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In this paper we present a two-dimensional numerical simulation of a reconnection current layer
in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large
Lundquist numbers. We use realistic boundary conditions derived consistently from the outside
magnetic �eld, and we also take into account the e�ect of the backpressure from 
ow into the
the separatrix region. We �nd that within a few Alfv�en times the system reaches a steady state
consistent with the Sweet{Parker model, even if the initial state is Petschek-like.

PACS Numbers: 52.30.Jb, 96.60.Rd, 47.15.Cb.

Magnetic reconnection is of great interest in many space and laboratory plasmas [1,2], and has been studied
extensively for more than four decades. The most important question is that of the reconnection rate. The process
of magnetic reconnection, is so complex, however, that this question is still unresolved, even within the simplest
possible canonical model: two-dimensional (2D) incompressible resistive magnetohydrodynamics (MHD) with uniform
resistivity � in the limit of S ! 1 (where S = VAL=� is the global Lundquist number, L being the half-length of
the reconnection layer). Historically, there were two drastically di�erent estimates for the reconnection rate: the
Sweet{Parker model [3,4] gave a rather slow reconnection rate (ESP � S�1=2), while the Petschek [5] model gave any
reconnection rate in the range from ESP up to the fast maximumPetschek rate EPetschek � 1= logS. It is still unclear
under which conditions the fast (Petschek-like) reconnection is possible.
We believe that the methods developed in this paper are rather universal and can be applied to a very broad class

of reconnecting systems. However, for de�niteness and clarity we keep in mind a particular global geometry presented
in Fig. 1 (although we do not use it explicitly in our present analysis). This Figure shows the situation somewhere
in the middle of the process of merging of two plasma cylinders. Regions I and II are ideal MHD regions: regions I
represent unreconnected 
ux, and region II represents reconnected 
ux. The two regions I are separated by the very
narrow reconnection current layer. Plasma from regions I enters the reconnection layer and gets accelerated along the
layer, �nally entering the separatrix region between regions I and II. In general, both the reconnection layer and the
separatrix region require resistive treatment.
In the limit S !1 the reconnection rate is slow compared with the Alfv�en time �A = L=VA. Then one can break

the whole problem into the global problem and the local problem [6]. The solution of the global problem is represented
by a sequence of magnetostatic equilibria, while the solution of the local problem (concerning the narrow resistive
reconnection layer and the separatrix region) determines the reconnection rate. The role of the global problem is to
give the general geometry of the reconnecting system, the position and the length of the reconnection layer and of
the separatrix, and the boundary conditions for the local problem. These boundary conditions are expressed in terms
of the outside magnetic �eld By;0(y), where y is the direction along the layer. In particular, By;0(y) provides the
characteristic global scales: the half-length of the layer L, de�ned as the point where By;0(y) has minimum, and the
global Alfv�en speed, de�ned as VA = By;0(0)=

p
4��.
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FIG. 1. The global geometry.

In the present paper we study the local problem using the boundary conditions provided by our previous analysis
of the global problem [7]. Our main goal is to determine the internal structure of a steady state reconnection current
layer (i.e., to �nd the 2D pro�les of plasma velocity and magnetic �eld), and the reconnection rate represented by the
(uniform) electric �eld E. We assume incompressible resistive MHD with uniform resistivity. Perfect mirror symmetry
is assumed with respect to both the x and y axes (see Fig. 2).
This physical model is described by the following three steady state 
uid equations: the incompressibility condition,

r�v = 0, the z component of Ohm's law, �jz = E+ [v�B]z, and the equation of motion, v �rv = �rp+ [jz ẑ �B]
(where the density is set to one).
Now we take the crucial step in our analysis. We note that the reconnection problem is fundamentally a boundary

layer problem, with S�1 being the small parameter. This allows us to perform a rescaling procedure [8] inside the
reconnection layer, so that the rescaled resistivity is equal to one. We rescale distances and �elds in the y-direction
by the corresponding global values (L, B0;y(0), and VA), while rescaling distances and �elds in the x-direction by
the corresponding local values: x ! x�SP, vx ! vxVA�SP=L, Bx ! BxBy;0(0)�SP=L, E ! EBy;0(0)VA�SP=L. Here,

�SP � LS�1=2 is the Sweet-Parker thickness of the current layer. Thus, one can see that the small scale �SP emerges
naturally as the thickness of the resistive boundary layer. Then, using the small parameter �SP=L = S�1=2 � 1, one
obtains a simpli�ed set of 
uid equations for the rescaled dimensionless quantities:

r � v = 0; (1)

