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I. INTRODUCTION

The purpose of this paper is to present a weakly nonlinear theory that describes the

onset of a �nite amplitude instability in Takens-Bogdanov-type dynamical systems. The

principle mathematical tool is an asymptotic analysis. By weakly, we mean a theory that is

only able to treat the onset of the instability. The eventual saturation of the �nite amplitude

instability is usually case-dependent and requires more powerful methods.

A. Finite amplitude instability

An intuitive understanding of a �nite amplitude instability can be obtained by making

an analogy with the motion of a ball in a one dimensional well, �gure 1. The bottom of

the well is made convex so it is a stable equilibrium state for the ball, both linearly and

nonlinearly (Lyapunov stable). If there is friction between the contact surfaces of the ball

and the well, the bottom of the well is asymptotically stable. A nonlinear system can

depart from an asymptotically stable equilibrium inde�nitely if there is a �nite amplitude

perturbation with su�ciently large amplitude �c: In the case of a ball in a well, �gure 1,

the critical perturbation is given by the shape of the well, or in general terms, by the

nonlinearity (greater than quadratic) in the `potential' function. This is called a �nite

amplitude instability and it is characterized by the magnitude of �c:

A simple mathematical example is a �rst-order ordinary di�erential equation,

dx

dt
= ��x+ xN ; 0 � � < 1

with N an integer greater than or equal to two. Obviously x = 0 is a linearly stable

equilibrium state. If � > 0; x = 0 is asymptotically stable. But the system does have a �nite

amplitude instability

�c = ��; with � =
1

N � 1
� 1:

In dynamical systems with dimension higher than one, the critical perturbation usu-

ally has a directional dependence. In the theory of dissipative dynamical systems, the
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FIG. 1. Motion of a ball in a one dimensional frictional well. The bottom of the well is an

asymptotically stable state for the ball. The system has a �nite amplitude instability with critical

perturbation �c:

hyper-surface de�ned by �c is called the basin boundary of attraction for the linearly stable

equilibrium. In the language of stability analysis, it is called a (nonlinear) �nite amplitude

instability. For the purpose of stability analysis, one usually simpli�es the problem by con-

centrating on the smallest critical perturbation since that is the lowest bound to drive the

system away from the equilibrium. The scaling relationship between the smallest critical

perturbation �c and the linear stability parameter �;

�c / ��;

is of primary interest to assess the importance of a �nite amplitude instability in a physical

application. If not directly referred to as the basin boundary of attraction, �c denotes the

smallest critical perturbation amplitude in the multi-dimensional case.

De�nition I.1 If the scaling exponent � � 1; one has a normal �nite amplitude instability.

If � > 1; one has an anomalous �nite amplitude instability.
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The greater the scaling exponent �; the greater practical importance for the �nite am-

plitude instability to induce a transition of states in a noisy environment. The possible

existence of an anomalous scaling relationship is what makes the study of �nite amplitude

instability practically relevant and interesting.

B. Takens-Bogdanov-type dynamical systems

The de�nition of a Takens-Bogdanov-type dynamical system can be made precise by

following the usual stability analysis of a dynamical system around an equilibrium point.

Consider the stability of an N -dimensional autonomous dynamical system in a vector space

with orthonormal basis ẑis,

dz=dt = F (z); z 2 <N and F 2 <N ; (1)

around an equilibrium point ze; F (ze) = 0: De�ne y = z � ze; y 2 <
N ; and Taylor expand

F (z) in the neighborhood of the equilibrium ze; the nth component of equation (1) becomes

dyn=dt = Bniyi + C
(2)
nijyiyj + C

(3)
nijkyiyjyk + � � � : (2)

where yi denotes the ith component of y and repeated index implies summation. The linear

stability matrix B and the nonlinear coupling coe�cients C's are independent of y: If all

nonlinear coupling coe�cients identically vanish in equation (2), one has a purely linear

dynamical system. Otherwise, it is a nonlinear dynamical system.

