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Abstract

A fully kinetic assessment of the stability properties of toroidal drift modes

has been obtained for nonaxisymmetric (stellarator) geometry, in the elec-

trostatic limit. This calculation is a comprehensive solution of the linearized

gyrokinetic equation, using the lowest-order \ballooning representation" for

high toroidal mode number instabilities, with a model collision operator. Re-

sults for toroidal drift waves destabilized by temperature gradients and/or

trapped particle dynamics are presented, using three-dimensional magneto-

hydrodynamic equilibria generated as part of a design e�ort for a quasiax-

isymmetric stellarator. Comparisons of these results with those obtained for

typical tokamak cases indicate that the basic trends are similar.
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I. INTRODUCTION

Major interest in plasma con�nement utilizing nonaxisymmetric toroidal con�gurations

has been very evident in the international fusion research community. These include, for

example, the Large Helical Device (LHD) in Japan, which has just started operation,1

the Wendelstein-7X (W7X) device under construction in Germany,2 and the exploration of

tokamak-stellarator hybrid con�gurations, such as the National Compact Stellarator Exper-

iment (NCSX), currently being pursued in the United States.3 Accordingly, there is strong

incentive to gain a better understanding of the associated anomalous transport properties.

This has motivated the present investigation of the underlying linear microinstabilities.

The approach taken is to begin with the well-established axisymmetric linear eigenvalue

microinstability code, FULL,4;5 which has been successfully and extensively applied to toka-

mak plasmas. This code has now been systematically extended to enable the investigation

of the more general case of nonaxisymmetric stellarator geometry. Thus, all of the kinetic

dynamics previously included in the axisymmetric version are retained in the nonaxisym-

metric version. In particular, it includes trapped particles, �nite Larmor radius e�ects to all

orders, banana orbital dynamics, bounce frequency and transit frequency and magnetic drift

frequency resonances, equilibrium shaping e�ects, and so on, for all species. Any number of

plasma species can be included. This high-n (toroidal mode number), ballooning represen-

tation code now makes use of three-dimensional magnetohydrodynamic (MHD) equilibria

from the VMEC code,6;7 which works in VMEC coordinates. The MHD equilibrium is

transformed to Boozer coordinates8 by the TERPSICHORE code,9 and needed data along

a chosen magnetic �eld line for the kinetic instability calculation in FULL is constructed by

the VVBAL code.10 The extended FULL code �nds all of the trapped-particle turning points

along the �eld line numerically, so that all of the toroidally-trapped and helically-trapped

particles are included automatically in the calculation. The Krook model collision operator

previously used for axisymmetric geometry has also been extended for multiple classes of

trapped particles. The needed changes have now been made in the electrostatic version of
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the FULL code.

The extended code is validated by comparing results from the previous axisymmetric

version of the FULL code, using an axisymmetric MHD equilibrium11 generated by the

JSOLVER12 code in PEST-I coordinates,13 with results calculated by the new nonaxisym-

metric version of the FULL code, using a \matched" three-dimensional MHD equilibrium

calculated by the VMEC code, with all nonaxisymmetric components equal to zero. Results

are also presented for electrostatic toroidal drift modes (trapped-electron modes, ion tem-

perature gradient modes) for an MHD equilibrium generated as part of the ongoing NCSX

stellarator design e�ort.3 Various instability parameters are varied and the resulting e�ects

on the instability linear growth rates and real frequencies are evaluated. In general, the

results are qualitatively similar to those obtained for typical tokamak cases.

The necessary changes in the FULL code for nonaxisymmetric MHD equilibria relative

to the previous axisymmetric code are described in Sec. II. Results for several collisionless

cases are presented and compared in Sec. III. The extended model collision operator and

collisional results are described in Sec. IV. Conclusions are given in Sec. V.