E =
@By

@x
� vxBy + vyBx; (2)

(where the �rst term on the right hand side (RHS) is the resistive term) and

v � rvy = �
@p

@y
+Bx

@By

@x
: (3)

In the last equation (representing the equation of motion in the y-direction, along the current layer) the pressure
term can be expressed in terms of By(x; y) and the outside �eld B0;y(y) by using the vertical pressure balance
(representing the x-component of the equation of motion, across the current layer):

p(x; y) =
B2
y;0(y)

2
� B2

y(x; y)

2
: (4)

We believe that this rescaling procedure captures all the important dynamical features of the reconnection process.
The problem is essentially two-dimensional, and requires a numerical approach. Therefore, we developed a numerical

code for the main reconnection layer, supplemented by another code for the separatrix region. The solution in the
separatrix region is needed to provide the downstream boundary conditions for the main layer (see below).
The steady state was achieved by following the true time evolution of the system starting with initial conditions

discussed below. The time evolution was governed by two dynamical equations:

_	 = �r � (v	) + @2	

@x2
+

�
�y

@2	

@y2

�
; (5)
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_vy = �r � (vvy)�
d

dy
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B2
y;0(y)

2

#
+r � (BBy) +

�
�y

@2vy
@y2

�
: (6)

(Small arti�cial resistivity �y and viscosity �y were added for numerical stability.) The natural unit of time is the
Alfv�en time �A = L=VA. The magnetic 
ux function 	 is related to B via Bx = �	y , and By = 	x. At each time
step, vx was obtained by integrating the incompressibility condition: vx(x; y) = � R x

0
(@vy=@y)dx. Note that this

means that we do not prescribe the incoming reconnection velocity, and hence the reconnection rate: the system itself
determines how fast it wants to go!
We used the �nite di�erence method with centered derivatives in x and y (second order accuracy). The time

derivatives were one-sided. The numerical scheme was explicit in the y direction. In the x direction the resistive
term @2	=@x2 was treated implicitly, while all other terms were treated explicitly. Calculations were carried out on
a rectangular uniform grid. We considered only one quadrant because of symmetry (see Fig. 2). More details can be
found in Ref. [9].
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FIG. 2. Computational box used in the numerical
simulation.

The boundary conditions on the lower and left boundaries were those of symmetry (see Fig. 2). On the upper (in
ow)
boundary x = xlim the boundary conditions were @vy=@x = 0 (which worked better than vy = 0) and By(xlim; y) =

B0;y(y) | the prescribed outside magnetic �eld. In our simulations we chose B0;y(y) = B0 + (1� B0)
p
1� y2 with

B0 = 0:3, consistent with the global analysis of our previous paper [7].
The boundary conditions on the right (downstream) boundary cannot be given in a simple closed form. Instead,

they require matching with the solution in the separatrix region, which itself is just as complicated as the main layer.
Therefore, we have developed a supplemental numerical procedure for the separatrix region. Noticing that in the
separatrix region the resistive term should not qualitatively change the solution, we adopt a simpli�ed ideal-MHD
model for the separatrix. This model is expected to give a qualitatively correct picture of the dynamical in
uence of
the separatrix region on the main layer, and thus a su�ciently reasonable downstream boundary conditions for the
main layer. In particular, our model includes the e�ects of the backpressure that the separatrix exerts on the main
layer.
The advantages of our approach are: (i) use of the rescaled equations takes us directly into the realm of S ! 1;

(ii) we do not prescribe the incoming velocity vx(xlim; y) as a boundary condition, because here vx is not determined
by the x-component of the equation of motion, but rather by vy via the incompressibility condition. As a result, we
do not prescribe the reconnection rate; 1 (iii) the use of true time evolution guarantees that the achieved steady state
is two-dimensionally stable; (iv) we have a realistic variation of the outside magnetic �eld along the layer, with the
endpoint L of the layer clearly de�ned as the point where B0;y(y) has minimum (see Ref. [7]).
Let us now discuss the results of our simulations. We �nd that, after a period of a few Alfv�en times, the system

reaches a Sweet{Parker-like steady state, independent of the initial con�guration. In particular, when we start with a
Petschek-like initial conditions (see Fig. 3a), the high velocity 
ow rapidly sweeps away the transverse magnetic �eld
Bx (see Fig. 4). This is important, because, for a Petschek-like con�guration to exist, the transverse component of