A linear coordinate transformation x = Ty (T 2 <N�N) can always be performed and

leads to a similarity transformation of the linear stability matrix B; i.e. A = TBT�1 with

T�1 the inverse of T: In this paper we will insist on an orthogonal transformation T to

insure the orthogonality of the new basis x̂is. This is motivated by two considerations: 1]

orthonormal basis are convenient for projecting higher order nonlinear terms; 2] the ampli-

tude of the perturbation is expressed by norms, which is easy to relate in an orthonormal

basis. The original dynamical system now takes the form
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dxn=dt = Anixi + c
(2)
nijxixj + c

(3)
nijkxixjxk + � � � : (3)

If B commutes with its adjoint (transpose conjugate), i.e. B is a normal matrix, then A

can be a diagonal matrix for a suitable orthogonal T if the eigenvalues are distinct [1]. The

diagonal elements of A are the eigenvalues and determine both the eigenfrequency and the

spectral stability of the system. If B does not commute with its adjoint, the linear stability

matrix is called non-normal [1] and A generally can not be an exactly diagonal matrix with

an orthogonal T: Instead T is usually chosen so that A is either in an up-triangle or a

down-triangle form. A canonical example of such non-normal linear stability matrix A is a

Jordan block. For vanishing diagonal elements, the bifurcation scenario of the full nonlinear

equation is studied in the literature under the name of Takens-Bogdanov bifurcation [2],

following the seminal works of Takens [3] and Bogdanov [4]. Reference [2] also presents a

number of physical applications that are characterized by Takens-Bogdanov bifurcation. We

are particularly interested in a linear stability matrix of the Jordan-block form

A �

0
BBBBBBBBBB@

�a1� 1 : : : 0

0 �a2� 1
...

...
. . . 1

0 : : : �aN�

1
CCCCCCCCCCA

: (4)

where all ai's are positive and 0 < � < 1 a small positive parameter that will be eventually

set to approach zero in the asymptotic analysis.

De�nition I.2 A nonlinear dynamical system with a linear stability matrix given in equa-

tion (4) is called a Takens-Bogdanov-type dynamical system. The generalized Takens-

Bogdanov-type dynamical system can have non-vanishing entrees on all up-triangle elements

of A:

In either case, the diagonal elements of A are the eigenvalues and determine the spectral

stability of the system. By de�nition, Takens-Bogdanov-type dynamical systems have the

generic feature of monotonically approaching neutral stability as the control parameter �

goes to zero.
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It should be pointed out that a non-normal linear stability matrix does not imply non-

diagonalisibility of the matrix. Non-diagonalisibility corresponds to an exact geometric

degeneracy. In the case of equation (4), that requires an exact algebraic degeneracy, i.e.

ai = aj for i 6= j: Non-normality only implies a near or weak geometric degeneracy, i.e.

the eigenvectors of the linear stability matrix are nearly parallel. We are mainly interested

in those Takens-Bogdanov-type dynamical systems with diagonalizable linear stability ma-

trices. The pathological case associated with a non-diagonalizable linear stability matrix

makes a trivial example of the general results that we will show.

It is interesting to note that models of the Takens-Bogdanov-type have recieved particular

attention recently in the study of transition to turbulence in parallel shear 
ows. Interested

readers are recommended to consult with a recent paper by Danchot and Manneville [5]

for both an overview and a technical account of the competing schools of thoughts on

that subject. Here we should concentrate on presenting the general theory of the �nite

amplitude instability in the class of mathematical models of the Takens-Bogdanov-type.

Speci�c applications, such as that to the parallel shear 
ow transition problem, will be given

elsewhere as it is more appropriate.

C. Finite amplitude instability in Takens-Bogdanov-type dynamical systems

Similar as the one dimensional example given earlier, a multi-dimensional normal system

(i.e. an exact diagonal A under an orthogonal T ) typically has a normal scaling relationship

0 < � � 1: This is more or less in line with the experimental observation that an equilibrium

becomes more susceptible to noise as the system approaches neutral stability. Although an

� > 0 is su�cient for the critical perturbation amplitude �c to scale monotonically with linear

stability parameter � as it approaches neutral stability �! 0; � = 1 actually separates two

qualitative di�erent regimes for the �nite amplitude instability. For a normal 0 < � < 1; �c

decreases at a slower rate compared with that of �: If the scaling law is anomalous � > 1; �c

can shrink to zero at a rate much faster than that of �:Obviously, an anomalous scaling would
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imply that the �nite amplitude instability might be playing a dominant role in determining

the transitional properties in an experimental situation.