II. CHANGES IN EQUATIONS

For the three-dimensional VMEC MHD equilibrium, after the transformation to Boozer

coordinates, the spatial coordinates are the 
ux surface label s, the poloidal angle �, and

the toroidal angle �. A more detailed description of this coordinate system and of the

corresponding ballooning representation calculation for ideal MHD ballooning modes is given

in Ref. 10. In the present lowest-order ballooning representation, the coordinate � acts as

a nonperiodic coordinate along the equilibrium magnetic �eld line. De�ning B(�) � jB(�)j
and the unit vector b � B(�)=B(�) along the equilibrium magnetic �eld line, the quantities

from the MHD equilibrium calculation which are needed for the the kinetic microinstability

calculation are B(�), b � r, k2?(�), the magnetic curvature drift k? � fb � [(b � r)b]g, and
the magnetic gradient drift k? � (b � rB), all evaluated in the lowest-order ballooning
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representation. Using results from Ref. 10, we obtain

b � r =
	0(s)p
gB

@

@�
; (1)

k2?(�) = n2

p
gB2

[	0(s)]2

h
Cp + Cs(� � �0) + Cq(� � �0)

2
i
; (2)

k? � (b�rB) = Bk? � fb� [(b � r)b]g+ np0(s)

	0(s)
; (3)

and

k? � fb� [(b � r)b]g = n
B	0(s)

2p0(s)
p
g
[dp + ds(� � �0)] : (4)

Here, 2�	(s) is the poloidal magnetic 
ux, p(s) is the pressure, g is the determinate of

the metric tensor, and
p
g is the Jacobian of the Boozer magnetic coordinate system. The

prime (0) indicates a derivative with respect to s, and �0 (also called �k) is the ballooning

parameter.10 Algebraic expressions for Cp, Cs, Cq, dp, and ds are given in Ref. 10. All of

these quantities are obtained as part of the MHD equilibrium solution and its mapping to

Boozer coordinates.

The solution of the linearized gyrokinetic equation given in Ref. 4 can be used, with

substitutions for b � r, k2?(�), and the magnetic drift frequency !dj(�) = (v2k=
j)k? � fb �
[(b �r)b]g+(v2?=2
jB)k? � (b�rB) using the previous expressions, where 
j � ejB=mjc.

In the electrostatic limit, Âk and Â? are set to zero in the expressions in Ref. 4, and only the

quasineutrality condition is used, but the pressure correction term in Eq. 3 here is retained.

The resulting integral equation along the magnetic �eld is converted to a matrix equation by

expanding the unknown perturbed electrostatic potential in terms of chosen basis functions,

and the matrix equation is solved by standard methods, as described in detail in Ref. 4.
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III. COLLISIONLESS RESULTS

A. Axisymmetric comparison

For the purpose of validating the extended nonaxisymmetric version on the FULL code,

we compare results from this version with those from the earlier axisymmetric version,

which in turn has been compared with an initial value code embodying essentially the

same physics,14 and with a gyro
uid code embodying a good approximation to the same

physics.15 For this purpose we use an axisymmetric, two dimensional, �xed boundary MHD

equilibrium described in Ref. 11 for the ARIES-RS reactor design with aspect ratio 3.0,

calculated using the JSOLVER code, and a \matched" MHD equilibrium computed with

the three dimensional VMEC code, for which all of the nonaxisymmetric components of B

are zero. This equilibrium is computed with low � (�N = 0:1 with B0 = 6:917 T) and we

choose �i = �e = 3:0 and Ti = Te = 15:74 keV on the chosen magnetic surface (which is

surface 36 of 48), including only electrons and background deuterium ions in the kinetic

calculation. For the collisionless electrostatic drift mode, with ballooning parameter �0 = 0,

results for the linear growth rate 
 are shown in Fig. 1(a) and for the real frequency !r

in Fig. 1(b) versus k?�i(� = 0) (/ n). It can be seen that there is good agreement for

both 
 and !r over the range of k?�i(� = 0) from zero to one. The behavior seen here

for the eigenfrequency of the toroidal drift mode is typical, with the growth rate having a

maximum for k?�i ' 0:4, and with the real frequency making a transition from the electron

diamagnetic direction to the ion diamagnetic direction as k?�i(� = 0) increases.