1We believe that the fact that we rescaled x using the Sweet{Parker scaling does not mean that we prescribe the Sweet{Parker
reconnection rate. Indeed, if the system wants to go at a faster rate, then it would try to develop some new characteristic
structures, which we should be able to see.
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the magnetic �eld on the midplane, Bx(0; y), must be large enough to be able to sustain the Petschek shocks in the
�eld reversal region. 2 For this to happen, Bx(0; y) has to rise rapidly with y inside a very short di�usion region,
y < y� � L (in the case Einit = 2ESP, presented in Fig. 3a, y� = L=4), to reach a certain large value (Bx = 2
for Einit = 2ESP) for y� < y < L. While the transverse magnetic 
ux is being swept away by the plasma 
ow,
it is being regenerated by the merging of the By �eld, but only at a certain rate and only on a global scale in the
y-direction, related to the nonuniformity of the outside magnetic �eld By;0(y), as discussed by Kulsrud [1]. As a result,
the initial Petschek-like structure is destroyed, and the in
ow of the magnetic 
ux through the upper boundary drops
in a fraction of one Alfv�en time. Then, after a transient period, the system reaches a steady state consistent with the
Sweet{Parker model.
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FIG. 3. The current density j(x; y): (a) at t = 0
for Petschek-like initial conditions with Einit = 2ESP,
and (b) in the �nal steady state (at t = 5), which
corresponds to the Sweet{Parker solution. (All four
quadrants are shown for clarity).
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FIG. 4. The time evolution of the variation of the
transverse magnetic �eld Bx(0; y) along the midplane
x = 0 for the Petschek-like initial conditions.

The �nal steady state solution is represented in Fig. 3b. It corresponds to xlim = 5:0, ylim = 1:0, �y = �y = 0:01.
We see that the solution is consistent with the Sweet{Parker picture of reconnection layer: the plasma parameters
change on the scale of order �SP in the x direction and on a global scale L in the y-direction. The reconnection rate
in the steady state is surprisingly close to the typical Sweet{Parker reconnection rate ESP = �1=2VABy;0(0). The
solution is numerically robust: it does not depend on xlim, ylim or on the small arti�cial resistivity �y and viscosity
�y.
Several things should be noted about this solution. First, j(x; y) ! 0 (and By(x; y) ! B0;y(y)) monotonically as

x ! 1, meaning that there is no 
ux pile-up. Second, as can be seen from Fig. 4, Bx(x = 0; y) � y near y = 0,
contrary to the cubic behavior predicted by Priest{Cowley [10]. This is due to the viscous boundary layer near the
midplane x = 0 and the resulting nonanalytic behavior in the limit of zero viscosity, as explained in Ref. [8]. Third,

2It should be remarked that Petschek did not discussed the origin of this transverse �eld in his original paper.
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there is a sharp change in Bx and j near the downstream boundary y = ylim = 1, due to the fact that in the separatrix
region we neglect the resistive term (which is in fact �nite).
It appears that the destruction of the initially-set-up Petschek-like con�guration and its conversion into a Sweet-

Parker layer happens so fast that it is determined by the dynamics in the main layer itself and by its interaction with the
upstream boundary conditions (scale of nonuniformity of B0;y), as outlined above. Therefore, the fact that our model
for the separatrix does not describe the separatrix completely accurately seems to be unimportant. However, for the
solution of the problem to be really complete, a better job has to be done in describing the separatrix dynamics, and,
particularly, the dynamics in the very near vicinity of the endpoint of the reconnection layer. A proper consideration
of the endpoint can not be done in our rescaled variables, and a further rescaling of variables and matching is needed.
To summarize, in this paper we present a de�nite solution to a particular clear-cut, mathematically consistent prob-

lem concerning the internal structure of the reconnection layer within the canonical framework (incompressible 2D
MHD with uniform resistivity) with the outside �eld B0;y(y) varying on the global scale along the layer. Petschek-like
solutions are found to be unstable, and the system quickly evolves from them to the unique stable solution corre-
sponding to the Sweet{Parker layer. The reconnection rate is equal to the (rather slow) Sweet{Parker reconnection

rate, ESP � 1=
p
S. This main result is consistent with the results of simulations by Biskamp [11] and also with the

experimental results in the MRX experiment [12].
Finally, because the Sweet{Parker model with classical (Spitzer) resistivity is too slow to explain solar 
ares, one

has to add new physics to the model, e.g., locally enhanced anomalous resistivity. This should change the situation
dramatically, and may even create a situation where a Petschek-like structure with fast reconnection is possible (see,
for example, Refs. [13,14,1]).
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