We will show that Takens-Bogdanov-type dynamical systems always have a positive

scaling exponent, Corollary III.13. If the system is resonant, De�nition III.7, the scaling

exponent is strictly greater than one hence the �nite amplitude instability is anomalous,

Corollary III.10. A non-resonant Takens-Bogdanov-type dynamical system can also have a

anomalous �nite amplitude instability, provided that certain nonlinear terms exist in the

expansion, Corollary III.14. The formulae to calculate the scaling exponent at the presence

of arbitrary resonant and non-resonant nonlinear terms are given by Theorem III.9 and

Theorem III.12.

As seen in the one dimensional example earlier, �nite amplitude instability arrives due

to a balance between the linear and leading nonlinear terms. This general principle equally

applies to Takens-Bogdanov-type dynamical systems. The abnormality of the scaling law

actually �nds its root in the linearized dynamics rather than a pathology in the nonlin-

ear terms. A prominent feature of the Takens-Bogdanov-type systems is the possibility of

an exact or approximate geometrical degeneracy of two or more eigendirections of the lin-

earized dynamics. The physical consequence of such degeneracy is the so-called transient

ampli�cation phenomena, sometimes also known as an algebraic instability. That is: an

initial perturbation would grow (algebraically in time), rather than monotonically decay, in

some linear subspace of the system despite its being spectrally stable in all directions. Of

course this growth would eventually come to a halt and the perturbation starts to decay

away, but only after it reaches to a sizable amplitude. This is why it is termed `transient'

ampli�cations.

Transient ampli�cations around the linear stable equilibrium force a separation of the

asymptotic orders (in linear stability parameter �) between various participating compo-

nents, which corresponds to an extremely elongated basin of attraction for the full nonlinear

dynamics. Although nonlinearity is a necessity for the existence of a �nite amplitude in-

stability, it is the (approximate or exact) geometrical degeneracy of the linearized dynamics
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that changes the characteristics of the �nite amplitude instability in Takens-Bogdanov-type

dynamics. We will present an asymptotic method to treat the onset of the �nite amplitude

instability, which amounts to calculate the critical perturbation amplitude �c:

In addition to the possibility of an anomalous �nite amplitude instability, the Takens-

Bogdanov-type dynamical systems also respond di�erently to continous stochastic driv-

ing. Work in this area include that by Farrell and Ioannou [6], who studied the e�ect of

stochastic forcing on a linearized Navier-Stokes equation around a shear 
ow, which is of

Takens-Bogdanov-type but strictly linear. The e�ect of noise driving on a nonlinear Takens-

Bogdanov-type system has been recently studied in [7] under the name of Takens-Bogdanov

random walk.

The rest of the paper is organized as follows. Section II presents a two dimensional

example to illustrate the geometrical view of the onset of a �nite amplitude instability in

a Takens-Bogdanov-type dynamical system, the so-called OSA connection. The essence of

the asymptotic analysis is also exposed in the same section. The N -dimensional problem is

formulated and treated in section III. Speci�cally an alternative, more convenient, standard

form of the Takens-Bogdanov-type dynamical system is given in section IIIA, along with

the distinction between a resonant and a non-resonant nonlinear term. The resonant and

non-resonant cases are then tackled separately in section IIIB and section IIIC.

II. BASIC PICTURE: OSA CONNECTION

The abnormality of the scaling relationship characterizing the �nite amplitude instability

in Takens-Bogdanov-type systems comes from the interplay between nonlinearity and the

geometrical degeneracy (or near-degeneracy) in linear order. The role of nonlinearity is

to introduce a basin of attraction for the asymptotically stable solution. The geometrical

degeneracy of the linearized dynamics, or in physics term, the transient ampli�cation e�ect,

forces the basin of attraction to be extremely elongated. It is the wide separation of scales of

the basin of attraction in di�erent directions that leads to the closeness of the basin boundary
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FIG. 2. Phase space plot of a 2D 
ow given by equations (1) and (2). (a) � = a1 = a2 = 0;

parallel shear 
ow; (b) a1 = a2 = 0; � = 0:1; degenerate node; (c). a1 = a2 = 1 and � = 0:1; basin

of attraction and OSA region (S is the saddle).

to the stable solution in a speci�c coordinate direction, and hence leads to the exponential

scaling of the critical perturbation with the number of degrees of freedom participating in

the transient ampli�cation. This can be illustrated in the case of a two dimensional 
ow

_x1 = ��x1 + x2 + 2a1x
2
1; (5)

_x2 = ��x2 + a1x1x2 + a2x
2
1: (6)

At the absence of a nonlinear term (a1 = a2 = 0), the linear stable solution is a two

dimensional degenerate node. The nonlinear terms as prescribed are the exact normal

form up to quadratic order around a degenerate node in the limit of � ! 0: Bifurcation

of nonlinear systems of this kind was �rst studied in [3,4], and bears the name of Takens-

Bogdanov bifurcation. The underlying physics can be easily understood by examining the

sequence of phase space changes as the parameters are varied.