B. NCSX cases

We now make use of a stellarator MHD equilibrium generated in the course of the ongoing

design study for NCSX,3 which is quasiaxisymmetric with three �eld periods (QAS3), which

means that the equilibrium magnetic �eld strength is approximately symmetric in � after

the transformation to Boozer coordinates. The particular equilibrium used is called QAS3-
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FIG. 1. Electrostatic, collisionless toroidal drift mode results for (a) growth rate 
 and (b)

real frequency !r for axisymmetric ARIES-RS case with aspect ratio 3.0 and �N = 0:1. Here,

�i = �e = 3:0, Te = Ti = 15:74 keV, and B0 = 6:917 T.
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C82,16 here calculated in �xed boundary mode with very low volume average �, h�i =

0:01%. As a standard set of local parameters for the microinstability calculation, we choose

magnetic surface 88 of 100 (s = 0:875 ' average (r=a)2, average r=a ' 0:935), �eld line

label � � � � q� = �=3 = 1:0472, ballooning parameter �0 = 0, toroidal mode number

n = 25 (k?�i(� = 0) = 0:3983), Ti = Te = 1:0 keV, and �i = �e = 3:0. These parameters

will later be varied one by one to investigate the e�ects on the linear growth rates and real

frequencies. We retain only electrons and background deuterium ions in the calculation.

The input functions along the equilibriummagnetic �eld line constructed by the VVBAL

code and input by the FULL code for this case extend over 25 2� �eld periods in the

(nonperiodic) ballooning coordinate �, from �12:5� 2� to 12:5� 2�. The magnitude of the

equilibrium magnetic �eld B(�) is shown in Fig. 2 for the center period, �� < � < �. A

given pitch angle corresponds to a constant level on this kind of plot, and the intersections

with the B curve show the locations of the trapped particle turning points. As an example,

for the 1.10 level line in Fig. 2, there are only two turning points in this 2� period, and this

corresponds to a single class of toroidally trapped particles, the class which is familiar from

axisymmetric tokamak geometry. However, for the 1.33 level line, there are 12 turning points

in this 2� period, corresponding to 7 classes of trapped particles with one or both turning

points in this period. The other 6 classes, in addition to the class of toroidally trapped

particles whose two turning points surround � = 0, are considered to be helically trapped

particles. For the 0.94 level line, there are four turning points in this period, corresponding to

two classes of trapped particles, which could be considered to be hybrid classes of trapped

particles. However, this kind of designation makes no di�erence to the actual numerical

calculation. All of the turning points and trapped particle classes are found numerically by

the FULL code for each pitch angle.

The corresponding curve for k2?(�) is shown in Fig. 3 and for the curvature drift

k? � fb � [(b � r)b]g in Fig. 4. Positive curvature drifts are \bad" or destabilizing and

negative curvature drifts are \good" or stabilizing. The linear eigenfunction for the per-

turbed electrostatic potential �̂(�) for the collisionless, electrostatic toroidal drift mode is
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FIG. 2. Variation of B(�) along chosen magnetic �eld line with � = 1:0472, �0 = 0, on

magnetic surface 88 of 100 (s = 0:875), for NCSX design case QAS3-C82 (�xed boundary), with

h�i = 0:01%.

