrid simulations at low values of s̄

indicate that the instabilities in the prolate configurations saturate through a combination

of a lengthening of the initial equilibrium and a modification of the ion distribution function.

These results will be reported in a future publication. Note that nonlinear stabilization of

a linearly unstable tilt mode may explain the observation in the low s̄ experiments of initial
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n = 1 tilt motion that does not result in total loss of the confinement15.

In summary, we have investigated the effects of the separatrix shape, sheared rotation

(in MHD regime), and ion FLR on the n=1 tilt mode instability. Substantial reduction of

the growth rate due to ion sheared rotation and kinetic effects has been found. However,

our simulations have shown that for realistic experimental parameters, none of these effects

by themselves results in a linearly stable FRC configuration.
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