If � = a1 = a2 = 0; our example reduces to a divergence-free, parallel 
ow with constant

shear, �gure 2(a). A positive � brings in dissipation and the origin becomes an asymptoti-
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cally stable solution, which is a degenerate node, �gure 2(b). Still the system is stable for

arbitrarily large perturbation. Typically, a trajectory starts on the x2 axis at x02; propagates

almost parallel to the x1 axis depending on how small � is. It slows down as time t ! 1=�

and makes a turn after reaching a distance x02=� along the x1 axis. For � � 1 that corre-

sponds to a large ampli�cation of the initial perturbation of 1=� � 1 times. As the initial

perturbation becomes greater, same behavior persists except the turning point being push-

ing further away from the origin. Now let the nonlinearity comes in with a1 = a2 = 1: The

most profound e�ect, as one would expect from a valid self-consistent model, is to impose an

up-bound on the transient ampli�cation factor of the linearized dynamics. It does so gener-

ally by introducing a basin of attraction. In the case of a Takens-Bogdanov-type system, a

saddle point is brought in with its stable manifold forming part of the basin boundary and

its unstable manifold connecting back to the origin on one side while escaping away on the

other side, �gure 2(c). What's also preserved from the linearized dynamics is the geometry

in the so-called OSA region where O stands for the origin or the stable equilibrium, S stands

for the saddle or saddle-like point, and A is the displacement of the basin boundary along

the x2 direction. Solving equations (5) and (6), one �nds that the x1s � �2 and x2A � �3:

Hence the critical perturbation �c / �� with � = 3:

The distinction between the onset and the saturation of the �nite amplitude instability

can be clearly made based on the OSA picture, �gure 2(c). The critical perturbation

amplitude is approximately given by where A is. An initial perturbation lying between O-A

produces a trajectory approaching the saddle along its stable manifold and turns away from

the saddle by following its unstable manifold to the stable equilibriumO: On the other hand,

the system would diverge away by following the opposite branch of the unstable manifold of

the saddle if the initial perturbation is beyond A: It is the OSA connection that determines

the onset of the �nite amplitude instability. The saturation of the �nite amplitude instability

is on a di�erent set of questions: what the new stable equilibrium is and what kind of route

the system would follow to arrive at the new equilibrium. The OSA picture provides the

starting point for the saturation route but imposes no constraint on the characteristics of

10



the new equilibrium. In other words, the onset and the saturation of the �nite amplitude

instability are separate issues and demands separate treatments.

One might feel that the OSA connection is a peculiarity of the particular form of the

example, equation (5). In actuality, the saddle-node connection is the topological signature

of a Takens-Bogdanov bifurcation. In other words, the OSA connection is a generic feature

for Takens-Bogdanov-type dynamical systems around the asymptotically stable solution.

III. N-DIMENSIONAL PROBLEM: A MATHEMATICAL TREATMENT

A. Mathematical formulation

Despite the similarity of the geometry of the trajectories, �gure 2 (b) and (c), there

is an important di�erence between the linear and nonlinear dynamics in the OSA region,

which is on the mechanism for the turning of a trajectory. In linear dynamics, the turn is

made in x1 direction which means _x1 = 0 is the only constraint. The additional constraint

for _x2 ( _x2 = 0) was brought in by the nonlinear coupling in equation (6). That additional

constraint transforms a moving turning point into a stagnation or �xed point (a saddle

to be precise). Furthermore, transient ampli�cation factor is determined by the turning

condition, while equation (6) with nonlinear coupling determines the location of the saddle.

This suggests that:

Proposition III.1 Once the location of the saddle is found from the last equation one can

then combine it with the transient ampli�cation factor from the turning condition to estimate

the critical perturbation, i.e. the location of A:

The rest of the paper shows how to apply this idea to the general N�dimensional Takens-

Bogdanov-type systems, equations (3,4). For the clarity of bookkeeping, the illustrative

example will have a1 = a2 = � � � = aN = 1 which corresponds to an N�dimensional

11



degenerate node as the linear stable solution.1 It must be emphasized right away that

neither the method of analysis nor the physical results depends on this exact degeneracy.