shown in Fig. 5, for the eigenmode with the smallest number of nodes along the �eld line,

which normally has the highest linear growth rate. The eigenfunction is well localized in the

toroidal magnetic �eld well around � = 0 in Fig. 2, and responds only weakly to the helical

magnetic �eld wells at larger values of j�j, for this case.
The results of varying �i = �e are shown for 
 in Fig. 6(a) and for !r in Fig. 6(b). In this

process, the total pressure gradient is kept �xed, consistent with the MHD equilibrium, so

that the density gradient decreases and the electron and ion temperature gradients increase,

as �i = �e increases. For this case, in the collisionless limit, there are actually two distinct

roots. There is the one we have already referred to for �i = �e = 3:0, which we label as the ion

temperature gradient mode (ITG) root, in correspondence with the usual nomenclature for

tokamak modes, which is unstable for all �i = �e above a critical value 0.65. The calculation

for this root still includes trapped particles, which are destabilizing. There is another root,

which we label as the trapped-electron mode (TEM) root, again in correspondence with

tokamak nomenclature, which is unstable for all �i = �e less than a critical value, 1.06.
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magnetic �eld line, for case of Fig. 2 with electrons and deuterium ions only, with �i = �e = 3:0,

Ti = Te = 1:0 keV, and n = 25 (k��i(� = 0) = 0:3983).

In many tokamak cases,17 these two roots will \hybridize" together, to form a single root

which is continuously unstable for all positive �i, sometimes referred to as the \trapped-

electron-�i mode" (though they sometimes also remain as separate roots), but that did not

happen for this case, because the two real frequencies are too widely separated. For the

TEM root, the real frequency is always in the electron diamagnetic direction. For the ITG

root, the mode starts out in the electron diamagnetic direction for small �i = �e, but makes

a transition to the ion diamagnetic direction as �i = �e increases. Here, we took n = 25

(k?�i(� = 0) = 0:3983) for the ITG root and n = 27 (k?�i(� = 0) = 0:4302) for the TEM

root. The e�ects of collisions will be discussed in Sec. IV.

The variation of 
 and !r with n or k?�i(� = 0) / n is shown in Fig. 7 for the ITG

root (with �i = �e = 3:0) and for the TEM root (with �i = �e = 0:0). The real frequency

of the TEM root is always in the electron diamagnetic direction, for this range of n, while

that for the ITG root starts out in the elctron diamagnetic direction at small n, but makes

a transition to the ion diamagnetic direction as n increases. This same behaviour is seen in
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typical tokamak cases. The growth rates for both roots have maxima for k?�i(� = 0) ' 0:4

to 0.5, which is again typical for tokamak results also.
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 and !r with n or k��i(� = 0), for case of Figs. 2 and 5 with �i = �e = 3:0

for ITG root and �i = �e = 0:0 for TEM root.

The variation of the eigenfrequency for the ITG root with the ballooning parameter �0

(also called �k) is shown in Fig. 8. The variation is symmetric around �0 = 0, and the growth

rate is a maximum there. This behaviour is again typical of tokamak cases also. The e�ect

of varying � � � � q� is shown in Fig. 9. The value of � determines the particular magnetic

�eld line considered on the chosen magnetic surface. In axisymmetric geometry, this is an

ignorable coordinate. In the present three-period equilibrium, ! is periodic in � with period

2�=3, and the growth rate is seen to have a maximum for � = �=3 = 1:0472, i.e., half way

through one period, and is symmetric around that maximum.

The variation of 
 and !r with the temperature ratio Te=Ti is shown in Fig. 10 for the

ITG root (including trapped-particle e�ects). Here, two di�erent situations are considered.

In one, Te is varied while Ti is kept �xed. In the other, Ti is varied while Te and k?�i(� = 0)

are kept �xed, with n also being varied so as to compensate for the changing Ti. It is
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seen that the growth rate changes very little with Te=Ti when Ti is varied, but increases

substantially with Te=Ti when Te is varied. Both this behaviour and the opposite variation

with Te have been seen in tokamak cases, depending on the regime considered.
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FIG. 10. Variation of 
 and !r with Te=Ti, for ITG root with �i = �e = 3:0 and

k��i(� = 0) = 0:3983, for case of Figs. 2 and 5.