An approximate degeneracy insures the validity of our asymptotics and leads to a rich set

of behavior for the onset of the �nite amplitude instability.

Another standard form of Takens-Bogdanov-type dynamical systems can make above

statements mathematically rigorous. In appendix A, the following Lemma is shown.

Lemma III.2 Equations (3,4) can always be transformed via a nonlinear coordinate trans-

formation, into the form

_x1 = �a1�x1 + x2; (7)

_x2 = �a2�x2 + x3; (8)

_x3 = �a3�x3 + x4; (9)

... (10)

_xN = �aN�xN + f(x); (11)

where f(x) is a polynomial of quadratic or higher order.

The new form has the triviality of limiting the nonlinear couplings to the xN component

where the linear coupling with other degrees of freedom is absent. The simplicity of the

linearized dynamics is maximumly preserved while the saddle condition associated with the

full nonlinear dynamics concerns only one equation, equation (11). The nonlinear coordinate

transformation generally destroy the orthonormality of the basis, but this is acceptable here

since we will be mainly interested in scaling laws.

Imposing the turning condition _xi = 0 for i = 1; � � � ; N � 1; one �nds an asymptotic

ordering:

1An alternative notation is to have a1 � a2 � � � � � aN � 1: The aim is solely for the simplicity

of bookkeeping, i.e. dropping all ais in later discussions on scaling relationships.
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Lemma III.3 Around the turning point of the trajectory,

x1 � x2 � �x1 � x3 � �2x1 � : : :� xN � �N�1x1: (12)

In other words, an initial perturbation of magnitude � in the xN component xN = �

would be ampli�ed by �i�N times in the xi component and only one out of N compo-

nents is actually free. The asymptotic ordering of equation (12) transforms the original

N -dimensional problem into an e�ectively one dimensional problem. Balancing the leading

order terms in the remaining one dimensional system leads to an asymptotic estimates of

the location of the saddle.

Proposition III.4 The nonlinear terms in equation (11) are ordered by two indexes. The

�rst one is the order of the nonlinearity, M: The second index L is the asymptotic order in

�:

De�nition III.5 By an M th order nonlinear term of asymptotic order �L; or (M;L)-order

term, we refer to a monomial of the form �N
i=1x

ai
i that satis�es

NX
i=1

(i� 1)ai = L and
NX
i=1

ai =M:

with ais non-negative integers.

In calculating the asymptotic order of an arbitrary monomial we have substituted the

ordering relations of the linear terms, equation (12), and converted a multivariate monomial

into a single variable monomial. At the presence of only an (M;L)-order nonlinear term,

equation (11) takes the form

_xN = ��Nx1 + �LxM1 : (13)

The saddle condition _xN = 0 gives an estimate of the location of the saddle point.

Lemma III.6 The x1 component of the saddle point associated with an (M;L)-order non-

linear term obeys

xs1 � �
N�L

M�1 :
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Two entirely di�erent cases have to be separated for further discussion depending on whether

L is smaller than N:

De�nition III.7 The nonlinear terms with L < N are resonant terms while those with

L � N are non-resonant terms.

The terminology is borrowed from normal form theory and it can be easily seen why.

The emergence of a new equilibrium, the saddle point, represents a topological change in

the vicinity of the original equilibrium from a perturbative point of view. A nonlinear term

with L � N gives rise to a new equilibrium at x1 � 1: This is not consistent with the spirit

of perturbation since the expansion series is divergent at x1 � 1: As far as a perturbative

analysis is concerned, these nonlinear terms are not the important ones in the expansion

series. In the normal form theory they are the non-resonant terms which can be removed by

a coordinate transformation in the limit of neutral stability � = 0: In contrary, a nonlinear

term with L < N insures that the largest component of the system xs1 is less than one

and approaches zero as � ! 0: These are the resonant nonlinear terms responsible for the

topological changes in the close proximity of the original equilibrium.

Proposition III.8 For the purpose of estimating the onset of the �nite amplitude instability

in Takens-Bogdanov-type dynamical systems, all non-resonant terms can be ignored as long

as there is at least one resonant term permitted by f(x) in equation (11), independent of

how high the nonlinear order M might be.

The exceptional case that enough symmetry in the physical systems excludes resonant

terms from f(x) to arbitrarily high order requires an explicit consideration of the non-

resonant terms. Even in that case, the relative importance of each non-resonant in deter-

mining the onset of the �nite amplitude instability is straightforwardly determined by the

asymptotic analysis.
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B. Case I: the nonlinear term is resonant

Let's �rst consider the resonant case, i.e. there is at least one term with L < N: In the

general resonant case, L can take any integer value from 0 to N � 1: One can introduce a

new index L� = N � L: With the new index, the xs1 is at

xs1 � �
L
�

M�1 with L� = 1; 2; � � � ; N:

The shortest distance between the original asymptotically stable equilibrium (the origin) to

its basin boundary is approximately along the xN direction and �N�1 times of xs1 (the inverse

process of transient ampli�cation),

�c � �N�1+L�=(M�1): (14)

Theorem III.9 In a resonant N-dimensional Takens-Bogdanov-type dynamical system, a

resonant nonlinear term of order (M;L) gives a �nite amplitude instability of scaling expo-

nent

� = N � 1 +
L�

M � 1
;

with L� � N � L = 1; 2; � � � ; N:

The scaling relation presented earlier by Tracy and Tang [8] is the limiting case that

L� = N;

�c(L = N) � �N�1+N=(M�1):

This result demonstrates that the scaling laws �c � �� is always anomalous in that � > 1

for a Takens-Bogdanov-type dynamical system as long as there is at least one resonant

nonlinear term. It is obvious that � = N � 1 + L�

M�1 reaches its minima for the smallest N

and L�; but largest M: The smallest N is 2: The smallest L is 1: For arbitrarily high but

�nite nonlinearity, 1=(M � 1) is positive. Hence �min > 1:

Corollary III.10 The �nite amplitude instability of a resonant nonlinear Takens-

Bogdanov-type dynamical system is always anomalous.
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FIG. 3. Dominance crossing: the importance of a nonlinear term is determined by both its

order M and the mode number L where it feeds back.

Our result for the scaling relations of the �nite amplitude instability also suggests the

possibility for dominant resonant terms to cross over di�erent orders of nonlinearity (M).

To see that, one can plot y = x=(M � 1) for integer M > 1 and study the value for y at

x = 1; � � � ; N: The relative importance of (M;L)-order nonlinear term is obvious from this

plot, �gure 2. It also provides the guideline in the analysis of �nite amplitude instabilities

in resonant Takens-Bogdanov-type dynamical systems.

C. Case II: the nonlinear terms are non-resonant

Let's �rst emphasize again that it is an exceptional case for all resonant nonlinear terms

to vanish. This is especially di�cult if a Taylor expansion of f(x) gives an in�nite series.

Stringent symmetry constraints must present to exclude all resonant nonlinear terms. Nev-

ertheless, if it does occur, the onset of the �nite amplitude instability can have markably

di�erent behavior.

For a non-resonant Takens-Bogdanov-type dynamical system, the asymptotic order of the

nonlinear term L is always no less than the degrees of freedomN that participate in transient

ampli�cation. We can introduce a new index L0 = L�N which is a non-negative integer in

the non-resonant case. As usual we assume the coupling coe�cients are independent of �:
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(An exotic � dependence of some coe�cients is possible in applications but does not make

an intelligent example problem).

Proposition III.11 The highest asymptotic order is archived by a nonlinear term of the

form xMN � �MN�M : That gives the up-bound for L0; L0

max � MN �M � N: The lowest

bound for L0 is, of course, L0

min = 0:

Following the analysis in last section, the critical perturbation amplitude corresponding

to an (M;L0) non-resonant nonlinear term is given by

�c � �N�1�L0=(M�1) with L0 = 0; 1; � � � ;MN �M �N: (15)

Theorem III.12 The �nite amplitude instability in a non-resonant Takens-Bogdanov-type

dynamical system has a scaling exponent

� = N � 1�
L0

M � 1

corresponding to a non-resonant nonlinear term of order (M;L) with L0 � L�N taking the

value 0; 1; � � � ;MN �M �N:

The fundamental di�erence between equation (14) and equation (15) is the negative sign

in front of the nonlinear correction term L0=(M � 1): That is precisely why all non-resonant

terms are negligible in determining the onset of the �nite amplitude instability if there is

one single resonant term in the full dynamics, Proposition III.8.