Finally, we vary the chosen magnetic surface (minor radius), and follow the variation of

the ITG root for �xed �i = �e = 3:0 and �xed k��i(� = 0) = 0:3983, with n varying so as

to maintain that value, and with the other parameters having their standard values. The

growth rate, shown in Fig. 11, peaks radially around s ' 0:8, but the ITG root is unstable

for all radii examined from s = 0:4 to s = 0:95. The real frequency, also shown in Fig. 11, is

in the ion diamagnetic direction for all of these radii, but rises to make a transition to the

electron diamagnetic direction very near the plasma boundary.

IV. COLLISIONAL EFFECTS

In the original axisymmetric version of the FULL code,4;5;14 collisions were modeled by

means of a \Krook" operator. The physical process involved there was a two-step e�ective
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decorrelation of the particle's parallel motion by means of a pitch-angle scattering from

the toroidally trapped range of pitch angles to the untrapped range, and then another

scattering back from the untrapped range to the toroidally trapped range. The net e�ect of

this two-step process was to give an enhancement of the e�ective collision frequency, over

the normal collision frequency, that increased as the particle's pitch angle became closer to

the trapped-untrapped boundary. In fact, good agreement with the results of a comparable

calculation using a Lorentz collision operator was obtained14 when a divergence of proper

strength at the trapped-untrapped boundary was built into the e�ective collision frequency.

The axisymmetric Krook collision operator is given in detail in Ref. 14, and has an e�ective

electron collision frequency

�asfe(E;�; �0; hmin) =
�e(E)�0

jhmin � �j2
0:111�(�0) + 1:31

11:79�(�0) + 1
; (5)

and with the ions either being treated with a similar collision operator or treated as col-

lisionless. Here, the pitch angle variable � � �B0=E, E and � are the particle energy

and magnetic moment, B0 is the � average of B(�), �(�0) = [j!j=(�eiZf � 37:2=�0)]1=3,

Zf � P
i Z

2

i ni=ne, �ei � 4�nee
4 ln�=[(2Te)3=2m1=2

e ], �e(E) � [�ei=(v=ve)3][Zf + Hee(v=ve)],
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ve � (2Te=me)1=2, and Hee(x) � exp(�x2)=(p�x) + [1 � 1=(2x2)]erf(x). As a matter of no-

tation, we write B = B0=h(�), so that h(�) = B0=B(�) and hmin and hmax are the minimum

and maximum values of h(�). In the simplest toroidal equilibrium with circular magnetic

surfaces, h(�) = 1 + �0 cos(�), with �0 = r=R, so that hmin = 1 � �0 and hmax = 1 + �0.

With these choices, good agreement was obtained for the results for the linear growth rate

with the results of a comparable calculation using a Lorentz collision operator, over the

entire applicable range of collision frequencies.14 For the numerically-calculated axisymmet-

ric MHD equilibria that we now generally employ, h(�) comes from the MHD equilibrium

calculation, hmin and hmax are the (numerically-determined) minimum and maximum of

h(�), respectively (corresponding to the maximum and minimum of B(�), respectively), and

�0 � (hmax � hmin)=2.

In the present nonaxisymmetric geometry, we can have multiple classes of helically-

trapped particles, in addition to the classes of toroidally-trapped and untrapped particles

that are present in axisymmetric geometry. The two-step enhancement process for the

e�ective collision frequency can also occur for transitions from one trapped-particle class

to another, along with the inverse transitions, and can be modeled by a divergence in the

e�ective collision frequency at the pitch-angle boundary between the two trapped-particle

classes. All of the local minima of h(�) (maxima of B(�)) are found numerically in the

extended FULL code, as well as the maximum and minimum of h(�) over the entire range of