A few more comments can be made based on equation (15). First the scaling exponent

is always positive since the scaling exponent � has its minimum when L0 = L0

max �MN �

M �N;

�min =
1

M � 1
> 0; with M = 2; 3; 4; � � � :

Corollary III.13 The �nite amplitude instability in a non-resonant Takens-Bogdanov-type

dynamical system has a positive scaling exponent.
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Secondly, both normal and anomalous scaling relations are possible for a non-resonant

Takens-Bogdanov-type dynamical system. The critical exponent �c = 1 is achieved if there

is a non-resonant nonlinear term (L0

c;M) satisfying

L0

c = L0

max �M + 2:

Here L0

max � MN �M � N is a function of the number of degenerate or near-degenerate

modes and the order of the nonlinearity.

Corollary III.14 The �nite amplitude instability in a non-resonant Takens-Bogdanov-type

dynamical system is anomalous if there is a non-resonant (L0;M)-order nonlinear term with

L0 < L0

c � L0

max �M + 2:

If the highest nonlinear term is quadratic, the critical exponent �c = 1 is obtained at

the presence of a non-resonant term with the highest possible asymptotic order.

The di�erence between a resonant Takens-Bogdanov-type dynamical system and a non-

resonant one can also be thought of as a geometrical one. For a resonant Takens-Bogdanov-

type dynamical system, the basin of attraction enclosed by the OSA region shrinks from

all directions at the system approaches neutral stability (� ! 0): In contrary, if a non-

resonant system is approaching neutral stability, the OSA region shrinks in some direction

but expands in other coordinates. A resonant Takens-Bogdanov-type dynamical system

always has an anomalous scaling relations for the onset of the �nite amplitude instability.

A non-resonant Takens-Bogdanov-type dynamical system has an anomalous scaling relation

if the inequality

L0 < L0

max �M + 2 (16)

is satis�ed by at least one non-resonant term in the dynamics. Otherwise it has a normal

scaling relationship for the onset of the �nite amplitude instability.
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IV. CONCLUSIONS

The onset of a �nite amplitude instability is studied in nonlinear Takens-Bogdanov-

type dynamical systems. which are divided into two groups: non-resonant or resonant. A

resonant Takens-Bogdanov-type dynamical system always has an anomalous �nite ampli-

tude instability. Resonant Takens-Bogdanov-type dynamical system is the generic one since

the system is resonant if there exists one single resonant term. A non-resonant Takens-

Bogdanov-type dynamical system can have both normal and anomalous �nite amplitude

instabilities, depending on whether at least one non-resonant term satisfying inequality (16)

exists.
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APPENDIX A: PROOF OF LEMMA III.2

The peculiar structure of a Jordan block allows another general form of equation (3).

The new form has only linear coupling in the �rst N � 1 modes that participate in transient

ampli�cation. All nonlinear couplings are retained in the last equation where no linear

coupling with other degrees of freedom exists. To see that, let's write out equation (3)

explicitly with A a Jordan block as in equation (4),

_x1 = �a1�x1 + x2 + f1(x); (A1)

_x2 = �a2�x2 + x3 + f2(x); (A2)

_x3 = �a3�x3 + x4 + f3(x); (A3)

... (A4)

_xN = �aN�xN + fN (x); (A5)

where fs are polynomials of quadratic or higher.
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A nonlinear coordinate transformation x02 = x2 + f1(x) removes the nonlinear coupling

in the �rst component, equation (A1),

_x1 = �a1�x1 + x2 + f1(x); (A6)

_x02 = �a2�x
0

2 + x3 + f 02(x); (A7)

_x3 = �a3�x3 + x4 + f3(x); (A8)

... (A9)

_xN = �aN�xN + fN(x); (A10)

Similarly another nonlinear coordinate transformation x03 = x3+f 02(x) removes the nonlinear

coupling in the second component, equation (A7). A total N � 1 operations remove all

nonlinear couplings from the �rst N � 1 equations. Dropping all the primes, equation (3)

now takes the form

_x1 = �a1�x1 + x2; (A11)

_x2 = �a2�x2 + x3; (A12)

_x3 = �a3�x3 + x4; (A13)

... (A14)

_xN = �aN�xN + f(x) (A15)

with f(x) consisting of polynomials of quadratic order or higher. This is the desired alter-

native standard form.
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