�, denoted as hmax and hmin, respectively. The local minima which should be most important

for this process for a given trapped particle are the two local minima just outside the turning

points �1 and �2 (with �1 < �2) for that trapped particle. Labeling the local minimum of

h(�) just to the left of �1 as hmin�l, and the local minimum of h(�) just to the right of �2

as hmin�r, we de�ne �0l � (hmax � hmin�l)=2, and �0r � (hmax � hmin�r)=2. These sorts of

extrema and turning points are illustrated in Fig. 12. In terms of the axisymmetric e�ective

collision frequency �asfe(E;�; �0; hmin) de�ned in Eq. 5, the new nonaxisymmetric e�ective

collision frequency used is given by
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�nasfe (E;�) =
1

2

�
�asfe(E;�; �0l; hmin�l) + �asfe(E;�; �0r; hmin�r)

�
; (6)

for each separate class of trapped particles. For convenience, we de�ne the usual tokamak

dimensionless collisionality parameter ��e � �eiZf=(�
3=2
0 ve=Lc) / ne, where �0 � (hmax �

hmin)=2 and Lc �
R
d� [

p
gB=	0(s)]=

R
d�, which reduces to qR in the axisymmetric, circular

cross-section limit.

θ (radians)

0 π 2π-π-2π
0.8

0.9

1.0

1.1

1.2

1.3

h(
θ)

 =
 B

  /
B

(θ
)

0

h

h
h

Λ

max

min-l

min-r

θ θ
1 2

FIG. 12. Variation of h(�) � B0=B(�) along chosen �eld line for case of Fig. 2, showing

maximum hmax and minima hmin�l and hmin�r, particle turning points �1 and �2, and pitch angle

variable �.

This e�ective collision frequency is a straightforward and usable generalization of the

axisymmetric collision frequency, for the situation with multiple classes of trapped particles.

and reduces to it exactly in the limit of axisymmetric geometry, where the only minima

of h(�) are those that divide the toroidally trapped particles from the untrapped particles

(and all the minima are equal). This model collision operator, as given in Ref. 14, conserves

particle number and energy for each species, but not momentum. It should be acceptably

accurate in the banana regime (��e < 1) and at the lower end of the plateau regime (��e >� 1).

The e�ects of increasing collisionality on 
 and !r are shown in Fig. 13, for the cases

considered in Sec. III B, versus ne or ��e / ne. Results are shown for the TEM root with
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�i = �e = 0:0 and n = 29 (k?�i(� = 0) = 0:4620) and for the ITG root with �i =

�e = 3:0 and n = 25 (k?�i(� = 0) = 0:3983). For these results, ion-ion collisions are

included with an e�ective collision frequency of the same general form as Eq. 6, but ion-

ion collisions have a very small e�ect for the normal range of parameters. One of the

major e�ects of the increasing e�ective collision frequency is to reduce the trapped-electron

contribution to the eigenmode integral equation, because of the presence of the e�ective

collison frequency in the resonant denominator.4;5 The growth rate in Fig. 13(a) for the TEM

root decreases almost to zero as ne or ��e increases, because the trapped electrons provide

almost all of the destabilization for this root through the trapped-electron time-average

magnetic drift precession resonance mechanism. The growth rate for the ITG root decreases

less, because most of the destabilization for it comes from the nonresonant ion temperature

gradient mechanism. Another e�ect of the trapped-electron contribution to the eigenmode

integral equation is to push the real frequency !r towards the ion diamagnetic direction.

The reduction of the trapped-electron contribution with increasing ne or ��e allows !r to

move back in or towards the electron diamagnetic direction for both the TEM root and the

ITG root, as seen in Fig. 13(b).

The results of varying �i = �e at �xed density ne = 2:828 � 1020 m�3 or ��e = 0:7665

are shown in Fig. 6, along with the collisionless results. Collisions at this level give partial

stabilization and a shift in the critical values of �i = �e for both the TEM root and the ITG

root, as seen in Fig. 6(a). The real frequencies for both roots are also shifted towards or

further into the elecron diamagnetic direction, as seen in Fig. 6(b).

V. CONCLUSIONS

A well-established comprehensive kinetic code for analyzing axisymmetric tokamak lin-

ear microinstabilities has now been generalized to deal with nonaxisymmetric stellarator

geometry. This new version of the FULL code has all of the same kinetic dynamics as

the axisymmetric version, and is currently operational in the electrostatic limit. A model
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collision operator, which has been successfully benchmarked against more rigorous collision

models, was previously used in the axisymmetric version of the code, and has now been

extended to accommodate scenarios where there are multiple classes of trapped particles,

i.e., both one class of toroidally trapped and multiple classes of helically trapped particles.

The needed MHD equilibrium is calculated using the three-dimensional VMEC equilibrium

code, with the results being converted to Boozer coordinates by the TERPSICORE code,

and the requisite input quantities along a chosen magnetic �eld line being constructed by the

VVBAL code. Good agreement was obtained between the axisymmetric and nonaxisymmet-

ric versions of the FULL code using \matched" ARIES-RS axisymmetric MHD equilibria

computed both by the two-dimensional JSOLVER code and by the three-dimensional VMEC

code.

Results have been obtained for the toroidal drift mode for an MHD equilibrium generated

in the course of the ongoing design studies for the NCSX stellarator. Two roots are found to

be unstable for the parameters examined. One corresponds to the ion-temperature-gradient

(ITG) mode, and the other to the trapped-electron mode (TEM). The changes in the linear

growth rates and real frequencies were examined as �i = �e, n (or k?�i(� = 0) / n),

�0, �, Te=Ti, s ' average (r=a)2, and ne (or ��e / ne) are varied. Overall, the results of

this variation are generally similar to what is observed in normal tokamak cases. This is

not surprising, since this particular quasiaxisymmetric stellarator equilibrium is designed

to have some of the same properties as an axisymmetric tokamak equilibrium, but only in

Boozer coordinates. For other stellarator cases, that will be investigated in the future, the

magnetic geometry in Boozer coordinates can be very di�erent from that for a tokamak, and

the microinstability results can be correspondingly di�erent. For instance, in an experiment

such as LHD,1 the in
uence of the helically-trapped particles is expected to be very much

larger than for a quasiaxisymmetric stellarator.

In the future, a further extension of the present version of the nonaxisymmetric FULL

code is planned, in order to make it fully electromagnetic. The present electrostatic version

will be reasonably accurate for toroidal drift modes for low to moderate values of �, where the
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dominant �nite-� e�ects enter through the MHD equilibrium, for instance as magnetic axis

shifts (Shafranov shifts), as changes in magnetic surface shape, etc. However, at higher values

of �, the direct electromagnetic coupling of �̂ to Âk and Â? will also become important.

Another possible extension is the implementation of a rotation model, of the type that has

already been implemented in the axisymmetric version of the FULL code.18

It should be noted that the present calculation is only a lowest-order, radially-local

calculation in the ballooning hierarchy. The very simplest method19;20 of going to higher

order, to obtain a radially-global eigenfrequency result, is to use the so-called 1=n correction

term, just as in axisymmetric kinetic cases,21 with n no longer being restricted to integer

values. To go beyond this, to more general WKB-type formulations, is at present an active

area of research,22{24 even for the simpler dynamics of ideal MHD ballooning modes.

The nonaxisymmetric generalization of the FULL code developed in the present studies

can contribute valuable information to the design process for new stellarators. Speci�cally,

identi�cation of magnetic geometries and equilibriumpro�le shapes with reduced microinsta-

bility growth rates would be suggestive of con�gurations with improved anomalous transport

properties. The present capability can also be employed in the analysis of experimental dis-

charges, using experimentally reconstructed MHD equilibria and experimentally-measured

equilibrium pro�le shapes, to assess whether the theoretically-predicted microinstabilities

can be responsible for experimentally observed 
uctuations and associated anomalous trans-

port. Motivated by these considerations, future studies will be made even more realistic, by

including impurities and hot beam ions, along with the electromagnetic (�nite-�) dynamics.
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